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ANALYZING FRACTIONAL DIFFERENTIAL 

EQUATIONS USING THE POURREZA TRANSFORM 
 

Abstract 

 

This research investigates specific classes of 

fractional differential equations using a 

straightforward fractional calculus 

technique. The employed methodology 

yields various fascinating results, including 

a broader adaptation of the widely 

recognized classical Frobenius method. The 

approach outlined in this study primarily 

relies on fundamental theorems concerning 

the specific solutions of fractional 

differential equations, making use of the 

Pourreza transform and binomial series 

extension coefficients. Additionally, the 

study presents advanced techniques for 

solving fractional differential equations 

effectively, illustrated through practical 

examples. 
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I. INTRODUCTION  

 

In recent years, fractional differential equations have garnered substantial interest because of 

their capacity to capture complex phenomena in diverse fields of science and engineering. 

These equations go beyond traditional integer-order differentiation, enabling a more precise 

description of processes that display memory and non-local behaviors. This research delves 

into the realm of fractional differential equations, aiming to advance the understanding and 

solution techniques for specific classes of these equations. The foundation of our 

investigation draws inspiration from a rich history of mathematical contributions, as 

evidenced by the works of renowned scholars in this field. Caputo's seminal work [1] on 

elasticity and anelastic dissipation laid the groundwork for understanding the fundamentals of 

fractional calculus. Podlubny's comprehensive treatise [2] on fractional differential equations 

has served as a cornerstone reference for researchers and practitioners alike. Our research 

also draws upon innovative methods and techniques that have emerged in recent years. 

Notably, Zhang's Sumudu-based algorithm [3] provides a valuable computational tool for 

solving differential equations, while Aboodh's transformative work [4] introduced the 

Aboodh transform, offering a novel approach to tackling fractional differential equations. The 

study of Laplace transforms in the context of fractional differential equations has been a 

focus of research, as demonstrated by the contributions of Lin and Lu [5]. Mohamed's Elzaki 

transformation [6] and Kashuri, Fundo, and Liko's new integral transform [7] represent 

additional methodologies that have expanded the arsenal of techniques available for solving 

these equations. Furthermore, the New Integral Transform Mohand Transform [8], as 

proposed by Abdelrahim Mahgoub, has brought new perspectives to the field. Silva, Moreira, 

and Moret's work on conformable Laplace transforms [9] adds to the evolving landscape of 

fractional calculus techniques. Lastly, the Aboodh transform continues to be explored, as 

evidenced by Aruldoss and Anusuya Devi [10], who have employed it for solving fractional 

differential equations. Additionally, the study by Raghavendran et al. [11] explores the use of 

Aboodh transform for fractional integro-differential equations, showcasing its versatility. 

Burqan, Saadeh, Qazza, and Momani's 2023 [13] paper introduces the ARA-residual power 

series method, a novel approach for solving partial fractional differential equations. This 

method offers a valuable contribution to mathematical techniques for addressing complex 

mathematical problems in engineering and science. 

 

In this investigation, we utilize the Pourreza transform of fractional derivatives and the 

coefficients from binomial series extensions to address multiple fractional differential 

equations. Moreover, we unveil various properties that are relevant to our main focus. To 

illustrate our findings, we present practical examples. 

 

II. PRELIMINARIES 

 

In this section, we are listing some preliminaries that are useful throughout the paper [11]. 

 

1. The definition of the RL fractional integral with order 𝜁 > 0 for a function 𝑦(𝑡) can 

be expressed as follows: 

𝐼𝜁 𝑡𝑦 𝑡 =
1

Γ(𝜁)
 (𝑡 − 𝜂)𝜁−1

𝑡

0

 𝑦 𝜂 𝑑𝜂 
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2. The Caputo fractional derivative of the function 𝑦(𝑡) is defined as follows: 

 

𝐷𝜁 𝑡𝑦 𝑡 =

 
 
 

 
 𝑦𝑖 𝑡      ;      𝑖𝑓 𝜗 = 𝑖 ∈ ℕ

1

Γ(𝑖 − 𝜁)
 

𝑦𝑖(𝑡)

(𝑡 − 𝑥)𝜁−𝑖+1
𝑑𝑡    ; 𝑖𝑓 𝑖 − 1 < 𝜁 < 𝑖

𝜁

0

  

 

The Euler gamma function, denoted as Γ(. ), is defined as follows:  

Γ 𝜓 =  𝑡𝜓−1

∞

0

𝑒−𝑡  𝑑𝑡           ℝ > 0 . 

 

3. The Pourreza transform of a function y(t), t ∈ (0, ∞) is defined by 

𝑃 𝑦 𝑡   ℇ = 𝐹 ℇ = ℇ 𝑒−ℇ
2𝑡  𝑦 𝑡  𝑑𝑡

∞

0

;  (ℇ ∈ ℂ) 

 

4. The Mittag-Leffler function is defined by 

𝐸𝛿 ,𝛾 𝜓 =  
𝜓𝑖

Γ 𝛿𝑟 + 𝛾 
     (

∞

𝑖=0

𝛿, 𝛾,𝜓 ∈ ℂ,ℝ(𝛿) > 0). 

 

5. The Simplest Wright function is defined by 

𝜌 𝜔,𝜓;𝜙 =  
1

Γ(𝜔𝑟 + 𝜓)
.
𝜙𝑟

𝑟!

∞

𝑟=0

       𝜙,𝜓,𝜔 ∈ ℂ  . 

 

6. The general Wright function i𝜒j  𝜑  is characterized by the following conditions 

𝜑 ∈ ℂ , 𝜈1𝑙 , 𝜈2𝑚 ∈ ℂ, and real 𝜔𝑙 ,𝜙𝑚 ∈ ℝ (𝑙 = 1,… , 𝑖,𝑚 = 1,… , 𝑗) , as determined 

by the provided series. 

i𝜒j 𝜈 = i𝜒j  
 𝜈1𝑙 ,𝜔𝑙 1,𝑖

 𝜈2𝑚 ,𝜙𝑚 1,𝑗
 | 𝜑 =  

 Γ(𝜈1𝑙+𝜔𝑙𝑟)𝑖
𝑙=1

 Γ(𝜈2𝑚+𝜙𝑚 𝑟)
𝑗
𝑚=1

∞
𝑟=0 .

𝜑𝑟

𝑟!
 

 

7. The inverse Pourreza transform is defined by 

 

𝑃−1  
Γ(𝑧+ 1)

ℇ2𝑧+1
 = 𝑡𝑧 

 

Remark 2.1 

𝑃 𝐷𝜗𝑦 𝑡   ℇ = ℇ 𝑒−ℇ
2𝑡

∞

0

  𝐷𝜗  𝑦 𝑡  𝑑𝑡 

=  ℇ 𝑒−ℇ
2𝑡  

1

Γ 𝑛 − 𝜗 

∞

0

 
𝑦 𝑛  𝜁 

 𝑡 − 𝜁 𝜗−𝑛+1

𝑡

0

 𝑑𝜁 𝑑𝑡 
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=  
ℇ

Γ 𝑛 − 𝜗 
  𝑒−ℇ

2𝑡  
𝑦 𝑛  𝜁 

 𝑡 − 𝜁 𝜗−𝑛+1

∞

𝜁

  

∞

0

𝑑𝑡 𝑑𝜁 

 

=  
ℇ

Γ 𝑛 − 𝜗 
 𝑦 𝑛  𝜁  𝑒−ℇ

2 𝑢+𝜁  𝑢𝑛−𝜗−1

∞

0

 

∞

0

𝑑𝑢 𝑑𝜁 

 

=  
ℇ

Γ 𝑛 − 𝜗 
 𝑒−ℇ

2𝜁𝑦 𝑛  𝜁  𝑒−ℇ
2𝑢  𝑢𝑛−𝜗−1

∞

0

 

∞

0

𝑑𝑢 𝑑𝜁 

 

=  
ℇ

Γ 𝑛 − 𝜗 
 𝑒−ℇ

2𝜁  𝑦 𝑛  𝜁 

∞

0

Γ n− ϑ 

ℇ𝑛−𝜗
𝑑𝜁 

 

= ℇ𝜗−𝑛+1  𝑒−ℇ
2𝜁

∞

0

 𝑦 𝑛  𝜁  𝑑𝜁 = ℇ𝜗−𝑛+1 𝑃 𝑦 𝑛  𝜁   ℇ  

 

= ℇ𝜗−𝑛+1  ℇ2𝑛𝑃 𝑦 𝑡  −  ℇ−2𝑚−1

𝑛−1

𝑚=0

𝑦 𝑛  0   

 

= ℇ𝜗+𝑛+1 𝑃 𝑦 𝑡  −  ℇ𝜗−𝑛−2𝑚

𝑛−1

𝑚=0

𝑦 𝑛  0  

 

Note: Fubini's theorem is employed to rearrange the order of integration in the preceding 

derivative. 

 

III. SOLUTIONS OF THE FRACTIONAL DIFFERENTIAL EQUATIONS 

 

In this section, there are strong indications that the function 𝑘(𝑡) alone may be adequate to 

enable the Pourreza transform 𝑃[𝑘(𝑡)] to operate successfully at a certain value of the 

parameter `ℇ′. 
 

Theorem 3.1. Let 1 < 𝜗 < 2 and 𝜍 and 𝜏 ∈ ℝ. Then the fractional differential equation 

 with initial conditions 𝑘 0 = 𝑐0 and 𝑘 ′ 0 = 𝑐1 has the unique solution 

 

𝑘 𝑡 =  𝑐0  
 −𝜏 𝑚  𝑡2𝑚

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍𝑡 2−𝜗  

ℵ
 

Γ  2− 𝜗 ℵ+ 2𝑚+ 1  ℵ! 

∞

ℵ=0

+  𝑐1  
 −𝜏 𝑚  𝑡2𝑚+1

𝑚!

∞

𝑚=0

 
Γ 𝑚+ ℵ+ 1   −𝜍𝑡 2−𝜗  

ℵ
 

Γ  2− 𝜗 ℵ+ 2𝑚 + 2  ℵ! 
                                                             (2)

∞

ℵ=0

 

              

𝑘 ′′ 𝑡 + 𝜍 𝑘𝜗 𝑡 + 𝜏 𝑘 𝑡 = 0                   

                                      (1) 
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Proof: Utilizing the Pourreza transform in  1  and taking into consideration, we have 

ℇ4𝐹 ℇ − ℇ3𝑦 0 − ℇ 𝑦 ′ 0 + 𝜍 ℇ2𝜗𝐹 𝑠 − ℇ2𝜗−1𝑦 0 − ℇ2𝜗−3𝑦 ′ 0  + 𝜏 𝐹(𝑠) = 0 

ℇ4𝑃 𝑘 𝑡  − ℇ3𝑘 0 − ℇ𝑘 ′ 0 + 𝜍ℇ2𝜗𝑃 𝑘 𝑡  − 𝜍ℇ2𝜗−1 𝑘 0 − 𝜍ℇ2𝜗−3𝑘 ′ 0 + 𝜏 𝑃 𝑘 𝑡  = 0 

 ℇ4 + 𝜍ℇ2𝜗 + 𝜏  𝑃 𝑘 𝑡  = ℇ3𝑐0 + ℇ 𝑐1 + 𝜍 ℇ2𝜗−1𝑐0 + 𝜍 ℇ2𝜗−3𝑐1 

 

Since 

1

 ℇ4 + 𝜍 ℇ2𝜗 + 𝜏 
=  

ℇ−2𝜗

ℇ4−2𝜗 + 𝜍 + 𝜏ℇ−2𝜗
 

 

=
ℇ−2𝜗

(ℇ4−2𝜗 + 𝜍)  1 +
𝜏  ℇ−2𝜗

ℇ4−2𝜗+𝜍
 
 

 

=
ℇ−2𝜗

ℇ4−2𝜗 + 𝜍
  

−𝜏 ℇ−2𝜗

ℇ4−2𝜗 + 𝜍
 

𝑚∞

𝑚=0

 

 

=  
 −𝜏 𝑚ℇ−2𝜗𝑚−2𝜗

 ℇ4−2𝜗 + 𝜍 𝑚+1

∞

𝑚=0

 

 

=  
 −𝜏 𝑚ℇ−4𝑚−4

 1 + 𝜍 ℇ2𝜗−4 𝑚+1

∞

𝑚=0

 

 

=   −𝜏 𝑚ℇ−4𝑚−4   −𝜍ℇ2𝜗−4 
𝑟
 
𝑚 + ℵ
ℵ

 

∞

ℵ=0

∞

𝑚=0

 

 

 

 

Substituting the above equation (4) in (3), we get 

𝑃 𝑘 𝑡  =
ℇ3𝑐0 + ℇ 𝑐1 + 𝜍 ℇ2𝜗−1𝑐0 + 𝜍 ℇ2𝜗−3𝑐1

 ℇ4 + 𝜍 ℇ2𝜗 + 𝜏 
     

                                          (3) 

=   −𝜏 𝑚  
𝑚 + ℵ
ℵ

   −𝜍 ℵ ℇ 2𝜗−4 ℵ−4𝑚−4

∞

ℵ=0

∞

𝑚=0

     
                                       (4) 
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𝑃[𝑘 𝑡 ] =  𝑐0   −𝜏 𝑚
∞

𝑚=0

  
𝑚 + ℵ
ℵ

   −𝜍 ℵ ℇ 𝜗−2 ℵ−2𝑚−1

∞

ℵ=0

 

             + 𝑐1   −𝜏 𝑚
∞

𝑚=0

  
𝑚 + ℵ
ℵ

   −𝜍 ℵ ℇ 𝜗−2 ℵ−2𝑚−2

∞

ℵ=0

 

             + 𝜍𝑐0   −𝜏 𝑚
∞

𝑚=0

  
𝑚 + ℵ
ℵ

   −𝜍 ℵ ℇ 𝜗−2 ℵ−2𝑚+𝜗−3

∞

ℵ=0

 

 

Thus, the inverse Pourreza transform to equation (5) yields the solution (2) 
 

𝑘 𝑡 =  𝑐0  
 −𝜏 𝑚  𝑡2𝑚

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍𝑡 2−𝜗  

ℵ
 

Γ  2− 𝜗 ℵ+ 2𝑚 + 1  ℵ! 

∞

ℵ=0

 

 

             + 𝑐1  
 −𝜏 𝑚  𝑡2𝑚+1

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍𝑡 2−𝜗  

ℵ
 

Γ  2− 𝜗 ℵ+ 2𝑚 + 2  ℵ! 

∞

ℵ=0

 

             + 𝜍𝑐0  
 −𝜏 𝑚  𝑡2𝑚−𝜗+2

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍𝑡 2−𝜗  

ℵ
 

Γ  2− 𝜗 ℵ+ 2𝑚− 𝜗 + 3  ℵ! 

∞

ℵ=0

 

 

which is (2). This completes the proof of the theorem. 
 

Example 3.1 The fractional differential equation is  

𝑘 ′′ 𝑡 +  7 𝑘 
3

2
  𝑡 + 10 𝑘 𝑡 = 0 

 

with initial conditions 𝑘 0 = 𝑐0 and 𝑘 ′ 0 = 𝑐1 has the unique solution 

 

𝑘 𝑡 =  𝑐0  
 −10 𝑚  𝑡2𝑚

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ + 1   − 7 𝑡 

1

2
  
ℵ

 

Γ   
1

2
 ℵ+ 2𝑚 + 1  ℵ! 

∞

ℵ=0

 

 

             + 𝑐1  
 −10 𝑚  𝑡2𝑚+1

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   − 7𝑡 

1

2
  
ℵ

 

Γ   
1

2
 ℵ+ 2𝑚 + 2  ℵ! 

∞

ℵ=0

 

    + 𝜍𝑐1   −𝜏 𝑚
∞

𝑚=0

  
𝑚 + ℵ
ℵ

   −𝜍 ℵ ℇ 𝜗−2 ℵ−2𝑚+𝜗−4

∞

ℵ=0

     
                          (5) 

      + 𝜍𝑐1  
 −𝜏 𝑚  𝑡2𝑚−𝜗+3

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ + 1   −𝜍𝑡 2−𝜗  

ℵ
 

Γ  2− 𝜗 ℵ+ 2𝑚 − 𝜗 + 4  ℵ! 

∞

ℵ=0
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             +  7𝑐0  
 −10 𝑚  𝑡2𝑚+

1

2

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ + 1   − 7𝑡 

1

2
  
ℵ

 

Γ   
1

2
 ℵ+ 2𝑚 +

3

2
  ℵ! 

∞

ℵ=0

 

 

             +  7𝑐1  
 −10 𝑚  𝑡2𝑚+

3

2

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   − 7𝑡 

1

2
  
ℵ

 

Γ   
1

2
 ℵ+ 2𝑚 +

5

2
  ℵ! 

∞

ℵ=0

 

 

Figure 1 illustrates the solution behavior of the fractional differential equation of Example 3.1 

at various values of 𝜗 with the initial conditions 𝑐0 =  1 and 𝑐1 =  1. 

 

 
 

Figure 1: The solution behavior of Example 3.1 

 

Theorem 3.2. Let 1 < 𝜗 < 2 and 𝜍 and 𝜏 ∈ ℝ. Then the fractional differential equation 

 

with initial conditions 𝑘 0 = 𝑐0 and 𝑘 ′ 0 = 𝑐1 has the unique solution 

 

𝑘 𝑡 =  𝑐0  
 −𝜏 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍 ℵ𝑡 𝜗−1 ℵ+𝜗𝑘  

Γ  𝜗 − 1 ℵ+ 𝜗𝑚 + 1  ℵ! 

∞

ℵ=0

 

 

             + 𝑐1  
 −𝜏 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍 ℵ𝑡 𝜗−1 ℵ+𝜗𝑘+1 

Γ  𝜗 − 1 ℵ+ 𝜗𝑚 + 2  ℵ! 

∞

ℵ=0

 

 

 

𝑘𝜗 𝑡 + 𝑎 𝑘 ′ 𝑡 + 𝜏 𝑘 𝑡 = 0                                                                         (6) 

             + 𝜍𝑐0  
 −𝜏 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ + 1   −𝜍 ℵ𝑡 𝜗−1 ℵ+𝜗𝑘+𝜗−1 

Γ  𝜗 − 1 ℵ+ 𝜗𝑚 + 𝜗  ℵ! 

∞

ℵ=0

 
                                (7) 
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Proof: Utilizing the Pourreza transform in  6  and taking into consideration, we have 

 

ℇ2𝜗𝐹 ℇ − ℇ2𝜗−1𝑦 0 − ℇ2𝜗−3𝑦 ′ 0 + 𝜍  ℇ2𝐹 ℇ − ℇ 𝑦 0  + 𝜏 𝐹(ℇ) = 0 

ℇ2𝜗𝑃 𝑘 𝑡  − ℇ2𝜗−1𝑘 0 − ℇ2𝜗−3𝑘 ′ 0 + 𝜍 ℇ2  𝑃 𝑘 𝑡  − 𝜍 ℇ 𝑘 0 + 𝜏 𝑃 𝑘 𝑡  = 0 

ℇ2𝜗𝑃 𝑘 𝑡  − ℇ2𝜗−1𝑐0 − ℇ
2𝜗−3𝑐1 + 𝜍 ℇ2  𝑃 𝑘 𝑡  − 𝜍 ℇ 𝑐0 + 𝜏 𝑃 𝑘 𝑡  = 0 

𝑃 𝑘 𝑡  =
ℇ2𝜗−1𝑐0 + ℇ2𝜗−3𝑐1 + 𝜍 ℇ 𝑐0

 ℇ2𝜗 + 𝜍 ℇ2 + 𝜏 
                                                                                                       (8) 

 

Since 

1

 ℇ2𝜗 + 𝜍 ℇ2 + 𝜏 
=  

ℇ−2

ℇ2𝜗−2 + 𝜍 + 𝜏 ℇ−2
 

 

=
ℇ−2

(ℇ2𝜗−2 + 𝜍)  1 +
𝜏  ℇ−2

ℇ2𝜗−2+𝜍
 
 

 

=
ℇ−2

ℇ2𝜗−2 + 𝜍
  

−𝑏ℇ−2

ℇ2𝜗−2 + 𝜍
 

𝑚∞

𝑚=0

 

 

=  
 −𝜏 𝑚ℇ−2𝑚−2

 ℇ2𝜗−2 + 𝜍 𝑚+1

∞

𝑚=0

 

 

=  
 −𝜏 𝑚ℇ−2𝜗𝑚−2𝜗

 1 + 𝜍 ℇ2−2𝜗 𝑚+1

∞

𝑚=0

 

 

=   −𝜏 𝑚ℇ−2𝜗𝑚−2𝜗  −𝜍 ℇ2−2𝜗 
ℵ
 
𝑚 + ℵ
ℵ

 

∞

ℵ=0

∞

𝑚=0

 

 

=   −𝜏 𝑚  
𝑚 + ℵ
ℵ

   −𝜍 ℵ ℇ 2−2𝜗 ℵ−2𝜗𝑚−2𝜗

∞

ℵ=0

∞

𝑚=0

                                                                  (9) 

 

Substituting the above equation (9) in (8) and taking the inverse, yields the solution (7) 
 

𝑘 𝑡 =  𝑐0  
 −𝜏 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍 ℵ𝑡 𝜗−1 ℵ+𝜗𝑘  

Γ  𝜗 − 1 ℵ+ 𝜗𝑚 + 1  ℵ! 

∞

ℵ=0

 

 

             + 𝑐1  
 −𝜏 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍 ℵ𝑡 𝜗−1 ℵ+𝜗𝑘+1 

Γ  𝜗 − 1 ℵ+ 𝜗𝑚 + 2  ℵ! 

∞

ℵ=0

 

 

+ 𝜍𝑐0  
 −𝜏 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   −𝜍 ℵ𝑡 𝜗−1 ℵ+𝜗𝑘+𝜗−1 

Γ  𝜗 − 1 ℵ+ 𝜗𝑚 + 𝜗  ℵ! 

∞

ℵ=0
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which is (7). This completes the proof of the theorem. Also, the Wright function can express this 

solution as  

 

𝑘 𝑡 =  𝑐0 
 −𝜏 𝑚  𝑡𝜗𝑚

𝑚 !
∞
𝑚=0  1𝜆1 

(𝑚 + 1, 1

(𝜗𝑚 + 1,𝜗 − 1)
| − 𝜍 𝑡𝜗−1  

 

             + 𝑐1 
 −𝜏 𝑚 𝑡𝜗𝑚 +1  

𝑚 !
∞
𝑚=0 1𝜆1 

(𝑚 + 1, 1
(𝜗𝑚 + 2,𝜗 − 1)

|− 𝜍 𝑡𝜗−1  

 

             + 𝑎𝑐0 
 −𝜏 𝑚 𝑡𝜗𝑚 +𝜗−1  

𝑚 !
∞
𝑚=0 1𝜆1 

(𝑚 + 1, 1
(𝜗𝑚 + 𝜗,𝜗 − 1)

|− 𝜍 𝑡𝜗−1  

 

Example 3.2. The fractional differential equation 

 

𝑘
3

2 𝑡 + 4𝑘 ′ 𝑡 + 11 𝑘 𝑡 = 0  
 

With initial conditions 𝑘 0 = 𝑐0 and 𝑘 ′ 0 = 𝑐1 has the unique solution 
 

𝑘 𝑡 =  𝑐0  
 11 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   4 ℵ𝑡 

1

2
 ℵ+

3

2
𝑚  

Γ   
1

2
 ℵ +

3

2
𝑚 + 1  ℵ! 

∞

ℵ=0

 

 

             + 𝑐1  
 11 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   4 ℵ𝑡 

1

2
 ℵ+

3

2
𝑚+1 

Γ   
1

2
 ℵ +

3

2
𝑚 + 2  ℵ! 

∞

ℵ=0

 

 

           +4𝑐0  
 11 𝑚  

𝑚!

∞

𝑚=0

 
Γ 𝑚 + ℵ+ 1   4 ℵ𝑡 

1

2
 ℵ+

3

2
𝑚+

1

2 

Γ   
1

2
 ℵ +

3

2
𝑚 +

3

2
  ℵ! 

∞

𝑟=0

 

  
Figure 2 illustrates the solution behavior of the fractional differential equation of Example 3.2 

at various values of 𝜗 with the initial conditions 𝑐0 =  1 and 𝑐1 =  1. 
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Figure 2: The solution behavior of Example 3.2 

 

Proposition 3.1. Let 1 < 𝜗 < 2 and 𝜏 ∈ ℝ. Then the fractional differential equation 

 

𝑘𝛼 𝑡 − 𝑏 𝑘 𝑡 = 0                                                                                                                             10  
 

with initial conditions 𝑘 0 = 𝑐0 its proposal is provided by 
 

𝑘 𝑡 = 𝑐0  𝜏𝑚
∞

𝑚=0

𝑡𝜗𝑚

Γ(𝜗𝑚 + 1)
= 𝑐0𝐸𝜗 𝜏 𝑡𝜗                                                                                                (11) 

 

Proof: The proof of this proposition as like as previous theorem. 

 

Remark 3.1. Accordingly, 𝑎 = 0 in (6), then the derivative is  
 

𝑘𝜗 𝑡 + 𝜏 𝑘 𝑡 = 0  ;  1 < 𝜗 ≤ 2                                                                                                    (12) 

 

with initial conditions 𝑘 0 = 𝑐0 and 𝑘 ′ 0 = 𝑐1 its proposal is provided by 
 

𝑘 𝑡 = 𝑐0𝐸𝜗 ,1 −𝜏𝑡 
𝜗 + 𝑐1𝐸𝜗 ,2 −𝜏 𝑡𝜗                                                                                          (13)  

 

Proposition 3.2. A nearly simple harmonic vibration differential equation   

 

𝑘𝜗 𝑡 + 𝑧2𝑘 𝑡 = 0 ;  1 < 𝜗 ≤ 2                                                                                                       (14) 
 

with initial conditions 𝑘 0 = 𝑐0 and 𝑘 ′ 0 = 𝑐1 its proposal is provided by 

 

𝑘 𝑡 = 𝑐0𝐸𝜗 ,1 −𝑧
2𝑡𝜗 + 𝑐1𝐸𝜗 ,2 −𝑧

2𝑡𝜗  
 

Proof: The above proof is accomplished by implanting 𝜏 = 𝑧2 in equation(13). 
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IV. CONCLUSION 

 

The article utilized the Pourreza transform to address certain fractional differential equations. 

The connection between the Pourreza transform and the Laplace transform was explored in 

greater detail, revealing additional instances of the Pourreza transform's applicability. A 

unique methodology for tackling fractional differential equations was introduced, involving 

the application of the Pourreza transform alongside binomial series extension coefficients. 

The focus also encompassed the examination of various properties and illustrated examples. 
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