DETAILED SURVEY OF SIGNATURE VERIFICATION USING MACHINE LEARNING **APPROACHES**

Abstract

The signature of a person is one of **Dr. H S Prasantha** the most common forms of biometrics that has applications in day-to-day life. A signature plays a vital role in indicating the identity of a person and providing any about that person. details Signature verification is a technique used to validate the identity of an individual. It is used in industries, such various as banks. intelligence agencies. and high-profile institutions. Despite being one of the earliest, most basic, and most popularly accepted methods for identification and verification, confirming the genuineness of a signature is particularly challenging. The signature doesn't tend to be the same every time as there are numerous factors that are involved while signing, such as emotion and eye-to-hand coordination. Signature verification plays an important role in the banking sector, where the signature on the cheques has to be verified to complete the financial transaction. It is an important task, as people tend to forge signatures to initiate fake transactions and steal huge amounts of money.

Keywords: Signature, machine learning, verification

Authors

Professor K. S. Institute of Technology Bangalore, Karnataka, India. drhsprashanth@gmail.com

I. INTRODUCTION

There are two types of signature verification: static and dynamic. Static verification is the process of verifying when the signature has been made offline. Dynamic verification is the process of verifying a person's signature, when he creates it on a digital tablet or a similar device. In the early days, this process was carried out manually, which involved a lot of manpower. For static verification, carrying out this task of verification manually would possess a high probability of error, as the difference between the original and forged signatures is very minimal in the majority of cases. Sometimes, noticing this minimal difference becomes a challenging task for the naked eye. With the advancement of technologies such as Artificial Intelligence and Machine Learning, the entire process of signature verification can be automated. With the availability of huge datasets and many machine learning algorithms, this process can be automated using different techniques and highly accurate results can be obtained. These algorithms and models have the capability to detect any minimal difference and are able to detect forged signatures. Many researchers have conducted numerous research in this field and have been able to successfully develop algorithms that work with high accuracy. In particular, CNN's have very good accuracy, although there is still a lot of scope for improvement in these techniques and algorithms. Like all image classification and detection techniques, the steps in signature verification have similar steps involving pre-processing, feature extraction, and classification. This ensures that the process of verification can be obtained with less human effort and high accuracy.

Title	Author	Methodology	Remarks
Enhanced offline signature recognition using neural network and MDA	Prashath C.R • K. B Raja	Offline signature verification using angular frequency By using this methodology achieved	False acceptance rate is 4.61%, and False Rejection rate is 7.51%.
Handwritten signature verification using deep learning	Emanlajrami Belal A. M AshqarSamy. S Abu- Naser	File management technique	By using File Management methodology, we are able to differentiate the forgery and real signature of a person.
Deep Learning Based Handwritten Signature Recognition	Suresh Pokharel Santosh Giri SubarnaShakya	Deep Learning model based on CNN architecture	Thefeatureextraction portion ofGoogleNetused.Classificationlayerofpre-trainedGoogleNetmodelwasre-trainedwith

II. LITERATURE SURVEY

			collected at
			collected signature
			data set by using transfer learning
			mechanism based on
			CNN architecture.
			The precision value
			of 95.2% was
			obtained for
			signature
			recognition.
			The dataset
			contained 30 users
Signature		Tow dataset for	all of whom have 15
Recognition	ShalawMshir	training the model by	signatures of
Using Machine	Mehmet Kaya	a Siamese network.	Signatures. The
Learning			CNN Model was
			trained with one
			kernel and TL as a
			classifier
			Datasets used were
			CEDAR, GPDS300
			GPDS, BHSig260.
			Contractive loss
			function was used to
a .			evaluate the distance
Comparison			to an example of the
among different		CNN :- Siamese	same class. The three
CNN	Soumya Jain	Neural Networks and	variants of Siamese
Architectures for	Mehahanna	some variants of these	networks created
Signature	Ankita Singh	neural networks	using three different
Forgery			CNN architectures
Detection using			were trained on the
Siamese Neural			chosen dataset for 50
			epochs each. High
			value of recall (0.92)
			was achieved in this
			implementation and
			Contrastive loss was
			minimized (0.43).
Offline	Amjad H	Feature extraction	The proposed
Handwritten	Alkilani	using TSVD and	AOVM model has
Verification	Mohammad I	verification using	better accuracy of

Model for Nusir SVM classifiers. It	(94.08% and
Processing Bank was implemented	86.66%). The
Checks Based on using python	experiment tells that
Truncated-SVD programming	normalization image
and Support language.	size of (75x75,
Vector Machine	· · · · · · · · · · · · · · · · · · ·
(SVM).	125x125) is the best
	size for optimum
	system performance.
	The accuracy,
	FAR(False
	Acceptance Rate)
An Offline Zabir Improved the	and FRR (Fasle
Writer- Mohammad I J J J J J J J J J J J J J J J J J J J	Rejection Rate)
Independent lergt langn	reduction technique
IndependentIstat sananVerification• Md. Mohsinpython script based	using SNN
System using Kabir • M. on OpenCV script and	architecture
Auto Embedder Ameer Ali • M. dimension	of these model is
F Mridha	92.76%,7.34% and
	6.94%. Better than
	other CNN
	architecture model.
	VGG16 network
	shows 85-90%
Signature Siamese network	accuracy, Siamese
Atharvaadre	shows 65-75% and
RecognitionPradyumnaPund,VGG16 network, AModels:Descriptiondeep	
Prof Shubhangi I	CNN shows 50-55%.
Performance Kale algorithm CNN	
Comparison. (convolution Neural	fastest network, new
Network)	model can be created
	by combining VGG
	16 and Siamese
	Overall accuracy
Signature	using SVM obtained
verification using Support vector	is 86.39%. Overall
support vector Kritika Vohra machines	accuracy using CNN
machine and S.V. Kedar Convolution neural	obtained is 83.76%.
convolution network	The further
neural network	objectives is to
	improve accuracy by
	adding more features
Online Signature Mohammad Deep Learning using	Comparison with 2

Verification	Saffar Mohsen	Auto encoder and	standard
using Deep	Feyyaz	Convolution and	benchmarks-
Representation :	Mohammad	Pooling Self-thought	SVC2004, SUSIG,
A new descriptor	Sabokrou	learning with feature	proved superiority
	Mahmood Fathy	learning	on both datasets.
			Features in this
			method can be
			replicated on other
			benchmarks. The
			deep convolution
			networks can be
			tested on both online
			and offline signature
			datasets.

III. MACHINE LEARNING ALGORITHMS

The Machine Learning Algorithms that were applied for the signature verification

- Convolutional Neural Network (CNN).
- Siamese Network.
- VGG 16 Network.
- Support Vector Machine (SVM).
- Feature Extraction using Truncated-Singular Value Decomposition (TSVD)
- Self-Thought Learning
- Feature Learning

IV. TOOLS

- Python programming higher installed in windows 10 or any distribution of Linux.
- Arduino IDE software
- Training of an ANN model using Coding Source in MATLAB.
- Python open source library called TensorFlow1 is used in order to train the neural network.

The most commonly used software for implementing the above algorithms were found to be, Python MATLAB, Tensor Flow

Hardware: Most of these Machine Learning algorithms were only simulated, there were no hardware implementation of these algorithms for Signature Verification.

V. APPLICATIONS

Signature verification is thus very important in ensuring security of financial and legal documents. Some of the practical applications are:

- 1. Bank cheques for demand drafts or deposits: Cheque's are the most important documents that go through the signature verification. Identifying false signature on cheques should be immediately identified to safeguard from any kind of financial damages.
- 2. Loan and mortgage documents: Verifying that a signature on a loan or mortgage document is authentic and can be very important. The bank can then use automatic signature verification to show that the person disputing the loan did indeed sign the original document and owes as agreed.
- 3. Business Contracts: Signatures on contracts of any kind, including business or employment contracts, can be confirmed with signature verification software to ensure of the contract has gone through legal procedure.
- 4. Insurance Documents: Verifying that a signature on an insurance document is genuine can help to authenticate an individual in circumstances where validating that a person is who they say they are is of particular importance.

Some Broader Application of Signature Verification also Include:

- Legal documents
- Financial services
- Digital authentication
- Transactions
- Voter registration and identification
- Know your customer (KYC)

REFERENCES

- Ishfaq Gull, Mujtaba Amin Dar, Ashish Sharma, "Enhanced Offline Signature Recognition Using Neural Network and MDA", IJIRCCE-2016
- [2] EmanAlajrami, Belal A. M Ashqar, Samy. S Abu-Naser, "Handwritten Signature Verification using Deep Learning", IJAMR-2019
- [3] Suresh Pokharel, Santhosh Giri, Subarna Shakya, "Deep Learning Based Handwritten Signature Recognition", Reseach Gate-2020
- [4] ShalawMshir, Mehmet Kaya, "Signature Recognition Using Machine Learning", IEEE-2020
- [5] Soumya Jain, Meha Khanna, Ankita Singh, "Comparison among different CNN Architectures for Signature Forgery Detection using Siamese Neural Network", ICCCIS, IEEE2021
- [6] Amjad H Alkilani, Mohammad I Nusir"Offline Handwritten Verification Model for Processing Bank Checks Based on Truncated-SVD and Support Vector Machine (SVM)" San Diego, CA United States of America.-2021
- [7] Zabir Mohammad , IsratJahan, Md. MohsinKabir, M. Ameer Ali, M.FMridha" An Offline Writer-independent Signature Verification System using AutoEmbedder" Dhaka, Bangladesh.- 2021
- [8] AtharvaGadre ,PradyumnaPund ,Prof. Shubhangi Kale "Signature Recognition Models: Performance Comparison" MIT Academy of Engineering,Alandi(D.) Pune,India. 2021
- [9] Kritika Vohra1, S. V. Kedar, "Signature Verification Using Support Vector Machine and Convolution Neural Network"
- [10] Mohammad HajizadehSaffar . Mohsen Fayyaz. Mohammad Sabokrou. Mahmood Fathy, "Online Signature Verification using Deep Representation: A new Descriptor"