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Abstract 

  

 A problem might be cast as one of 

optimization problem and then it can be 

solved by using a suitable optimization 

algorithm. The strategy is not very familiar to 

chemists, however is now becoming popular 

among chemists of different genre.  In this 

chapter a discussion has been made on 

optimization that could be used by chemist. 

After a brief introduction a general outlook 

on optimization has been drawn.  The 

subsequent section contains a review on 

different optimization algorithms. Both 

deterministic optimization algorithms have 

been discussed. Afterwards some scope of 

using optimization, especially stochastic 

optimization algorithms have been pointed 

out with the expectations that readers may 

find many more probable sectors for using 

these algorithms.   
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I. INTRODUCTION 

 

 Optimization is not a common word for chemists. However, we do use optimization 

in our research in some way knowingly or unknowingly. Thus, in this chapter a discussion 

would be portrayed on different optimization techniques and off course the some of 

application in chemistry. The aim is to make people convinced to use optimization in their 

research which would be very helpful in some cases and may be could not be ignored 

sometimes.   

 

II. GENERAL DISCUSSION ON OPTIMIZATION 

 

 In this chapter I would offer an integrated view on optimization algorithms. The 

algorithm would be analysed in a general perspective so that one could easily program with 

respect to their requirement. After that a review on different optimization algorithms would 

be discussed. However, the review is not extensive, some of the important or well used 

optimization algorithms would be included. 

  

 Optimization refers to selecting the best element from a set of feasible alternatives. It 

essentially involves minimization or maximization of a function by methodically selecting 

inputs in accordance with a predetermined algorithm. There is a long history of developing 

different optimization algorithm. Initially, optimisation was used to address some geometrical 

problems. Fermat and Lagrange found calculus-based formulas for identifying optima,while 

iterative methods for moving towards an optimum was proposed by Newton andGauss. 

Historically, the first term for optimization was `linear programming' which was developed 

by George B. Dantzig. Although much of the theory had been introduced by Leonid 

Kantorovich in 1939 before Dantzig. The term programming is not related with anything 

concerning computer programming, rather it is used to refer to proposed training and logistics 

schedules of United State military. This was actually the problem studied by Dantzig. Later 

due to the volume of the problem dealt by optimization method, it is considered to be 

synonymous with computer programming. [1] 

 

1. Variables: Depending upon the problem, the nature of variables that would be 

optimized (i,e the solution string) may differ. It may be a scalar or a vector. Another 

possible classification of variables depending upon the search space are integer or 

real numbers. For discrete search space the variable generally defined is an integer, 

whereas for continuous search space it would bereal. However according to the way 

an optimization problem is defined, the search space may be interchanged from real 

to integer or vice versa. In some cases, variables may be defined as binary numbers 

also. As an example, we may take the evaluation of most stable state of spin-glass 

system. Again, in the problem of Travelling-salesman the variables are in teger 

vectors. However, for most of the problems of chemists the optimizable variables are 

real numbers. Also, the problems discussed in this thesis mostly involve continuous 

search space of real numbers. 

 

Sometimes the choice of variables used may be dictated by the optimization 

method used. Such as the representation of variables in binary numbers while using 

genetical gorithms and a discrete search space is used for ant colony optimization. 

However, these two optimizers might be used in solving continuous real number 

search space also and there are many reports in the literature in this context. 



Futuristic Trends in Chemical, Material Sciences & Nano Technology 

e-ISBN: 978-93-5747-683-6 

IIP Series, Volume 3, Book 3, Chapter 6 

OPTIMIZATION: A DISCUSSION FOR CHEMIST TO USE THE TOOL AS PROBLEM SOLVER 

 

Copyright © 2024 Authors                                                                                                                      Page | 92 

2. Objective Function: Optimization problem must have an objective function [2, 3] to 

be optimized to get the solution. It is some sort of mathematical function of possible 

solution variable, generally known as cost function for minimization problem and 

fitness function for maximization job. 

 

                                           

                                              

 

If the system move following a single criteria to find optima, it would be a 

single objective optimization and the optimal solution would be maxima or minima 

(global) with respect to the potential surface of the system. To optimize the system to 

a certain value Vl one may write the cost function as 

 

              
                          

                                      
 

However, it is not always possible to define an optimization problem in terms 

of single objective function. A problem may have more than one constraints. 

Objective function or cost function may explicitly contain multiple constraints for 

such kind of problem for searching the feasible solution. It is commonly known as 

multi-objective optimization problem. The corresponding objective function may be 

written as 

 

                 
 

                      

Where exist the possible solution variable and g(i) are there straints. 

 

An optimization problem is to basically find out the optimal solution with 

respect to the objective. In multi-objective problem there are more than one objective. 

For two conflicting objectives, each correspond so a different optimal solution. When 

one would try to satisfy these two objectives simultaneously a set of optimal 

solutions appear which would be obtained by gain in one objective and loss in the 

other objective and viceversa. The objective function for the two conflicting 

objectives may be written as 

 

                                    

 

Where  and  are the weight factor and the set of optimal solutions can be 

generatedby varying these two parameters.  When    the optimal solution has 
preference of the second over the first objective and viceversa. Varying α and β one 

can generate a pool of optimal solutions where n one of the solutions can be said to 

be better than the other. For an optimization problem with two completely conflicting 

objective, if these solutions are plotted with respect to the weight factor 

corresponding to the two objectives the curve generated is known as parato-optimal 

front. 

 

But the objectives may not be conflicting always. In that case there should be 

an optimal solution which can satisfy all the objectives.  Constraints are imposed as 
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the form of functions of the variables, which are combined to define the complete 

objective function. 

 

3. Constraint: Cases are there, where all the constraint to find the feasible solution, 

cannot be incorporated in the objective function for the optimization. Some 

limitations may be imposed by the nature of the problem or by the users o that certain 

objectives cannot be achieved. These constraints reduce the total search space to a 

feasible search space. The feasible search space is then actually sampled during 

optimization.  Constraint can be mathematically expressed as the form of equality or 

in equality. Such as 

 
      

         
                      

 

Another common type of constrain that can be imposed is the side constraints. 

This is one that simply bounds the range of values that a variable can take on. 

 

4. Algorithm of Search: Finally for optimizing variables with respect to an objective 

function and ensuring all the constraints imposed, one needs an algorithm which would 

decide how the system moves to the optimal solution. There are a number of optimization 

algorithms available in the literature which have applications in various fields like 

economics, engineering, basic research of science etc. These algorithms vary with respect 

to the philosophy by which they are inspired, the nature of search process, the criteria for 

the acceptance of a move etc. In the following section we have discussed some of such 

optimization algorithms before coming to the application part. 

 

III. CLASSIFICATION OF OPTIMIZATION ALGORITHMS 

 

 Optimization techniques may be categorized into two major classes with respect 

to the principle to deal with the problem, one is deterministic and another is by 

probabilistic approach. A move during optimization can be defined as 

 

                                   

 

 Both the schemes involve the iterative update of solution vector. In the above 

equation I is the solution vector at i
th 

iteration and Pm is the probability to change the 

vector from the previous iteration by ∆x. But the form of Pm and ∆x are different in 

the deterministic and probabilistic schemes. Randomness is incorporated into the choice 

of Pm and ∆x in probabilistic algorithms. 

 

 Deterministic search process is usually very fast and quickly converge to the 

solution. But the limitation of the deterministic optimizer lies on its obvious search 

direction which basically causes local optimization. These searches are most often used 

if a clear relation between the characteristics of the possible solutions and their utility for 

a given problem exists. When the relation between the solution and the fitness or the cost 

function becomes complicated or the dimensionality of the search space is very high, 

deterministic search process will fail to find the global solution. Eventually for a system 
of even relatively small dimension, deterministic search would possibly involve 
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exhaustive enumeration of the search space, which is not feasible. Also, in some practical 

problems such deterministic search direction is not available. All these reasons led to 

development of Stochastic Optimization techniques. 

 

1. Deterministic Search: A deterministic search algorithm is an algorithm which, given 

a particular input, will always produce the same output. Thus, these algorithms are 

initial point dependent and generally involve enormous senumeration of the search 

space. 

 

A host of deterministic optimization algorithms exist[4],each with different 

applicability, efficiency, requirements, and robustness. One can make a classification 

among them that addresses unconstrained problem or more complicated constrained 

problem. Al though the problem with constraint can be cast as an unconstrained 

minimization problem even if the constraints are active. Another way to differentiate 

these algorithms is whether the algorithm employs only functional evolutions or 

gradient vector or even the Hessian matrix calculation with respect to the optimizable 

variables.  Table 1 categorize some of the algorithms for deterministic search 

according to the mentioned criteria from which some have been briefly discussed in 

this chapter 

 

Table 1: Classification of deterministic optimization methods [4] 

 

 Unconstrained problems Constrained problems 

Only function evaluations Golden section method Simplex method 

Function & gradient 

evaluations 

Steepest descent method  

Conjugate gradient method  

Quasi-Newton method 

Method of Lagrange 

multipliers 

Function, gradient & 

hessian evaluations 

Newton's method  sequential quadratic 

programming (sqp) 

 

2. Golden Section Method: The golden section search [5] is a technique for finding the 

extremum (minimumor maximum) of a strictly unimodal function, i.e, a function with 

single extremum value. The process is carried out by narrowing the range of values of the 

variables in which the extremum is known to exist. From Figure 1, we can say that 

theminimum of the function `F' is in between x1 and x2 as the value of the function at    

is less than both the values of the function at       . Now the Goldensearch method 
derives its name from the fact that the algorithm maintains the ratioof the distances 

between       and       same as the Golden ratio (1.61803...). 
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Figure 1: An unimodal one dimensional function 

 

3. Simplex Method: Simplex method [6-9] was developed by George Dantzig in 1946. It 

provides us with a systematic way of examining the vertices of the feasible region to 

determine the optimal value of the objective function. It begins at an arbitrary corner of 

the solution set. At each iteration, the Simplex Method selects the variable that will 

produce the largest change towards the minimum (or maximum) solution. That variable 

replaces one of its compatriots that is most severely restricting it, thus moving the 

Simplex Method to a different corner of the solution set and closer to the final solution. In 

addition, the Simplex Method can determine if no solution actually exists. The algorithm 

is greedy since it selects the best choice at each iteration without needing information 

from previous or future iterations. 

 

4. Steepest Descent Method: Steepest descent [10] is the simplest gradient based 

optimization technique. It is applicable to unconstrained problem with continuously 

differentiable search space. The move during the simulation is defined as 

 

                                      

 

 Here       is the gradient of the search space at   point and   is a scalarquantity.  
would ideally be dependent on the iteration  step and can be chosen in accord to some 

algorithm making the method more robust.  The value of   at        th
 step depends on 

the gradient at  th 
step. If the gradient becomes zero, the value of x will not be updated. 

Thus by updating  iteratively using Eq (9) one can get the optimal solution when the 
gradient iszero. Although it is simple and easy to implement steepest descent method 

often suffer from convergence problem. 

 

5. Conjugate Gradient Method: The efficiency of the steepest descent method can 

improve significantly by changing the search direction by extracting information about 

hessian from consecutive gradients[11, 12] 

 

                                               

 

Where,  
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6. Newton’s Method: Newton’s method [13] involves the information of hessian along 

with function and gradient in iterative calculation. For pedagogical purpose, wecon 

sidera function with single variable. Applying Taylor series expansion 

 

                        
 

 
          ………………………(12) 

 

and attains its extremum when its derivative with respect to  is equal to zero, i.e.when 
 

              

  
                                     

Now           , 
Then  

        
      

       
                             

 

It is worthwhile to notice that the Newton’s method in optimization uses the 

second-derivative of the function because it is the zero-derivative equation that is 

solved by classical newton method. In multidimensional search space the derivative 

of the function is replaced by gradient and second-derivative by hessian. 

 

The difficulty with this method of optimization is to evaluate the hessian 

matrix. Quasi- 

 

Newton methods [14] attempt to overcome the problem, as this method does 

not involve the explicit calculation of hessian. These make use of the gradient vector 

of the previous step to get the nature of the value of hessian. 

 

7. Method of Lagrange Multipliers: If we consider a search space      with equality 

constraint, say,         , it may bewritten in the form of Lagrange function [4] 

 

                                         
 

 

Then one can follow the routine by setting derivative of the function equal to 

zero. For optimal solution 

 

                                 
 

More than one constraint-problem can be handled by adding Lagrange multipliers 

                    

 

   

                    

 

 

8. Sequential Quadratic Programming: Sequential quadratic programming (SQP) [4] is 

an iterative method for nonlinearoptimization.SQP methods are used on problems for 

which the objective function and the constraints both are continuously differentiable. 
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IV. STOCHASTIC SEARCH 

 

 The limitations of traditional deterministic optimizational techniques in finding global 

solution in a complicated search space drive the _eld of research to invent more and more 

efficient stochastic method-based optimization. Stochastic search algorithms are generally 

based on any physical or natural event or may follow the logic of a thermodynamical process. 

This includes all the method based onapproximate reasoning (fuzzy logic [15] and 

probabilistic model [16]), probabilistic search (evolutionary algorithm, Monte Carlo based 

algorithm [17, 18], swarm-based algorithm),functional approximation (neural network [19, 

20]). 

 

1. Monte Carlo Based Algorithm: Monte Carlo algorithm may be crudely defined as a 

statistical simulation by usinga sequence of random numbers. It is generally used in 

problems having some uncertainty in inputs and many coupled degrees of freedom. In this 

method a systemis considered to have a probability distribution function (PDF) and 

simulation may be performed by random sampling from the PDF. But all the system may 

nothave a well-defined PDF. Thus, Monte Carlo based optimization algorithms follow a 

model, that the system is sampled initially in a broad PDF and with iteration the 

parameters defining the PDF are evolved to reduce the width of PDF in order to locate the 

global optima. The random search, direct Monte Carlo sampling and the random hill 

climbing methods might be viewed as direct sampling methods where as Simulated 

Annealing, Quantum Annealing and Parallel Tempering fallunder the rubric of "random 

walks" as introduced by Metropolis [21]. 

 

2. Random Search: Random search [22, 23] may be the simplest one among all the 

stochastic algorithms. The algorithm is very easy to code, but has an appreciable 

effectivity in solving problems with reason able dimension, and also flexible to cast 

systems with continuous as well as discrete variables. Moreover, computational cost is 

manage able for this method. In the method the iterative modification of the variables go 

through a random event and the current vector is updated to minimize the objective 

function and the process goes on until the optimal solution is reached. According to the 

type of modifying the vectors Random Search method may be classified into two classes. 

In one class the vectors are randomly generated in each iteration, known as Blind random 

search, and another one is Localized random search, in which a local search is done 

around a guess solution to obtain a new vector. 

 

3. Random Mutation Hill Climbing (RMHC):Random Mutation Hill Climbing [24,25] 

is similar to local random search but only involves mutation or modification of the 

current solution vector randomly, based on a user defined probability of mutation for 

each vector dimension. 

 

4. Simulated Annealing (SA): Simulated Annealing [26,27] is a stochastic optimizations 

cheme which mimics the physical process of annealing to produce the best 

thermodynamic state of alloy. In thermodynamic annealing process, the molten 

mixture is prepared at a sufficiently high temperature (known as starting annealing 

temperature) and then gradually cooled to get the most stable state of alloy.  SA 

follows exactly the same principle.  The simulation starts at a high temperature, Tat 

(annealing temperature) and then the annealing temperature is slowly decreased with 

a specific rate, known as the annealing schedule. At high Tat more and more area of 
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the search space is sampled and gradually with the lowering of temperature the extent 

of area for sampling is decreased and finally becomes directed towards the optimum 

solution. During simulation, the parameter set obtain edine a chiteration is fedin to 

the calculation to get the objective function, popularly known as the cost function. 

The cost has to be minimized with simulation and for the optimum solution It must 

tend to zero. 

 

During the course of optimization, if the surface is rugged, there is always a 

finite probability of being trapped in a local minimum. If one has to come out of 

these local attractive basins, temporarily one needs to accept moves in which the cost 

function might increase in magnitude, with the eventual goal being to reduce it to 

zero. This is implemented in SA by controlling the thermal fluctuation, which is 

induced by the annealing temperature    .The thermal fluctuation is used to cross the 
energy barrierseparating one minimum from the other.This is technically 

implemented by the so-called Metropolis Test. A quantity “ ”is defined which  is,  

                    .  Here,      is the value of the cost function for the present 

move and          is the one for the previous move. If“ ”is negative, the movies 

accepted straight away. If not, it is subjected to the Metro polis test. The probability 

of accepting a move in Metropolis test is 

 

         
 

    
                        

 

    can be between 0 and 1. A random number between 0 and 1 is invoked and if 

    isgreater than the called random number the move is accepted. At higher Tat,     will 
beclose to 1 and more moves will pass the Metropolis test. The physical meaning is thatat 

higher simulation temperature, due to strong thermal fluctuations, a greater length of 

search space is sampled and nearly all moves become accepted. As the simulation 

proceeds,     is gradually decreased by following some scheme, known as 
annealingschedule. At low Tat, lesser number of moves pass the Metropolis test and only 

those moves for which the cost function predominantly decreases are accepted and in the 

limit of      , the correct solution or the global minimum is found out. 

 

5. Parallel Tempering (PT): In this optimization scheme, one starts the search with 

different temperatures simultaneously. The temperature of a particular zone remains 

constant during the simulation. The temperature zones are dispersed from higher to lower 

range. The simulation at high temperature would sample a large area of search space than 

the one at a lower temperature. As in SA the system makes many moves and the move 

with lower cost is accepted. If the value of the cost function of a move is higher than the 

previous one, the move is subjected to Metropolis Test. Maximum moves in the high 

temperature zones will be accepted, whereas the probability of passing the Metropolis 

Test gradually decreases with the decrease in temperature of the different zones. The 

unique feature of PT is that swapping of search locations among these temperature zones 

is allowed. The swapping probability [28] is 
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Where    is the difference in the inverse of temperature of two zones and 

     is the difference in cost of the same two zones. 

 

This feature allows for a more efficient sampling of the search space both in terms 

of computational time and the quality of the solution achieved. 

 

6. Tabu Search: Tabu Search in its present form was given by Glover [29]. Generally, in 

other search techniques only the information about the best one, so far found, is stored, 

whereas in TS the course of finding the solutions are stored. Tabu Search extends hill 

climbing by the concept that it declares solution candidates which have already been 

visited as tabu. Hence, they must not be visited again and the optimization process is less 

likely to get stuck on a local optimum and this is the effectivity of the technique. 

 

7. Quantum Annealing: Quantum Annealing [30, 31] employs the quantum fluctuation to 

anneal the system down to global minima. Unlike classical annealing, where the thermal 

fluctuation is used to cross barrier, tunnelling is the reason behind the fluctuation in 

Quantum An nealing. In the algorithm the cost function is represented by a classical 

Hamiltonian (  )and a suitable quantum annealing term is defined (    ). Then one may 
write 

 

  
  

  
                               

 

The solution of this time-dependent Schr  dinger Equation approximately 

describesthe tunnelling dynamics of the eigen states of   . Like thermal fluctuations 

in(classical) simulated annealing, the quantum (tunnelling) fluctuations owing to      

helps the system to come out of the local minima. If        for      ,the system 

eventually settles in one of the eigenstates of    ; hopefully the groundstate. The 

effectivity of this technique over simulated annealing (classical) lies onthe adiabaticity 

ofquantum evolution, i.e., it offers sufficiently slow annealing andthe possibility to get 
trapped in a local minimum may decrease. 

 

8. Evolutionary Algorithm: The algorithm of stochastic optimization based on the 

evolution of species in nature probably acts the best of optimizers. The species evolve 

according to the Darwinian concept of \survival of fittest". Only those survive which are 

_t to interact with surrounding and reproduce. For evolution the physical processes 

occurring, are selection, mutation, competition and reproduction [32], and these 

operations incorporated in evolutionary optimization to evolve the trail solutions (initially 

chosen) to get the best solution or global solution. 

 

The three different kinds of evolutionary algorithms are [33-35] 

 

 Evolutionary Programming [36] 

 Evolutionary Strategies [37, 38] 

 Genetic Algorithm [39, 40] 
 

9. Genetic Algorithm: Akin to genetics, GA [25, 39-46] uses analogues of selection, 

crossover, mutation operations to find the optimum solution. The simulation starts from a 
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pool of trial solutions (generated randomly) and not a single one as is the case with most 

search techniques. The individual solutions are popularly known as strings. How far are 

the individual strings from the optimal solution is described in terms of the fitness 

function. The calculation of fitness function are problem specific. Generally, GA follows 

the maximization of objective function or _t function. 

 

The simulation is started with the solution pool containing strings of low fitness. 

These strings are iteratively subjected to the operations of selection, cross over and 

mutation, till a string is obtained with fitness value close to one (which is the desired 

solution). The operational details of the three operations are as follows: 

 

 Selection: In this operation, some of the strings in the solution are selected for 
the next operation. The strings of relatively higher fitness have greater 

probability of being selected. There are various ways of doing the selection 

and we have used the “roulette wheel procedure" or the “elitism" procedure. 

Selection will discard strings of low fitness, create multiple copies of the ones 

with high fitness and there by increase the average fitness of the solution pool. 

 

 Crossover: In conventional genetics, exchange of information occurs to 
produce fitter individuals and better genes. This phenomenon is called 

crossover. In GA crossover of data occurs among pairs of strings. There is a 

crossover probability, which is defined for a particular simulation process. 

This controls the number of strings which are picked up for crossover. Among 

the selected strings, pairs are arranged randomly and exchange of information 

takes place by partial swapping of the information contents in the strings. 

Hence this process introduces new variety and information in the solution 

pool, which was absent at the beginning. 

 

 Mutation: Mutation is very rare event in conventional genetics and so is it in a GA 

optimization. In genetics, mutation means sudden change in genetic structure. We set 

the mutation operation in simulation as 

 

                

 

Where   is a random number,    is either 1 or 2 and   is maximum 

allowed change. Thus any element   in the solution pool has been chosen 

(randomly) and it becomes    after mutation. Mutation is the source of 

introducing absolutely new information into the solution pool. Mutation is a 

beneficial operation, but a high mutation probability can offset the beneficial effects 

and so one must exercise some caution while using it. 

 

Conventionally the solution pool in GA contains infinite number of strings. 

However in practice a GA simulation is carried out with only a finite number of 

strings to keep a balance between efficiency and efficacy. 
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V. DIFFERENT ARENA WHERE OPTIMIZATION IS USED BY CHEMISTS:  

 

 Application of optimization in various disciplines of chemical physics is un 

questionable. Usage of stochastic search algorithm or soft computing techniques (more 

general abbreviation) as a method of optimization expedites many area of research in 

chemical physics. Increasing demand for global optimization in this field motivates chemical 

physicists not only to apply these algorithms, but also to develop new soft computational 

algorithm or to make modification in existing algorithms according to perspective. 

 

 Literature is enriched with lots of applications of soft-computational algorithms in 

chemical physics. In this review we can allow us only for a very brief discussion about the 

applications of optimizations, rather stochastic optimization techniques in different avenues 

of chemical physics. 

 

VI. GEOMETRY OF ATOMIC AND MOLECULAR CLUSTER 

 

 Stochastic optimizer had made easy access in obtaining proper geometrical shape of 

cluster. The clusters may be made of some kind of lattice points or atoms or even molecules. 

To optimize cluster structures one need to get the global minima on the potential energy 

surface as generally the structure of a cluster very close to the most minimum energy point of 

an appropriate potential energy surface. Literature is enriched with the example of getting 

cluster structure using different types of stochastic optimization algorithms, such that Basin 

Hopping Monte-Carlo, Genetic Algorithm,simulated annealing, Parallel Tempering. Now a 

days particle swarm optimization algorithms have also been practiced to evaluate structures 

of complicated systems. Staring from noble gas to metallic clusters, molecular clusters, ionic 

clusters have been optimized using stochastic search method [47-62]. The stochastic search 

algorithms can be clubbed with quantum chemistry package [63,64] which actually gives the 

field of structure optimization a leap. 

 

VII. REACTION PATH 

 

 Optimization algorithm can be used to extract information about transition state and 

transformation path also. Only one need to design the objective function accordingly so that 

transition state or the whole path could be optimized. Here also the optimization variables are 

the co-ordinates of the atoms of the molecular system. Many reports are there where 

optimization algorithms have been used in different manner to get the transition state or the 

whole reaction path [65-67]. 

 

VIII. KINETIC PARAMETER ESTIMATION 

 

 Systems biology deals with the computational and mathematical modelling of 

complex biological systems. In doing so one has to successfully analyse the findings from 

high-throughput experiments. This leads to employ the inverse problem in system biology 

[68, 69]. The major use of inverse problem is in parameter estimation from experimental data 

sets. Optimization search algorithms can be used for this purpose. By taking the experimental 

finding as an objective one can optimize the kinetic parameter set [70-72]. 

 

 

 



Futuristic Trends in Chemical, Material Sciences & Nano Technology 

e-ISBN: 978-93-5747-683-6 

IIP Series, Volume 3, Book 3, Chapter 6 

OPTIMIZATION: A DISCUSSION FOR CHEMIST TO USE THE TOOL AS PROBLEM SOLVER 

 

Copyright © 2024 Authors                                                                                                                      Page | 102 

IX. TO CONTROL QUANTUM PHENOMENA 

 

 Controlling quantum phenomena is one of the promising fields of research. Emerging 

improvement in laser (rather femtosecond laser) spectroscopy supplies the tool for doing 

quantum control. A properly designed laser pulse can actually manipulate a quantum 

phenomenon like selective control in photochemical reactions, tunnelling or barrier crossing 

dynamics. Now designing a proper laser field is a non-trivial job and stochastic optimizer can 

be applied in this occasion [73-77]. In such cases the optimization variables would be the 

pulse parameters, i.e intensity, frequency, pulse width etc and objective function could be 

designed according to the objective of the problems. Generally single-color pulse fails to 

achieve the objective, but polychromatic pulse could be designed by optimization algorithms 

which in most cases give good results.   

 

X. EPILOGUE 

 

 There is vast scope of using optimization in chemistry. Some of them are only 

discussed. The algorithm could be used directly in designing experiments also. Pulse shaping 

could be merged with the experimental set-up to tune the results. Now there is a huge scope 

of using Artificial Intelligence (AI) in different aspects of chemistry which is one of the 

frontier topics of research in chemistry, especially computational chemistry. 

 

REFERENCES 

 
[1]  L. T. Biegler Nonlinear Programming Concepts, Algorithms, and Applications to Chemical Processes, 

Mathematical Optimization Society and the Mathematical Optimization Society (2010). 

[2]  K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiely (2001). 

[3]  T. Weise Global Optimization Algorithms Theory and Application (e-book), 2nd edition, (2009). 

[4]  T. Haukaas Deterministic Optimization Methods, www.inrisk.ubc.ca. 

[5]  J. Kiefer, Proceedings of the American Mathematical Society 4, 502 (1953). 

[6]  J. Kowalik and M. R. Osborne, Methods of Unconstrained Optimization Problems (Elsevier, New York, 

1968). 

[7]  J. A. Nelder and R. A. Mead, Computer Journal, 7, 308313 (1965). 

[8]  D. M. Olsson, L. S. and Nelson, Technometrics 17, 4551 (1975). 

[9]  W. Spendley, G. R. Hext, and F. R. Himsworth, Technometrics 4, 441461 (1962). 

[10]  R. Fletcher, Practical Methods of Optimization, Wiley, Chichester (1981). 

[11]  G. Meurant, The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision 

Computations, SIAM, Philadelphia, U. S. A. (2006). 

[12]  R. Pytlak, Conjugate Gradient Algorithms in Nonconvex Optimization; vol. 89, Pardalos, P. (Ed.), 

Springer-Verlag Berlin Heidelberg (2008). 

[13]  C. T. Kelley, Solving Nonlinear Equations with Newtons Method, vol. 1 of Fundamentals 

[14]  of Algorithms, Society for Industrial Mathematics, Philadelphia, PA (2003). 

[15]  L. M. Surhone, M. T Timpledon, and S. F. Marseken, (Eds.), Quasi-Newton Method: Maxima and 

Minima, Newtons Method in Optimization, Stationary Point, Hessian Matrix, Gradient, Positive-Definite 

Matrix, Betascript Publishing (2010). 

[16]  P. H_ajek, Metamathematics of Fuzzy Logic, (Trends in Logic, Springer, 2001) 

[17]  N. Limnios, D. C. Ionescu, Statistical and probabilistic models in reliability, (Statistics forIndustry and 

Technology, Birkh• auser Boston, 1998) 

[18]  G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, (Operations Research, Springer-

Verlag, New York, 1996) 

[19]  C. P. Robert, Monte Carlo Statistical Methods, (2nd ed., Springer-Verlag,2004) 

[20]  S. Haykin, Neural Networks: A Comprehensive Foundation (Macmillan, New York, 1994) 

[21]  C. M. Bishop, Neural Networks for Pattern Recognition, (Oxford University Press, 1st ed., 1996) 

[22]  N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953). 

[23]  D. C. Karnopp, Random Search Techniques for Optimization Problems, Automatica 1, 111-121 (1963). 

http://www.inrisk.ubc.ca/


Futuristic Trends in Chemical, Material Sciences & Nano Technology 

e-ISBN: 978-93-5747-683-6 

IIP Series, Volume 3, Book 3, Chapter 6 

OPTIMIZATION: A DISCUSSION FOR CHEMIST TO USE THE TOOL AS PROBLEM SOLVER 

 

Copyright © 2024 Authors                                                                                                                      Page | 103 

[24]  T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by Direct Search: New Perspectives on Some 

Classical and Modern Methods, SIAM Review 45, 385-482 (2003) 

[25]  M. Mitchel, S. Forrest, S., Holland, J. H., When Will a Genetic Algorithm Outperform Hill Climbing, 

Cowen, J. D., Tesauro, G., Alspector, J. (Eds.), Advances in Neural Information Processing Systems, 6, 

Morgan Kaufmann, San Mateo, CA (1994). 

[26]  A. Mitchell, An Introduction to Genetic Algorithms, (1st ed., MIT Press, Cambridge, MA, 128-132, 

1996). 

[27]  K. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi Science 220, 671 (1983). 

[28]  K. S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984). 

[29]  D. J. Earl and M. W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005). 

[30]  F. Glover, Computers and Operations Research 13, 533 (1986). 

[31]  T. Kadowaki, and H. Nishimori, Phys. Rev. E 58, 5355 (1998) 

[32]  J. Brook, D. Bitko, T. F. Rosenbaum, and G. Aeppli Science 284, 779 (1999) 

[33]  E. Mayr, The Growth of Biological Thought: Diversity, Evolution and Inheritance, (Belknap Press, 

Cambridge, MA, 1988) 

[34]  H. J. Bremermann, Optimization through evolution and recombination, (Self-OrganizingSystems, Yovits, 

M. C., et al., (Eds.), Washington, DC, Spartan, (1962) 

[35]  R. M. Friedberg, A learning machine: Part I, IBM J. 2, 213 (1958) 

[36]  R. M. Friedberg, A learning machine: Part II, IBM J. 3, 282287 (1959) 

[37]  L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution, (John 

Wiley, New York, 1966). 

[38]  I. Rechenberg, Evolutionsstrategie - OptimierungtechnischerSystemenachPrinzipien der biologischen 

Evolution., (Frommann-Holzboog, Stuttgart, 1973). 

[39]  H. P. Schwefel, Numerical optimization of computer models, (Wiley &Sons,Chichester, 1981). 

[40]  J. H. Holland, Adaptation in natural and artificial systems, (The University of Michigan Press, Ann 

Arbor, 1975). 

[41]  D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, (Addison Wesley, 

Rading, MA, 1989). 

[42]  G. J. E. Rawlins, (Ed.), Foundations of Genetic Algorithms, (Morgan Kaufmann, 1991). 

[43]  L. D. Whitley, (Ed.), Foundations of Genetic Algorithms 2,(Morgan Kaufmann, 1993). 

[44]  L. Davis, (Ed.), Genetic Algorithms and Simulated Annealing, (Morgan Kaufmann Publishers, 1987). 

[45]  J. H. Holland and J. S. Reitman, Cognitive systems based on adaptive algorithms, (Pattern-Directed 

Inference Systems, D. A. Waterman and F. Hayes-Roth, (Eds.), Academic, New York, 1978). 

[46]  K. A. De Jong, An analysis of the behavior of a class of genetic adaptive systems, (Ph.D. dissertation, 

Univ. of Michigan, Ann Arbor, 1975). 

[47]  K. A. De Jong, Are genetic algorithms function optimizers? 3 13, (Parallel Problem Solving from Nature 

2, Elsevier, Amsterdam, The Netherlands, (1992). 

[48]  J. Bernasconi, J. Phys. 48, 559 (1987). 

[49]  J. P. K. Doye, Comput. Mater. Sci. 35 227 (2006). 

[50]  X. Shao, X. Liu, and W. Cai, J. Chem. Theor. Comput. 1 762 (2005). 

[51]  D.J. Wales and J.P.K. Doye, J. Phys. Chem. A 101 5111 (1997). 

[52]  W. J. Pullan, Comput. Phys. Commun 107 137 (1997); J. Chem. Inf. Comput.Sci. 37 1189 (1997). 

[53]  P. Chaudhury and S. Bhattacharyya, Chem. Phys. 241 313 (1999). 

[54]  E. Lee, D. Farelly, and K. B. Whaley, Phys. Rev. Lett. 83 3812 (1999). 

[55]  J. Zhao and R. H. Xie, J. of Comp. and Theo. NanoSc. 1 117 (2004). 

[56]  A. Stasikowski, M. Moneta, and T. W. Gwizdalla, Surface and Interface Analysis38 469 (2006). 

[57]  R. Poteau and G. M. Pastor, Euro. Phys. J. D 9 235 (1999). 

[58]  A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd,G. M. Tarbuck,and R. L. J. 

Ohnston, J. Chem.Phys. 122 19 (2005). 

[59]  S. K. Biring, R. Sharma, and P, Chaudhury, J. Math. Chem. 52 368 (2014). 

[60]  D. Wolf, O. V. Buyevskaya, and M. Baerns, App. Catalytic A 200 63 (2000). 

[61]  S. Ganguly Neogi and P. Chaudhury, J Comp. Chem. 35 51 (2014). 

[62]  D. Alfe, M. Alfredsson, J. Brodholt, M. J. Gillan, M. D. Towler, and R. J.Needs, Phys. Rev. B 72 014114 

(2005). 

[63]  B. Hartke, App. of Evol. Comput. in Chem., (Springer-Verlag, Berlin, Heidelberg,11033-11053 (2004). 

[64]  P. Naskar, R. Roy, S. Talukder, P. Chaudhury, Mol. Phys, 116, 2172 (2018) 

[65]  P. Naskar, Mol. Phys. 117, 575 (2019) 

[66]  J. C. Grossman, W. A. Lester Jr, S. G. Louie, J. Am. Chem. Soc. 122 705(1999). 



Futuristic Trends in Chemical, Material Sciences & Nano Technology 

e-ISBN: 978-93-5747-683-6 

IIP Series, Volume 3, Book 3, Chapter 6 

OPTIMIZATION: A DISCUSSION FOR CHEMIST TO USE THE TOOL AS PROBLEM SOLVER 

 

Copyright © 2024 Authors                                                                                                                      Page | 104 

[67]  P. Chaudhury, S. P. Bhattacharyya, Journal of Molecular Structure:THEOCHEM 429 175 (1998); Int. J. 

Quant. Chemi. 76 161 (2000). 

[68]  S. Talukder, S. Sen, R. Sharma, S. K. Banik andP. Chaudhury, Chem. Phys. 431-432 5 (2014). 

[69]  H. W. Engl, C. Flamm, P. K  gler, J. Lu, S. M  ller, and P. Schuster, InverseProblems, 25, 123014 (2009). 

[70]  P. K  gler, Plos One 7 e43001 (2012). 

[71]  C. G. Moles, P. Mendes, and J. R. Banga, Genome Research 13 2467 (2003). 

[72]  A. G_abor and J. R. Banga, Computational Methods in Systems Biology,45-60 (2014). 

[73]  S. Da Ros, G. Colusso, T. A. Weschenfelder, L. de Marsillac Terra, F. deCastilhos, M. L. Corazza, and 

M. Schwaab, Applied Soft Computing 13 2205(2013). 

[74]  S. Sharma and H. Singh, Chem. Phys. 390 68 (2011). 

[75]  T. Klamroth and D. Kr  ner, J. Chem. Phys. 129 234701 (2008). 

[76]  S. Sen, S. Talukder, and P. Chaudhury, Indian J. Phys. 87 865 (2013). 

[77]  B. K. Shandilya, S. Sen, T. Sahoo, S. Talukder, P. Chaudhury, and S. Adhikari,J Chem. Phys.139 034310 

(2013). 

[78]  S. Ghosh, S. Talukder, S. Sen, and P. Chaudhury, Chem. Phys. 425, 73(2013). 

 

 


