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Abstract 
 

Modern plant breeders face a tough 

insurmountable challenge to feed the world's 

rapidly expanding population. Insect pest 

attacks, disease severity, and nutrient 

deficiency have all reduced agricultural crop 

yield in recent years. Every day, we face an 

increasing challenge in satisfying the 

demands of the expanding population. To 

accomplish the same, it is vital to use 

multidisciplinary techniques to find answers 

to current problems. We've recently 

witnessed a paradigm change toward 

employing omics information, methods, and 

technology to boost agricultural productivity. 

Crop genotype and phenotypic data provided 

by the omics era has opened several doors. 

This will prove to be a vital tool for 

enhancing agricultural output and farmer 

incomes. A recent development in 

agricultural technology is the use of artificial 

intelligence (AI). High-performance, precise, 

and cost-effectiveness are only few of the 

advantages of AI in agriculture. Identifying, 

cloning, and sequencing genes that help 

plants tolerate harmful environmental 

impacts should be made easier with a better 

understanding of plant genomics. 

Agricultural and food industries, in 

particular, are rapidly evolving, and machine 

learning has recently been recognized as a 

feasible multidisciplinary technique for 

enhancing and upgrading such industries. 

Bioinformatics and artificial intelligence 

might be used to find the genome and its 

variations, which could then be used to 

genetically edit crops in the future, according 

to this paper's focus on plant multi-omics. 

 

Keywords: artificial intelligence, 

bioinformatics, deep learning, genomics, 

metabolomics, proteomics, transcriptomics,  

Authors 
 

Sandip Debnath
 

Department of Genetics and Plant Breeding 

Palli Siksha Bhavana  

Visva-Bharati University 

West Bengal, India 

sandip.debnath@visva-bharati.ac.in 

 

Sourish Pramanik 

Department of Genetics and Plant Breeding 

Palli Siksha Bhavana  

Visva-Bharati University 

Birbhum, West Bengal, India 

sourishpramanik2002@gmail.com 

 

Dibyendu Seth 

Department of Genetics and Plant Breeding 

Palli Siksha Bhavana  

Visva-Bharati University 

Birbhum, West Bengal, India 

deep032002@gmail.com 

 

Biswajit Pramanik
 

Department of Genetics and  

Plant Breeding 

Palli Siksha Bhavana  

Visva-Bharati University 

Birbhum, West Bengal, India 

biswajit1996pramanik@gmail.com 

 



Futuristic Trends in Biotechnology  

e-ISBN : 978-93-5747-460-3 
IIP Proceedings, Volume 2, Book 26, Chapter 3 

USE OF ARTIFICIAL INTELLIGENCE AND BIOINFORMATICS 

FOR CROP IMPROVEMENT TO ENSURE FUTURE FOOD SECURITY 

 

Copyright © 2022 Authors                                                                                                                       Page | 29  

I. BACKGROUND 

 

Sustainable agricultural productivity and food security are critical challenges in light 

of growing populations, environmental degradation, and climate change [1]. Crops provide 

more than two-thirds of the energy we use each day as individuals. As the world's population 

continues to rise, agriculture is under increasing pressure to provide more food. Further 

agricultural concerns are posed by climate change, land scarcity, and water limits. Additional 

food security issues have been exacerbated by the recent rise in demand for biofuel crops, 

which has created a new market for agricultural products. A number of genetic applications 

have provided several chances for integrating the benefits of subsystems biology, integrative 

biology, and large-scale systematic functional genomic programmes in order to tackle these 

issues. The area of plant molecular biology is progressing thanks to the discovery of 

important gene sequences and their functions. Genes that have been attributed to crop yields, 

quality, and resistance to biotic and abiotic challenges have been identified [2, 3]. 

 

Arabidopsis thaliana's whole genome has been available to scientists since 2000. P. 

149) of the International Arabidopsis Genome Initiative. There has been a complete genome 

sequencing of rice (Oryza sativa cv. japonica) since 2005 (International Rice Genome 

Sequencing Project 2005) A combination of 454 sequencing and Sanger sequencing was used 

for the first time to sequence the grape genome, whilst rice was still sequenced using BAC 

and Sanger sequencing. Agriculture accounted for 40 of the 55 plant genomes sequenced as 

of 2013. There are 237520318 sequences in Genbank as of April 2022 (https : / / www . ncb . 

nlm.nih.gov/genbank/statistics/). 

 

Plant genome research needs bioinformatics, which is required in order to handle and 

analyze the massive volumes of genomic data. Third-generation sequencing data presents a 

challenge for many algorithms designed for short reads. Crop improvement may benefit from 

comprehensive data provided by GWAS, variant calling, and comparative genomic analysis. 

Genomic sequencing of crop populations may provide gene-level resolution of agronomic 

variation, quantitative trait locus (QTL) mapping, and more in many areas of crop breeding, 

including genome-wide association studies (GWAS). A result of the ease with which 

breeders may now get genetic information. Crop improvement has never had it so well thanks 

to recent advances in multi-omics. [6] The "omic space," a conceptual paradigm that ranges 

from the "genome" to the "phenome," has been proposed [7]. Plant phenotypic changes are 

linked to changes in the structure and function of genes. Gene-specific molecular breeding 

and the interplay between the genome, proteome, and metabolome have led to the 

development of various web-based databases that can hold massive amounts of data. Genome 

sequencing is useful in improving agronomic qualities so that genetic potential may be 
harnessed to boost productivity, as a genomics technique. Deoxyribonucleic acid (DNA) 

sequencing has become more affordable in the recent decade, which has led to a rise in crop 

genome sequencing, giving breeders an excess of possibilities. 

 

Using machine learning to forecast and categorize data is an alternative to traditional 

statistical methods (ML). Mathematical and statistical approaches are used to train models 

without the need for direct programming in machine learning. In order to produce 

predictions, machine learning develops a number of algorithms that learn from both training 

data and sample data. Non-parametric machine learning (ML) research on plants and animals 

have employed support vector machines (SVM), boosting, random forests, and Reproducing 
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Kernel Hilbert Space (RKHS). Because they discover patterns from data without any 

previous assumptions, ML models for genomic selection (GS) are particularly advantageous 

because they take into account all of the variations, their interactions, and environmental 

factors [7]. Each nucleotide has an impact on a plant's phenotypic, and a scientist is interested 

in this as well. It is possible that deep learning might make very accurate predictions, but the 

models themselves are frequently quite complex, making it difficult to use inference to study 

biological processes. Therefore, academics haven't given much attention to deep learning 

(DL). 

 

The flow of biological information underpinning complex characteristics necessitates 

an alternative systems biology approach that includes the integration of various omics data, 

modelling, and prediction of cellular processes. This technique provides a full understanding 

of the dynamic system in which various levels of biological structure interact with the 

external environment in order to exhibit phenotype. One of the most popular omics 

approaches in plant science is genomics. This is due to the fact that the cost of sequencing is 

decreasing and the degree of knowledge is increasing. It's possible to identify new alleles 

regardless of whether or not the genome sequence is available, owing to the sequencing and 

re-sequencing information gleaned for various crops. Plant network biology may help boost 

sustainable agricultural yields, but a systematic approach is needed (Figure 1). For the 

improvement of agriculturally important plants, the most current advances in bioinformatics 

and artificial intelligence are emphasized in this article. 

 

 
 

Figure 1: Pictorial Depiction of Genomics, Transcriptomics, Proteomics, Metabolomics 

And Phenomics’ Integrated Application in Crop Improvement 

 

II. NEXT GENERATION SEQUENCING 

 

Short Illumina reads and Sanger sequencing were used to sequence the cucumber 

genome in 2009, which paved the way for NGS. In order to discover genes and gene families, 

as well as coding and noncoding areas, regulatory genes, and repetitive sequences, genomic 

data is employed. More and more plant biologists are routinely sequencing and resequencing 
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their genomes attributable to next-generation sequencing (NGS). The genomes of 55 plant 

species, including 40 crop species, have been sequenced as of 2013. It has also been utilised 

to discover genome-wide molecular phenotypes with several dimensions using low-cost high-

throughput techniques. Individual, strain, and/or population differences may be identified 

using next-generation sequencing technologies and reference genome sequence data. 

Nucleotide polymorphisms may be consistently identified in genetic research by mapping 

sequence segments to a specific reference genome data set. 

 

Plant genome assembly is still a challenge because of long repetitive regions, large 

genome sizes, and frequent polyploidy. However, advances in sequencing technologies (third 

generation sequencing technologies) and bioinformatics tools have enabled rapid 

advancements since the rice genome was sequenced and assembled in 2005 [10]. Third-

generation sequencing permits the development of high-quality de novo assemblies of the full 

genome and provides light on the remaining complex of repetitive sequences, including 

structural variations. In addition, isoform sequencing from third-generation sequencing 

technologies enables precise investigation of exons, splice sites, and alternatively spliced 

regions, which helps with genome annotation. It is now possible to get high-quality plant 

reference genomes using downstream methods such as comparative genomics, variant calling 

and genome-wide association studies (GWAS). These methods give comprehensive data for 

crop improvement. Longer reads and more accurate and contiguous genome assemblies have 

been made possible because to third-generation sequencing, such as single-molecule real-

time sequencing (PacBio) and sequencing by Oxford Nanopore Technologies (ONT). 

Agricultural genome sequencing has become more relevant in recent years because to the 

development of third-generation sequencing technology capable of producing long reads 

longer than 10 kilobases (kb). 

 

It is now possible to produce highly contiguous plant genome assemblies even for 

non-model crop species and smaller facilities because to long-read sequencing, long-range 

mapping and chromosomal conformation capture. Repetitive sequences may also be found 

via long-read sequencing. Large DNA molecules surpassing 250 kb may now be labelled 

quickly and cheaply using new optical mapping methods, such as BioNano Genomics. Hi-C 

(Chromosome conformation capture sequencing) is a third-generation mapping technology 

that depends on the physical tightness of DNA segments to be mapped. For example, 

chromosome phasing and scaffolding may be improved significantly when Hi-C 

measurements and optical mapping are used together. Reconstruction of the barley genome 

with a N50 of 1.9 Mb was achieved by Mascher and colleagues using short reads, optical 

mapping data, and chromatin interaction mapping data. Third-generation sequencing has the 

potential to improve genomics-based breeding approaches such as trait mapping, because to 
its improved sequence continuity. Use of third-generation sequencing in crop breeding has 

been most effective in creating enhanced, highly contiguous crop genomes. Due to intrinsic 

bias and inadequate repetitive sequence matching in NGS, extremely fragmented partial 

genome assemblies are created that make it more difficult to find and study hidden In-

Dels and structural variations. 

 

It was a common practise in crop breeding to utilise phenotypic selection and cross-

breeding cycles to produce improved genotypes. Genetic diversity in agricultural species may 

now be identified via genomics-based breeding and leveraged to build climate-resistant crops 

[12]. All genes and genetic variations connected to agronomic traits may be discovered once 
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the genome sequences are accessible, and breeding modifications can be assessed at the 

genotype level once they are. Several parts of crop breeding, such as QTL mapping and 

GWAS, where genomic sequencing of crop populations may offer gene-level resolution of 

agronomic variation, are becoming more important as breeders now have access to genomic 

data. Genomics research is the focus of the databases in Table 1. 

 

Table 1: Databases in use of Plant Genomics Research 

 
Database URL 

Phytozome v8.0 http://www.phytozome.net/Phytozome_info.php 

Gramene http://www.gramene.org/ 

Home—BioProject—NCBI http://www.ncbi.nlm.nih.gov/sites/entrez?db=bioproject 

BLAST: Basic Local 

Alignment Search Tool 
http://blast.ncbi.nlm.nih.gov/Blast.cgi 

GrainGenes Class Browser http://wheat.pw.usda.gov/cgi-

bin/graingenes/browse.cgi?class=marker 

PlantGDB— Resource Plant 

Comparative Genomics 
http://www.plantgdb.org/ 

TreeView http://taxonomy.zoology.gla.ac.uk/rod/treeview.html 

GenBank https://www.ncbi.nlm.nih.gov/genbank/ 

European Molecular 

Biological 

Laboratory (EMBL) 

https://www.embl.org/ 

KnetMiner (Knowledge 

Network Miner) 
https://knetminer.com/ 

LALIGN Server http://www.ch.embnet.org/software/LALIGN_form.html 

PopGene http://www2.unil.ch/popgen/softwares/fstat.htm 

Arlequin 3.11 http://cmpg.unibe.ch/software/arlequin3/ 

PRIMER-E http://www.primer-e.com/ 

 

III. QTL MAPPING 

 

An organism's genome, made up of all its genes and DNA, is the subject of genomics. 

Unlike genetics, which focuses on genes and their function in heredity, genomics studies the 

aggregate description and measurement of an organism's genes [13]. System biology even the 

most complicated biological systems may now be better understood thanks to advances in 

genomics. It is possible to get new insights on agricultural plant sustainability by generating 

genomic resources in a variety of methods, including molecular markers, transcriptome 

assemblies and biparental population mapping, genetic linkage maps, comparative genome 

mapping, and functional genomics. 

 

It is now possible to clone QTLs, create genetic maps, and use marker-assisted 

selection in different segregating populations thanks to many high-throughput genotyping 

technologies. Genetic markers that cover a large portion of a genome may also be used to 

research genetic diversity in connection to natural variation, in addition to discovering 

specific genes linked to complex characteristics. Many species have undergone genome 

sequencing and extensive Expressed Sequenced Tag (EST) research, which has resulted in 

excellent sequence resources for the development of molecular markers. All SNP marker sets 

are integrated in the anticipated model, which is why this is the case. For a number of plants, 

http://www.phytozome.net/Phytozome_info.php
http://www.gramene.org/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=bioproject
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://www.plantgdb.org/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
https://www.ncbi.nlm.nih.gov/genbank/
https://www.embl.org/
https://knetminer.com/
http://www.ch.embnet.org/software/LALIGN_form.html
http://www2.unil.ch/popgen/softwares/fstat.htm
http://cmpg.unibe.ch/software/arlequin3/
http://www.primer-e.com/
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such as barley, melon, Brassica, common bean, and sunflower, computational identification 

of EST base single-nucleotide polymorphisms and/or EST-SNP markers for discovering 

sequence-tagged site markers has advanced [14, 15, 16, 17, 18]. QTLs may be predicted more 

accurately with the use of a meta-qtl analysis if more QTLs are detected. MetaQTL decreases 

the QTL's confidence interval in order to precisely anticipate the QTL's location and impact 

on a given sample. Low-bias QTL analysis, data visualisation, and interoperability with other 

genome databases are all features of both SolQTL and RASQUAL. A Meta-QTL analysis has 

been utilised to discover features linked with crop growth and abiotic and biotic responses in 

maize [19], cotton [20], soybean [21], or wheat [22]. Two drawbacks to this method are that 

it is difficult to distinguish between pleiotropic and physically nearby genes because of poor 

mapping, and only the allelic diversity found in parents of a segregating population can be 

analyzed. 

 

IV. GWAS & GENOMIC SELECTION 
 

There is an alternative to QTL mapping called GWAS. Wild populations are the basis 

for GWAS, whereas biparental populations obtained from controlled crossings lay 

the foundation for QTL analyses.  Multiple recombination events may be found with greater 

ease, and natural variances linked with phenotypic differences can be examined with more 

clarity as a result. More precise GWAS mapping than QTL analysis identifies MTAs that 

may be linked to the amount of linkage disequilibrium (LD) across polymorphic markers 

across a wide range of genotypes. The breeder's preference for GWAS over QTL analysis is 

to evaluate a wide genetic base in order to research several potential genes for inclusion in 

breeding programmes. Genetically-modified organisms were first utilised in the study of 

complex human traits. This decade has witnessed GWAS were used to several crops 

including canola, rice and soybeans as well as corn and wheat [23–26]. Polygenic traits make 

it more difficult to pin down the source of a trait. Based on genetic estimates of breeding 

values (GEBV) in an individual variation, GS has the upper hand here. Biparental 

populations may be able to solve the issue of limited QTL translations by using the whole 

SNP marker collection. Lolium perenne GS-based breeding methods based on computer 

simulations have been found to shorten the four-year cycle of breeding. On maize breeding 

lines, GBS has been utilised to discover 55,000 SNP markers [27] and on elite wheat 

breeding lines to evaluate high yield and stem rust resistance. Using GWAS, a number of 

traits in five important crops are shown in Figure 2. 
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Figure 2: Few Traits or Genes Studied Via Genome Wide Association Study (GWAS) of 

5 Major Crops  

(Created in Biorender.com) (https://biorender.com) 

 

V. CIS-REGULATORY ELEMENTS (CRES) FOR CROP BREEDING 

 

Gene expressions may be controlled by regulating the cis-regulatory elements 

(promoters and enhancers) and regulators. CREs are related to chromatin, which binds to 

proteins, but they are less expressive than genes, making their discovery more difficult. For 

those who want to control rather than delete the gene, CRE targeting is an excellent choice. 

Researchers have been able to identify open chromatin regulatory sites by employing 

bioinformatic approaches like as ChIP-seq [28] and ATAC-seq [29] as well as DNase I 

hypersensitivity mapping, word-counting, and conservation-based sequence analysis. 

CREs are still poorly understood, although contemporary technologies have made it easier to 

identify regulatory domains, but experimental study is still needed to demonstrate a single 

CRE's contribution to the target gene's expression. It is termed Plant Cis-Acting Regulatory 

Elements in Plant CARE's database of plant CREs. The suppression of the gene GRAIN 

WIDTH 7 due to a mutation in the rice CRE, which resulted in rice with slender grains 

despite its negative effect on yield, and the variation in tomato seed compartment numbers 

caused by the regulation of WUSCHEL (WUS) and CLAVATA (CLV3) promoters are just a 

few examples that have been documented so far. When a mutant library is generated utilising 

the expression data of mutant lines, it is expected that CREs connected to desired traits would 

be discovered. 

 

VI. PROTEOMICS 

 

Owing to post-translational modifications (PTM), function, and localization, the 

genome cannot be linked to mRNA and proteins due to its static nature. To understand the 

role proteins play in the evolution of plants, it is essential to examine their structure and 

interactions. Proteomics is a high-performance method for identifying and quantifying 

protein performance in a given cell or organism. The three basic steps in the majority of 

proteomics systems are identification or quantification, protein extraction, and separation. As 
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a consequence of recent, fast technical improvements in proteomics, we have advanced to the 

second generation of functional proteomics, which comprises quantitative proteomics, 

subcellular proteomics, different alterations, and protein-protein interactions (e.g., advances 

in mass spectrometry equipment and methodological developments in protein quantification). 

The knowledge, resolution, and coverage of the plant proteome are expanded by a variety of 

means. Several factors, including the availability of resources, facilities, and applications 

such as global or focused profiling, govern the proteome research approach. It is feasible to 

separate proteins with excellent reproducibility and resolution using two-dimensional 

polyacrylamide gel electrophoresis (2D-PAGE), which combines two-dimensional gel 

electrophoresis (2-DE) with isoelectric focusing (IEF) as the first dimension and SDS-PAGE 

as the second. In addition, chromatographic separation techniques, including as gel filtration, 

ion exchange, and affinity chromatography, may be used to separate proteins based on their 

physicochemical features. Currently, peptide mass fingerprinting is the most used method for 

identifying proteins. It starts with the breakdown of proteins into peptides, followed by the 

exact mass determination of the peptides using mass spectrometry (MS). In-gel 

electrophoresis was developed to avoid the 2D-PAGE restrictions of gel-to-gel variance and 

restricted repeatability (DIGE). DIGE is used to understand how protein expression changes 

in response to biotic and abiotic stimuli. Two-dimensional gel electrophoresis is expanded to 

three dimensions to prevent co-migration interferences. It offers very precise identification of 

proteins and PTMs using two distinct buffers with different ion carriers [33]. 

 

MS identifies proteins based on peptide mass and fragmentation (MS/MS) data using 

a range of computer techniques. There are three phases in all. In order to convert molecules 

into gas-phase ions, mass-based ion separation is performed in an electro or magnetic field, 

followed by measurement of the separated ions with a certain m/z value. Ionizations 

techniques include electrospray ionization (ESI), surface-enhanced laser 

desorption/ionization (SELDI), and matrix-assisted laser desorption ionizations (MALDI). 

Gel-free techniques, such as quantitative approaches, tag-based labelling, metabolic labelling, 

and label-free methods, may mitigate the disadvantages of gel-based methods, such as their 

inability to segregate the whole proteome and poor identification of less abundant proteins. 

 

Quantitative proteomics is also required for the finding of important proteome 

alterations, such as expression, interaction, and modification that are related with genetic 

differences and/or observable phenotypic changes. To correctly differentiate between proteins 

prior to 2-D electrophoresis in DIGE (Differential Gel Electrophoresis), protein samples are 

tagged with fluorescent dyes. ICAT (Isotope-Coded Affinity Tagging) use in vitro isotopic 

labelling to quantify protein, with labelled tryptic peptides separated by chromatography and 

subsequently identified by mass spectrometry. Using isobaric tags, iTRAQ (Isobaric Tagging 
for Relative and Absolute Quantification) measures proteins. Breeders use this method to 

identify markers for biotic and abiotic stressors in order to develop genetically modified 

crops. Stable Isotope Labelling by Amino Acid in Cell Culture (SILAC) employs in vivo 

labelling of cell populations maintained in N14 or N15 media and has been shown to be 

successful in identifying proteome anomalies induced by post-translational changes under 

stress [34]. For complicated multidimensional protein analysis, MudPIT (Multi-Dimensional 

Protein Identification Technology) is used. After separating digested proteins using biphasic 

or triphasic microcapillary columns, tandem mass spectrometry is performed. Using this 

technology, the processes that regulate the quantity of rice tillers have been uncovered. 
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Figure 3 depicts the approaches used in proteome studies, whereas Table 2 lists the main 

databases utilized in proteomic research. 
 

 
 

Figure 3: Different Techniques used in Proteomic Studies (Created in Biorender.com) 

(https://biorender.com) 

 

Table 2: Databases for Proteomic study 

 

Database Link 

Swiss Institute of Bioinformatics’ Expasy 

SWISS-2DPAGE database 
http://au.expasy.org/ch2d/ 

Kazusa DNA Research Institute’s 

Cyano2Dbase 

http://bacteria.kazusa.or.jp/cyano_legacy/Synec

hocystis/cyano2D/index.html 

rice proteome database http://gene64.dna.affrc.go.jp/RPD/ 

Nottingham Arabidopsis Stock Centre 

(NASC) Proteomics database 
http://proteomics.Arabidopsis.info/ 

SUB-cellular location database for Arabidopsis 

proteins (SUBA) 
http://suba.plantenergy.uwa.edu.au/ 

The soybean proteome database http://proteome.dc.affrc.go.jp/cgi-

bin/2d/2d_view_map.cgi 

The Arabidopsis Protein Phosphorylation 

Site Database (PhosPhAt) 
http://phosphat.mpimp-golm.mpg.de/ 

Protein data bank, PDB http://www.pdb.org/pdb/home/home.do 

The RIKEN SGPI http://www.rsgi.riken.go.jp/rsgi_e/index.html 

Genomes TO Protein structures and functions 

(GTOP) database 

http://spock.genes.nig.ac.jp/~genome/gtop.html 

 

CATH http://www.cathdb.info/ 

Structural Classification of Proteins (SCOP) 

database 
http://scop.mrc-lmb.cam.ac.uk/scop/ 

PRoteomics IDEntification database (PRIDE) https://www.ebi.ac.uk/pride/ 

Peptide Atlas http://www.peptideatlas.org/ 

Mass Spectrometry Interactive Virtual 

Environment (MassIVE) 

https://massive.ucsd.edu/ProteoSAFe/static/mas

sive.jsp 

Plant Proteomics Database 

(PPDB) 
http://ppdb.tc.cornell.edu/ 

1001 Proteomes (Discontinued)  https://www.heazleome.org/tools.html 

GelMap https://www.gelmap.de/ 

Peptide Atlas SRM Experiment 

Library (PASSEL) 
http://www.peptideatlas.org/passel/ 

http://au.expasy.org/ch2d/
http://bacteria.kazusa.or.jp/cyano_legacy/Synechocystis/cyano2D/index.html
http://bacteria.kazusa.or.jp/cyano_legacy/Synechocystis/cyano2D/index.html
http://gene64.dna.affrc.go.jp/RPD/
http://proteomics.arabidopsis.info/
http://suba.plantenergy.uwa.edu.au/
http://proteome.dc.affrc.go.jp/cgi-bin/2d/2d_view_map.cgi
http://proteome.dc.affrc.go.jp/cgi-bin/2d/2d_view_map.cgi
http://phosphat.mpimp-golm.mpg.de/
http://www.pdb.org/pdb/home/home.do
http://www.rsgi.riken.go.jp/rsgi_e/index.html
http://spock.genes.nig.ac.jp/~genome/gtop.html
http://www.cathdb.info/
http://scop.mrc-lmb.cam.ac.uk/scop/
https://www.ebi.ac.uk/pride/
http://www.peptideatlas.org/
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
http://ppdb.tc.cornell.edu/
https://www.heazleome.org/tools.html
https://www.gelmap.de/
http://www.peptideatlas.org/passel/
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VII. TRANSCRIPTOMICS 

 

The genome, as previously said, is fixed and hence unable to reflect the level of gene 

expression. As a result, the expression level of the genome may be measured using 

transcriptomic methods. Transcription makes up around 1-2% of the functioning genome. To 

discover cis-regulatory patterns in gene expression, predict gene function, and screen 

potential new genes, transcriptomics uses high-throughput gene expression analysis. This 

expressed genome may be studied using transcriptomics, which studies how genes are 

expressed in an organism in a variety of situations, tissues (spatial transcriptome), and time 

periods (temporal transcriptome). These approaches, such as microarrays and GeneChips, 

may offer complete gene expression profiles for a wide range of species, as is well known. It 

is becoming more effective to sequence short snippets of expressed RNAs, including sRNAs, 

in genome-sequenced species. Co-expression and comparative studies may benefit from 

increased public datasets that have been developed as a result of recent initiatives in the area 

of transcriptomics. 

 

In the 1970s and 1980s, reverse transcriptase was used to convert cDNA into RNA 

transcripts in the silk moth [35], and in the 1990s, Sanger sequencing was used to sequence 

RNA transcripts as expressed sequence tags (ESTs), which are basically used to estimate the 

gene composition of an organism [36]. After random sequencing in an unbiased cDNA 

library, ESTs are clustered into groups of transcript sequences using sequence-clustering 

and/or assembly approaches. Next, the number of ESTs with unique identifiers for each 

cDNA library and/or sequence cluster is tallied to estimate the quantity of transcripts 

expressed in each tissue. This concept has also been used in the digital differential display 

(DDD) tool of the NCBI's UniGene database, which has been utilised in substantial cDNA 

research for several taxa, including plants. Later, northern blotting and quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) were utilised to quantify RNA 

transcripts. Since none of these methods addressed the complete transcriptome, the 

Sequencing-based Serial Analysis of Gene Expression (SAGE) was developed in 1995 [37]. 

More than 10 short specific tags (13–15 bp) are concatenated and cloned from each mRNA 

present in a sample to generate a SAGE library. The sequencing of selected clones from the 

SAGE library makes the efficient collection of transcript tag sequences feasible. To identify 

the genes corresponding to each SAGE tag, a dataset of genome sequences or a large 

collection of expressed sequence tags (ESTs) is required. Several versions of the fundamental 

protocol (MAGE, SADE, microSAGE, miniSAGE, longSAGE, superSAGE, deepSAGE, 5 ′ 

SAGE, etc.) have been developed to improve and expand the value of SAGE. 

 

Massive parallel signature sequencing is another sequencing-based technique 
(MPSS). MPSS uses a 17–20 bp signature sequence near to the 3' end to identify mRNA. 

Initially, each distinctive sequence is cloned onto microbeads. This approach guarantees that 

a microbead has just one kind of DNA sequence. For sequencing and measuring, the flow cell 

comprises an array of microbeads. The signature sequences (MPSS tags) of an MPSS dataset 

are evaluated, compared to all other signatures, and the number of signatures with similar 

sequences is counted. Accessible online at http://mpss.udel.edu are databases containing 

MPSS information on various plant species, including Arabidopsis, rice, grapes, and 

Magnaporthe grisea (rice blast fungus). In Arabidopsis, high-density TSS mapping was 

performed utilising the newly published CT-MPSS method for quantitative investigation of 

the 5 ′ end of transcripts coupled with the cap-trapper strategy for full-length cDNA cloning. 
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The data set of Arabidopsis CT-MPSS tags is accessible through the plant promoter database 

ppdb (http://www.ppdb.gene.nagoya-u.ac.jp), which provides rice and Arabidopsis promoter 

annotation. Many databases for plant transcriptome research are included in Table 3. 

 

Table 3: Different Databases for Plant Transcriptomic Study 

 

Database Link 

Ppdb  http://www.ppdb.gene.nagoya-u.ac.jp 

ArrayExpress https://www.ebi.ac.uk/arrayexpress/ 

ATTED II http://atted.jp/ 

Genevestigator https://www.genevestigator.com/gv/index.jsp 

Arabidopsis Gene Expression Database 

AREX 
http://www.arexdb.org/index.jsp 

RICEATLAS http://bioinformatics.med.yale.edu/riceatlas/ 

 

VIII. METABOLOMICS 

 

Metabolomics is the comprehensive and multidimensional study of metabolism that 

identifies metabolites by using a variety of analytical methods and bioinformation. 

Metabolomics is the study of metabolism. It is possible to compare the metabolomes of 

different plants, although this is considerably more difficult. Chemical-level phenotyping and 

diagnostic assessment is inferior to metabolomics since metabolomics are able to 

simultaneously examine a huge number of metabolites and quantitatively analyse each one of 

them. Researchers may get a better understanding of how cells react to changes in their 

internal and external environments by using comprehensive metabolic profile data sets. 

Genetic variants alter metabolic profiles, and chemical phenotypes may be utilised to identify 

genes involved in certain pathways. Recent years have seen several technological 

advancements in metabolomics equipment. Analyzing metabolomics data begins with the 

collection of metabolic fingerprints from various analytical methods. Some of the sample 

categorization methods used in conjunction with MS include gas chromatography (GC), high-

performance or ultra-performance liquid chromatography (LC), and capillary electrophoresis 

(CE). CEMS is particularly useful for biological component isolation and analysis because of 

its high sensitivity [38]. 

 

Data processing in metabolomics is essential to determining biological significance. 

Principal component analysis (PCA), hierarchical cluster analysis (HCA), and self-

organization mapping (SOM) are often used to classify samples and/or metabolites. Gene 

expression profiles of certain genes encoding enzymes engaged in certain pathways are used 
in combination with the visualisation of metabolic profile on metabolic maps. The study of 

plants' metabolic processes is a difficult one, yet it is necessary if we are to fully appreciate 

the growth and development of plants. It is possible to get a better knowledge of plant cell 

systems via the use of metabolomics. Our understanding of plant cell processes via 

metabolomics may help us develop molecular breeding to increase plant productivity and 

functionality in areas such as stress tolerance, pharmaceutical manufacturing, functional 

meals and biomaterial production. 

 

 

http://www.ppdb.gene.nagoya-u.ac.jp/
https://www.ebi.ac.uk/arrayexpress/
http://atted.jp/
https://www.genevestigator.com/gv/index.jsp
http://www.arexdb.org/index.jsp
http://bioinformatics.med.yale.edu/riceatlas/
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IX. SYSTEMS BIOLOGY 

 

Several plant species have produced vast amounts of data from sources like the 

genome, transcriptome, proteome, metabolome, and epigenome in recent years. It was not 

able to fully comprehend the molecular foundations of complex traits and biological networks 

due to their independent study. A systems biology technique including the integration of 

diverse omics data, modelling, and prediction of cellular processes is necessary to 

comprehend the flow of biological information underlying complex characteristics. This 

technique permits a comprehensive understanding of the dynamic system in which many 

levels of biological structure interact with the external environment to exhibit phenotypic. 

The fundamental objectives of crop biology research are the maximisation of production and 

the minimization of losses resulting from a range of stress situations. The solution is also 

complicated due to the complexity of the subject. The integration of transcriptomics, 

proteomics, and metabolomics considerably simplifies the discovery and investigation of 

complex plant regulatory networks. Consequently, systems biology emerges as an intriguing 

multidisciplinary topic of study that combines large amounts of omics data with well-

developed mathematical models to test hypotheses and forecast biological systems. The 

processing, scaling, and analysis of multidimensional datasets in order to extract relevant 

biological discoveries remains the major barrier to omics data integration. For the integration 

and analysis of datasets produced by several platforms, it is important to gather, prepare, 

standardise, and integrate data into a single matrix. Then, clusters of genes, proteins, and 

metabolites with similar structures were identified. Multiple systems exist to aggregate 

multidimensional omics data, such as mixOmics, OnPLS modelling, Integromics, sparse 

Multi-Block Partial Least Squares, and COVAIN. These methods provide the study of plant 

metabolism and the knowledge of the molecular processes behind agronomically significant 

plant phenotypes. To identify light-specific metabolic and regulatory markers in rice [40], 

transcriptomics, metabolomics, and genome-scale computational modelling were used. 

Transcriptomics, proteomics, and metabolomics data were evaluated in 2020 to supplement 

information that had previously provided insight on the processes behind the fertility change 

in a thermosensitive male sterile line of pigeon peas for use in two-line hybrid breeding [41]. 

Given that phenotypic variance is not just determined by DNA but also by biological 

regulation in response to the environment, multiomics data are widely used for phenotypic 

prediction. Reconstructing pathways and networks utilising transcriptome, proteome, and 

metabolome data may aid in the understanding of these regulatory networks and their 

functional interaction with biological entities. The right normalisation of omics data yields a 

similarity matrix, which is then converted into an adjacency matrix and, lastly, a directed 

graph or network abstraction. Global gene co-expression networks are a potential tool for 

exploring and predicting specialised metabolite pathways with a high throughput. The last 
phase in network biology is dynamic modelling, which provides an exhaustive understanding 

of how gene expression influences protein activity in plants in response to environmental 

stimuli. By bridging the gap between genotype and phenotype and gaining an understanding 

of the complexity of multiple traits, systems biology offers tremendous potential for 

sustainable agriculture. It is useful for modelling and evaluating multigenic traits linked with 

agricultural production, such as plant architecture, nitrogen use efficiency, water use 

efficiency, and resistance to biotic and abiotic stress. Due to recent developments in high-

throughput experimental analysis and computer capacity, it is now possible to integrate many 

fields to explain any complicated characteristic. Using well-designed mathematical models 
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based on time series data, one may develop a systems biology-based breeding strategy by 

finding possible candidate genes for use in breeding programmes. 

 

X. MACHINE LEARNING 

 

Machine Learning (ML) is a subfield of computer science that uses statistical and 

mathematical techniques to train models without direct programming [42]. ML develops a 

variety of algorithms that learn from sample data and train the predictive model. Samuel [43]. 

ML is the study of programming computers to learn from data. By simplifying functional 

annotation of genomes and allowing real-time, high-throughput phenotyping of agronomic 

traits in the greenhouse and field, machine learning helps the discovery of agronomically 

valuable economic regions. ML is a technique to data analysis that enables computers to learn 

patterns over time. ML models for GS have the benefit of learning the pattern directly from 

the data, enabling them to account for all variations, interactions, and environmental factors. 

For huge, heterogeneous, and formless datasets, such as those produced by optical imaging or 

sequencing, ML may provide significant benefits over traditional analytic approaches. Crop 

breeders may use machine learning to rapidly phenotype plants and to examine massive 

databases for patterns, such as DNA sequence-to-characteristic connections. Machine 

learning algorithms may employ high-throughput phenotyping and genomic data to automate 

elements of the gene discovery process that are presently difficult to automate, such as 

genome labelling and picture interpretation. Figure 4 depicts the fundamental picture 

interpretation procedure. Although several research have used machine learning (ML) for GS, 

the subject of deep learning (DL) has yet to be thoroughly investigated.  

 

  
 

Figure 4: Basic Workflow of Image Interpretation 

 

1. High throughput crop phenotyping: It is critical for the study of relationships and crop 

improvement that plant phenotyping be used to evaluate functional and structural 

characteristics at the cellular and organism levels. Plant phenotypes are becoming more 

important in the interpretation of genetic data as genomics research and sequencing 

technology improve at a rapid pace. Conventional phenotyping is often a bottleneck that 

limits the number of features and crops that may be assessed since it is subjective, error-
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prone, labour expensive and time consuming. High-throughput imaging and automatic 

sensors, along with machine learning, have enabled robotic high-throughput phenotyping 

to be established, overcoming the limitations of conventional human-based phenotyping 

by enabling the rapid generation of phenotypical features and features across large 

populations [2]. [2]. Image or sensor detection, phenotypic data classification, feature 

quantification, and forecasting based on specific models or algorithms are four key 

features of high-throughput phenotyping (Figure 3). High-throughput phenotyping was 

evaluated in the field by Jose Luis Araus and Jill E. Cairns, respectively. An unsupervised 

identification technique was used to measure, appraise, and categorise the severity of 

Glycine max foliar stressors, including bacterial and fungal infections, as well as 

nutritional deficiency, according to a recent study [44]. Machine learning requires large 

datasets for training and model building. Non-significant and problematic predictions 

may be made with a small training set but it is costly and time-consuming to collect large 

datasets when crops only get measured once a year. A very limited number of research 

institutes and organisations have the ability to do ML-based phenotyping with high 

throughput. It will be important to substantially reduce acquisition and operational costs 

in order to make ML-based phenotyping widely applicable on future farming. 

 

2. Machine learning in crop genomics research: Several applications of machine learning 

include genome assembly, recurrent inference of gene regulatory networks, and 

identification of genuine Single Nucleotide Polymorphisms (SNPs) in polyploid plants. 

Optimizing polyploid genomic assemblies with complicated redundancy may be achieved 

via the application of machine learning. Ma et al. [45] provide a detailed review of 

machine learning algorithms and associated open-source R tools relevant for plant data 

analysis. A comprehensive genome assembly and annotation provides the basis for 

monitoring genetic changes within a plant species and for understanding the shape and 

function of plant genes, both of which are essential steps in the process of agricultural 

trait discovery. For interactive inference of gene regulatory networks, ML-based methods 

that can incorporate diverse types of regulatory signals from multiple data sources have 

gained popularity. Consequently, inferring regulatory element-gene links is a potential 

field for uncovering unexplored crop improvement opportunities. 

 

GWAS is currently one of the most often utilised approaches for detecting MTA 

in plant species. Traditional GWASs are excellent for identifying SNP markers with 

considerable effects on complex traits, but they may ignore a variety of interconnected 

biological processes and mechanisms that influence the phenotypic of complex traits 

simultaneously. Variable significance values may be used to identify high-resolution 

variant-trait associations in ML-mediated GWASs. The implementation of this important 
genetic strategy in practical plant-breeding programmes may be enhanced by using 

complicated mathematical approaches such as machine learning (ML) algorithms. (ML-

based GWAS for Identifying QTL Underlying Soybean Yield and Its Components) 

 

3. Deep learning: In the genomics era, multifaceted molecular phenotypes involved in 

information relay, namely the structure, modification, function, and evolution of elements 

in DNA, RNA, and protein, along with their interactions, are beginning to be revealed at 

scale and even at lower cost, allowing fine-grained evaluation of information transfer and 

transformation along Francis Crick's 1957 "central dogma" [46]. In data mining, it has 

been shown that deep learning models are very effective in predicting molecular 
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phenotypes from upstream molecular phenotypes or directly from genomic DNA 

sequences. 

 

Deep learning is a subfield of machine learning that focuses on densely connected, 

artificial neural network-trained networks. Artificial Neural Networks (ANN) are well-

known strategies for dealing with machine learning issues that have been studied since 

the 1940s and are based on the nervous systems of animals [45]. A single artificial neural 

network (ANN) consists of several hidden layers and one input. Deep Neural Network 

(DNN) is a new machine learning discipline and a type of artificial neural network. DNNs 

differ from ANNs in that they contain many more hidden layers; hence, the quantity of 

data needed increases as the DNN's predictive ability increases. In genomics, 

transcriptomics, proteomics, metabolomics, and systems biology, deep learning has been 

used to address complicated biological challenges. 

 

Deep learning, which utilises a high number of neurons and models such as CNN, 

RNN, and MLP, is applicable to GS [47]. The input layer of these models consists of 

marker data, whereas the output layer contains responses with several hidden layers. The 

optimal model performance is determined by hyperparameter selection, which is a time-

consuming and computationally costly process. The ability of deep learning models to 

generate ab initio forecasts on unique, previously unknown sequence data (data not within 

the training set) is perhaps the most notable characteristic, which has numerous important 

ramifications, whereas the number of high-capacity and trainable characteristics is the 

most advantageous. Despite the huge number of genetic variations in a real population, 

deep learning models can only be trained on a small subset of them to predict the effects 

of all other variants (i.e., the whole mutation space). Knowledge may move from well-

studied species (such as Arabidopsis) to closely related but less well-studied species (such 

as Arabidopsis) (such as other species in the Brassicaceae). When many variants within a 

crucial coding region (such as a QTL for a certain trait) are in tight linkage 

disequilibrium, we may utilise in silico mutagenesis to transfer them from one haplotype 

to the next, therefore prioritising causative variants. Such a break in linkage 

disequilibrium would be labor-intensive and difficult to scale up in wet lab research, and 

practically impossible in nature. Using a large collection of deep learning models, each 

targeting a different molecular phenotype, or a multi-task learning model addressing 

multiple molecular phenotypes simultaneously, it is possible to predict not only the 

causative mutation underlying a QTL, but also its likely molecular mechanism. 

Importantly, while using the breeding-by-editing approach, we are no longer restricted to 

the known beneficial natural variations. Instead, we have unrestricted flexibility to design 

different beneficial alleles based on the 'knowledge' of the biological processes of interest 
possessed by our deep learning algorithms. Rodrguez-Leal et al. [48] altered the promoter 

of the tomato CLAVATA3 gene (SlCLV3) to improve fruit size and inflorescence 

branching. Utilizing generative models in synthetic biology is another way for producing 

genetic components with defined functionality. Despite the growing interest in generative 

models like variational autoencoders and generative adversarial networks, their 

applications in synthetic biology remain restricted. Using GANs to construct synthetic 

DNA sequences encoding for antimicrobial peptides is one example. 
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XI. CONCLUSION 

 

It is crucial to adapt plant breeding curriculum to the digital age. Researchers and 

breeders must find a balance between machine-generated suggestions and farmer desires. 

Developing information for plant breeding is ineffective if researchers lack the capacity to 

use that knowledge. Information–action strategies, which integrate additional abilities and 

viewpoints to facilitate the development of knowledge for enhanced breeding and smarter 

farming, are necessary. Agriculture will depend on Next-Generation AI techniques to make 

judgments and recommendations based on massive data that is indicative of the environment 

and the systems biology of a plant. Breeding will be able to perform at greater levels than 

ever before because to Next-Gen AI's capacity to utilise diverse and complex data in an 

effective manner. The use of ML and DL has led to significant phenomics and genomics 

findings. As promising as these discoveries are, they are not yet adequate to contemplate 

depending only on technology to accelerate the breeding process, which remains a difficult, 

time-consuming, and costly endeavour. Despite gains in the efficiency of data generation, the 

plant research community still confronts difficulties with translational procedures. In 

isolation, genomes, epigenomics, transcriptomics, proteomics, metabolomics, and phenomics 

continue to be largely distinct fields of study that provide scant insight. To expedite plant 

development, it is necessary to concurrently use and integrate multi-omics data. Utilizing 

enormous quantities of genetic data from a variety of sources and formats for crop 

development is fraught with considerable difficulties in agriculture. To address these 

problems, novel breeding tactics and bioinformatics technology must be used to turn genetic 

data into advances in agricultural production and yield stability. Using meta-QTL analysis, 

GWAS, and genetic screens, researchers may uncover significant gene-trait connections more 

quickly. While genome editing is an effective method for rapidly introducing beneficial 

mutations into champion crops, GS enhances selection efficiency without needing knowledge 

of genetic drivers. ML algorithms may employ high-throughput phenotyping and genomic 

data to automate difficult-to-automate aspects of the gene discovery process, such as genome 

annotation and image interpretation. Combining new technologies and methods will allow 

future plant breeding to achieve the crop growth rate necessary for food security. 

 

LIST OF ABBREVIATIONS 

 

BAC Bacterial Artificial Chromosomes  

GWAS Genome-Wide Association Studies 

QTL Quantitative Trait Loci 

DNA Deoxyribonucleic Acid 

RNA Ribonucleic Acid 
ML Machine Learning 

GS Genomic Selection 

DL Deep Learning 

NGS Next-Generation Sequencing 

EST Expressed Sequence Tag 

MTA Marker-Trait Associations 

LD Linkage Disequilibrium 

GBS Genomic Based Selection 

CREs Cis-Regulatory Elements 

MS Mass Spectrometry 
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cDNA Complementary DNA 

SAGE Serial Analysis of Gene Expression 

PAGE polyacrylamide gel electrophoresis 

SNP Single Nucleotide Polymorphism 

DNN Deep Neural Network 

ANN Artificial Neural Networks 

CNN Convolutional Neural Networks 
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