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STUDY OF BLAST WAVE PROBLEM IN A NON-

IDEAL DUSTY GAS 
 

Abstract 

 

 We develop a generalized analytical 

method for obtaining an exact solution to 

adiabatic blast wave problems for one 

dimensional non-ideal gas flow with dust 

particles.  The total energy carried by a shock 

wave in a non-ideal dusty gas medium is 

determined using an assumption that density in 

front of the shock wave depends on a power of 

the distance from the source of explosion. 
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I. INTRODUCTION 

 

In dusty gases small solid particles are mixed with gas. The study of blast wave 

problems for non-ideal dusty gases has several applications in industrial processes as well as 

geophysical flows. Many natural phenomena are characterized by very small solid particle 

fractions relative to gas particles, such as volcanic eruptions and rocket exhaust. When a 

mixture of dust and gas is moving at very high speeds, the mixture behaves like a pseudo-

fluid. 

 

If a large amount of energy is released from the core, then an abrupt disturbance in the 

medium is accompanied by a compressive wave called a blast wave. A system of quasilinear 

hyperbolic PDEs may be formulated mathematically to model such phenomena. To find the 

exact solution of the system of equations governing the blast wave problem is almost 

impossible. 

 

In past many attempts have been made to find the analytical/approximate analytical 

solution of governing system of the blast wave problem using physically relevant 

assumptions. Taylor [1, 2] estimated the relationship between the energy input of an 

extremely powerful explosion and the growth of the resulting fireball and a detailed analysis 

of Taylor work is presented by Sedov [3]. Rogers [4] has been made a complete investigation 

for the adiabatic gas of spherically symmetrical flows when undisturbed density is varies as a 

power of the radius of strong shock wave. Sachdev et al. [5] solved the compressible flow 

equations in spherically symmetric coordinate system for ordinary gas. Murata [6] introduced 

a novel approach to address the challenge of solving the blast wave problem analytically. 

Their innovative method is based on an assumption on the density ahead of shock. This 

pioneering work marked a significant advancement in the field. Building upon the Murata’s 

foundational research, Singh et al. [7] extended the results. Specifically, they adapted 

Murata’s ideas to the context of non-ideal gases, broadening the scope of the original work. 

 

The foundational effort in the field of investigating shock wave in dusty gas was 

initiated by Pai [8], Miura and Glass [9], and Chandha and Jena [10]. Diaz and Rigby [11] 

have made significant contributions to the field of blast wave kinetics. His work has been 

instrumental in advancing our understanding of the fundamental principles governing the 

behavior of blast wave. Their research has encompassed various aspects of blast wave 

kinetics, including the study of shock wave propagation, the dynamics of high energy 

explosions, and the characterization of blast wave profiles. Bira and Shekhar [12] have 

obtained the exact solution to the problem of propagation of shock wave in isentropic 

magnetogasdynamics using symmetry group analysis. Sharma and Shyam [13] conducted a 

comprehensive investigation into the intricate characteristics of weak shock waves within a 

radiating gas medium. Their research was indicated to the systematic examination of both the 

growth and decay patterns exhibited by these shock waves. Sharma and Arora [14] 

investigated the behavior of one dimensional spherical strong shock wave in non-ideal 

radiative magnetogasdynamics regime by using the method of Lie group analysis  

 

As blast wave theory is used for a wide range of applications, a continuous 

improvement in the field is desirable. Since blast waves contain small dust particles and gas, 

therefore studying blast wave problems for dusty non-ideal gas is more realistic than studying 

ordinary gas dynamics. In this Chapter, we endeavor to find a closed-form solution for the 
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equations governing blast wave motion in non-ideal dusty gases. We make an assumption 

that the density ahead of the shock front varies with distance from the source. Additionally, in 

the last section, we introduce a formula for calculating the total energy carried by blast waves 

in non-ideal dusty gas mediums that deviate from ideal conditions 

       

II. FUNDAMENTAL EQUATIONS 

 

 Here it is assumed that the dust particles are small solid sphere of identical mass sm , 

radius sr and specific heat sc . Consider an element of non- ideal dusty gas with mass 

g sM M M   and volume
g sV V V  , where the subscripts g and s  stand for non - ideal gas 

and dust particles respectively unless it is specified. The volume of the solid particles in the 

mixture may be given as 

s s sV n V , where 34

3
s sr  is the volume of solid particles in non - ideal dusty gas and sn is 

the number of solid dust particles per unit volume of non – ideal dusty gas in an element. The 

mass of solid dust particles in the non - ideal dusty gas may be given as 

s s sM m n V .  
  

 Also, the species density of solid particles is s s
s

s s

M m

V



  . Also, solid particles are 

assumed to be spherical with same mass and same radius. 

  

 An adiabatic non-ideal dusty gas flow can be described by the governing equations 

given by (Miura and Glass [9], and Chandha and Jena [10]) 

 

0
m

t x x x

  
  

   
    

                                                                                                  

 (1) 

 

1
0

p

t x x

 




  
  

                                                                                                               

 (2) 

 

2 0
p p m

u c
t x x x


 

   
    

                                                                                               

 (3) 

 

 where 0   represents density,    represents velocity and p  represents pressure of 

the non-ideal dusty gas whereas 𝑡 > 0 𝑎𝑛𝑑 𝑥 ∈ ℝ are stand for time and space coordinate 

axes. In non-ideal dusty gas, we can define the velocity of sound as 

      
1/2

2 2

2 1 2/ 1c p          denotes the speed of sound in the non-ideal dusty 

gas with 1 b   , 2 b  ,  1 pb b k  , where b  is denoting the excluded volume of Van 

der Waals. Here, mass fraction of solid particles in the mixture is denoted by pk and defined 

as / Mp sk M , where sM  is the mass of solid particles and  M
 
is the total mass of the 

considered gas with dust particles. The parameter m takes on different values to represent 
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district flow configurations: 0m   corresponds to planar flow, 1m  indicates cylindrical 

symmetrical flow and 2m   signifies spherically symmetrical flow. 

 

A non-ideal dusty gas at constant pressure has a specific heat equal to 

 1tp p p p sc k c k c   , where 
pc indicates the specific heats of gas at constant pressure and 

sc  

stands for the specific heats of solid particles. 

              

 If tvc  stands for the specific heats of the mixture, the ratio of specific heats is denoted 

𝛤 by and defined as    

  11 (1 )
tp

tv

c

c
        , 

 

 where / (1 )p pk k   , /s pc c  , /p vc c  , vc  specific heat of gas at constant 

volume. Equation of state for adiabatic non-ideal dusty gas flow is given by [14],

 
  

1

1 1

pk
p RT

Z b







 
, in which Z  is the volume fraction of solid particle in the mixture. 

The volume fraction Z  and mass fraction 
pk are interrelated through the equation 

 1

p

p p

k
Z

k k


 
 ,  where /s   ,  signifies the density of the mixture in undisturbed 

region. Since the ratio of the density of solid particles in undisturbed region to the total 

density of the mixture is taken as constant. Therefore, in undisturbed region   is constant.  

 

III.  BOUNDARY CONDITIONS   

 

 The expression for the propagation velocity of the shock front in terms of R (the 

position of the shock front from the center of explosion) and t  (time) is given as  

dR
s

dt


                                                                                                                                  
 (4) 

 

 If ahead of shock front the undisturbed volume fraction of solid particles and density 

of the mixture are 0Z , 0 and pressure, density, velocity just behind the shock are p ,  , . 

Then we have the following Rankine-Huguenot condition across the shock front (Sharma and 

Arora [14]). 

 

 
0

0 0

1
,

1 2 2b Z
 



 


   
                                                                                                    

 (5) 

 

0 02(1 )
,

1

b Z
s




 


                                                                                                                 
 (6) 

 

 0 0 2
0

2 1

1

b Z
p s




 


                                                                                                            
 (7) 
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 In the present technique of solving the shock wave problem, the undisturbed density 

0   varies in accordance with the power law of the radius of the shock front R  after the 

explosion, given as 

0 aR 
                                                                                                                               

 (8) 

 

Here, a  and  are regarded as constants. We will determine   later.  

 

IV. PRECISE SOLUTION FOR CONTRACTED MODEL     

 

 The R-H conditions (5) – (7) yields the following expression for the pressure behind 

the shock front 

 

 
 

0 0 2

0 0

1 2 2

2 1

b Z
p

b Z






  


 
                                                                                                 

 (9) 

 

By means of equation (8), equations (2) and (3), can be express as 
2

1 2 0
t x x x

    
  



    
    

    
                                                                                   (10) 

 

2 0
m

t x x x

  
   

   
    

   
                                                                                         (11)     

 

Where 1  and 2  are constants given as 

 
 

0 0

1

0 0

1 2 2
,

2 1

b Z

b Z





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

 
 

 

        

        

2 2

0 0 0 0 1 0 2 0

2 2 2

0 0 0 0 1 0 2 0

1 2 2 1 1 2 2 1 2 1

2 1 2 2 1 2 2 1 1

b Z b Z

b Z b Z

     


     

            
 

           
 

. 

 

By using equation (10) and equation (11) and integrating the result we have got  

( ) mf t x                                                                                                                         (12) 

 

The functions ( )f t  are only functions of time, and   and   are constants given as 

 1 2 22 / ,       

2 1/   . 

 

By equation (12) and (1), we have 

 
 1 1

1 0
m df

t x x f dt

  
 



 
    

                                                                            

 (13) 

 

 



Trends in Contemporary Mathematics 

e-ISBN: 978-93-6252-416-4   

IIP Series, Volume 3, Book 4, Part 1, Chapter 4  

STUDY OF BLAST WAVE PROBLEM IN A NON-IDEAL DUSTY GAS 

 

   Copyright © 2024 Authors                                                                                                                       Page | 50 

Solving equations (11) and (13), we have 

x df

f dt
  

                                                                                                                       

 (14) 

 

In which  is a constant as follows  

   2 2

1
.

1 1m


   


   
                                                                                                 (15)     

 

Also, 

 0( )f t f t 
                                                                                                                      

 (16) 

 

here, 0f  represents an arbitrary constant, while constant τ is provided as 

    1 1 1m




   


   
. 

 

 Utilizing the R-H condition (6), we can deduce the analytical expression for the shock 

front radius in the following manner:  

 

0 0

1

2(1 )
( )

b Z
R t t






 


                                                                                                           (17) 

 

Under the R-H condition (5),   has the value given as 

  
  

 
0 02 1 1

1

n b Z




  



. 

 

Hence, the solution to the problem of a strong shock wave is provided as follows 

0

mf t x   

 


 

  

 , x t  , 
 

   
   0 0 2 2

02

0 0

1 2 2 1

2 1

m
b Z

p f x t
b Z

   





 

   



  


 
 .           (18)   

 

 In a non-ideal dusty gas, at any given moment, we can compute the total energy   (the 

combined kinetic and thermal energy) within the blast wave by evaluating the density, 

velocity, and pressure parameters behind the shock front as follows:       

          

  
2

0

1 11
4

2 1

R

m
Z b

E p x dx


 
   

  
  

 ,                                                                         (19) 
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    
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Where, 
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V. RESULTS AND DISCUSSION  
 

 The effects of dust particles and non-idealness parameters on the radius of blast wave 

are shown in figs. 1- 5. 

 
 

Figure 1: Behavior of the radius of the Blast Wave for 2m  . 
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Figure 2: Behavior of the radius of the Blast Wave for 1m  . 

 
 

Figure 3: Behavior of the radius of the Blast Wave for 0m  . 

 

 Figures 1 to 3 show how dust particle density affects blast wave diameter when 

flowing through planar, cylindrically symmetric and spherically symmetric flows. In the 

computations, the constants appear as follows: 

 

0.5  and 0.1pK  , and 1, 10, 100.  

 

 It is observed that the radius of blast waves increases with an increase in dust particle 

density whereas the radius of blast waves decreases with an increase in non-idealness 

parameter. Based on the data presented in Figure 2 and Figure 3, it is evident that the way the 

radius of blast wave varies in planar and cylindrically symmetric flows follows a trend that is 

quite similar to that observed in case of symmetrically symmetric flow. However, it is 

important to note that in the planar flow scenario, the rate of this radius variation is notably 
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slower when compared to both cylindrically symmetric and spherically symmetric flows. 

Additionally, when we specifically compare the rate of radius variation between cylindrically 

symmetric and spherically symmetric flows, it becomes apparent that the rate of variation in 

the cylindrically symmetric flow is also reduced in comparison to the spherically symmetric 

flow. 

 

            The impact of mass fraction and specific heat of dust particles within the mixture on 

the radius of the blast wave under the conditions of 100 , 0.5  and 100 , 1.0pK   in 

spherically symmetric flows are presented in Figures 4 and 5, respectively. It is noteworthy 

that an increase in the mass fraction of solid particles has a relatively minor effect on the 

volume fraction of solid particles. However, it exerts a substantial influence on the parameter 

denoted as Γ Consequently, an increment in both the mass and specific heat of solid particles 

leads to a notable enlargement of the blast wave radius. 

 
 

Figure 4: Behavior of the radius of the Blast Wave for 2.m 

  
 

Figure 5: Behavior of the radius of the Blast Wave for 2m  . 
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Figure 6: Pressure profile for varying pk with 0.02b  , 0.5   and 100 . 

 
 

 Figure 7: Pressure profile for varying  with 0.02b  , 0.5pk   and 100 . 

 
  

        Figure 8: Pressure profile for varying with 0.02b  , 0.5   and 0.1pk  . 
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Figure 9: Pressure profile for varying b with 0.1pk  , 0.5   and 100 . 

 
  

Figure 10: Velocity profile for varying pk with 0.02b  , 0.5   and 100 . 

 
 

           Figure 11: Velocity profile for varying  with 0.02b  , 0.1pk   and 100 . 
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 Figure 12: Velocity profile for varying b with 0.1pk  , 0.5   and 100 . 

 
  

Figure 13: Velocity profile for varying with 0.02b  , 0.5   and 0.1pk  . 

 
 

Figure 14: Density profile for varying pk with 0.02b  , 0.5   and 100 . 
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Figure 15: Density profile for varying  with 0.02b  , 0.5pk   and 100 . 

 
 

Figure 16: Density profile for varying with 0.02b  , 0.5   and 0.1pk  . 

 
 

        Figure 17: Density profile for varying b with 0.1pk  , 0.5   and 100 . 
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The influence of various factors, including dust particles and non-ideal parameters, on 

spherically symmetric flow fields is depicted in Figures 6 through 17. Upon closer 

examination, it becomes evident that an increase in any of the following parameters: mass 

concentration of dust particles, specific heat of solid particles, or species density of solid 

particles, leads to a corresponding increase in the pressure, velocity, and density of the non-

ideal dusty gas. In contrast, the impact of an increase in the van der Waals excluded volume 

is noteworthy, as it radius in a reduction in the pressure, velocity and density of the non-ideal 

dusty gas. 

 
 

Figure 18: Behavior of energy carried by the blast wave for 2m  . 

 
 

Figure 19: Behavior of energy carried by the blast wave for 2m  . 

 

Figure 18 illustrates the impact of two key factors on the energy carried by a blast 

wave in spherically symmetric flows, the volume fraction of dust particles in the mixture and 

the non-idealness parameter of the gas. The computations utilize specific constant values, 

which are provided as follows: 
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1.0  , 0.1fM  , 0.02b   and Volume fraction 0.0, 0.01, 0.02, 0.03,0.04  and

0 0, 1, 2, 3, 4  . 

 

 In this context, we observe that an increase in the volume fraction of dust particles in 

the mixture and the non-idealness parameter of gas leads to a reduction in the energy of blast 

wave within a non-ideal dusty gas.  

 

 Figure 19 illustrates how the mass fraction of dust particles in the gas affects the 

energy of blast wave in spherically symmetric flows. The specific constant values used in the 

calculations are as follows: 

 

1.0  , 0.01 , 0.02b  and mass fraction 0.1, 0.2, 0.3, 0.3,0.4fM  .   

 

It is noted that the increase in energy carried by the blast wave with a higher dust 

particle mass fraction can be attributed to several factors. First, the presence of solid particles 

introduces additional mass to the gas mixture, which, when subjected to the sudden 

compression and expansion associated with a blast wave, can contribute to an increase in the 

over all kinetic energy of the system. Since dust particles have a similar impact on the energy 

carried by a blast wave in both planar and cylindrically symmetrical flows, specific details 

are omitted. 

 

VI.  CONCLUSION 

 

 According to our analysis, the solution of the blast wave problem for an adiabatic 

non-ideal dusty gas given by equation (18) corresponds to that proposed by Murata [6] and 

Singh et al.
 
[15] for 0b     and to that proposed by Singh et al.

 
[7,16], if 0  , 0b  . 

This paper presents a new solution to the blast wave problem for non-ideal dusty gas. We 

also notice that the total energy given by equation (20) is not constant as in Murata [6].  
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