BS-ALGEBRAS AND ITS FUZZY IDEAL

Abstract

In this research article, a generalization of B-Algebras called BS-Algebras is introduced. We include fuzzy ideal in BS-Algebras. Some new characterizations were given.

Keywords: BS-Algebras, Fuzzy ideal, Homomorphism, Cartesian Product.

Author

a P Ayesha Parveen

Assistant Professor(T) of Mathematics Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu, India aabidaaasima@gmail.com

I. INTRODUCTION

Fuzzy subsets was introduced by L.A.Zadeh[4], many research people investigated the generalization of the notion of fuzzy subset.In 1966, Imai and Iseki established two classes of abstract algebras, they are BCK-algebras and BCI-algebras[2]. J.Neggers and H.S. Kim brought the notion of B-algebras[3] which is a generalisation of BCK-algebras. As an extension, the author newly initiate the notion of BS-algebras, as a generalisation of B-algebras. In this article, the author study the concepts of BS-Algebras with its examples. The author apply the concept of fuzzy ideal in BS-Algebras and find some of their basic properties and explore some algebraic nature of fuzzy ideal in BS-algebras. The homomorphic behaviour of fuzzy ideal of BS-algebras have been investigated. Finally, Cartesian product is also applied in fuzzy ideal of BS-algebras.

II. PRELIMINARIES

Definition 2.1: [3] A B-algebra $\mathcal{B}\neq$ with a constant 0 and a binary operation * satisfying the following conditions

- 1. $\alpha * \alpha = 0$
- 2. $\alpha * 0 = \alpha$
- 3. $(\alpha * \beta) * \gamma = \alpha * (\gamma * (0 * \beta))$ for all $\alpha, \beta, \gamma \in \mathcal{B}$

Definition 2.2: If φ_1 and φ_2 be any two fuzzy sets of \mathcal{B} . Then its Intersection is defined by $\varphi_1 \cap \varphi_2 = min\{\varphi_1(\alpha), \varphi_2(\alpha)\}$ for all $\alpha \in \mathcal{B}$

Definition 2.3: Let $A = \{ \boldsymbol{\varphi}_1(\alpha), \ \alpha \in \boldsymbol{\mathcal{B}} \}$ and $B = \{ \boldsymbol{\varphi}_2(\alpha), \ \alpha \in \boldsymbol{\mathcal{B}} \}$ be any two fuzzy sets on $\boldsymbol{\mathcal{B}}$. Then the cartesian product $A \times B = \{ \boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2(\alpha, \beta) : \alpha, \beta \in \boldsymbol{\mathcal{B}} \}$ which is defined by $(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha, \beta) = \min \{ \boldsymbol{\varphi}_1(\alpha), \ \boldsymbol{\varphi}_2(\beta) \}$ where $\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2 : \boldsymbol{\mathcal{B}} \times \boldsymbol{\mathcal{B}} \to [0, 1]$ for all $\alpha, \beta \in \boldsymbol{\mathcal{B}}$.

Definition 2.4: [1] Let φ be a fuzzy set \mathcal{B} is called the doubt fuzzy bi-idealof \mathcal{B} if 1. $\varphi(1) \leq \varphi(\alpha)$

2. $\varphi(\beta * \gamma) \leq max\{\varphi(\alpha), \varphi(\alpha * (\beta * \gamma))\}\$ for all $\alpha, \beta, \gamma \in \mathcal{B}$

III.BS-ALGEBRAS (**3**)

Definition 3.1: A $\mathcal{B}\neq\phi$ with a constant 1 and a binary operation * is called a BS-Algebras which satisfies the conditions of the following

- 1. $\alpha * \alpha = 1$
- 2. $\alpha * 1 = \alpha$
- 3. $1 * \alpha = \alpha$
- 4. $(\alpha * \beta) * \gamma = \alpha * (\gamma * (1 * \beta))$ for all $\alpha, \beta, \gamma \in \mathcal{B}$

A binary relation \leq on \mathcal{B} can be defined by $\alpha \leq \beta$ iff $\alpha * \beta = 1$

Example 3.2

1. A set $\mathcal{B} = \{1, a, b, c\}$ which satisfies the table below

*	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
С	с	b	a	1

Then $(\mathcal{B}, *, 1)$ is a BS-algebra.

2. A set $\mathcal{B} = \{1, a, b\}$ which satisfies the table below

*	1	a	b
1	1	a	b
a	a	1	a
b	b	a	1

Then $(\mathcal{B}, *, 1)$ is a BS-algebra.

3. A set $\mathcal{B} = \{1, a, b, c, d, e\}$ which satisfies the table below

*	1	a	b	c	d	e
1	1	a	b	c	d	e
a	a	1	b	d	e	c
b	b	a	1	e	c	d
С	c	d	e	1	b	a
d	d	e	c	a	1	b
e	e	c	d	b	a	1

If we put $\beta = \alpha$ in $(\alpha * \beta) * \gamma = \alpha * (\gamma * (1 * \beta))$, then we have $(\alpha * \alpha) * \gamma = \alpha * (\gamma * (1 * \alpha)) \rightarrow (I)$

$$\Rightarrow 1 * \gamma = \alpha * (\gamma * (1 * \alpha))$$

If we put $\gamma = \text{ in (I)}$ then we get $1 * \alpha = \alpha * (\alpha * (1 * \alpha)) \rightarrow (II)$ Using (i) and (I) and $\gamma = 1$ it follows that

$$1 = \alpha * (1 * (1 * \alpha)), \rightarrow (III)$$

We see that the four conditions (i),(ii),(iii) and (iv) are independent.

4. A set $\mathcal{B} = \{1, a, b\}$ which satisfies the table below

*	1	a	b
1	1	a	1
a	a	1	a
b	1	a	1

Then the conditions (i) and (iv) hold, but (ii) and (iii) does not hold since $b * 1 = 1 \neq b$

5. The set $\mathcal{B} = \{0, 1, 2\}$ which satisfies the table below

*	1	a	b
1	1	a	b
a	a	a	a
b	b	a	b

The axioms (ii), (iii) and (iv) satisfies

but it does not hold (i) since $a * a = a \neq 1$ and $b * b = b \neq 1$

6. Let $\mathcal{B} = \{1, a, b, c\}$ be a set which satisfies the table below

*	1	a	b	c
1	1	a	b	c
a	a	1	1	1
b	b	1	1	a
С	c	1	1	1

Then $(\mathcal{B}, *, 1)$ satisfies the conditions (i), (ii) and (iii) but it does not hold (iv) since $(b * c) * 1 = a \neq b = b * (1 * (1 * c))$

Theorem 3.3: If $(\mathfrak{B}, *, 1)$ is a BS-algebras, then prove that $\beta * \gamma = \beta * (1 * (1 * \gamma))$ for all $\beta, \gamma \in \mathfrak{B}$

Proof: This comes from the condition $\alpha * 1 = \alpha$ and $(\alpha * \beta) * \gamma = \alpha * (\gamma * (1 * \beta))$ Now, $\beta * \gamma = (\beta * \gamma) * 1$ (by (ii)) $= \beta * (1 * (1 * \gamma))$ (by (iv))

Theorem 3.4: If $(\mathfrak{B}, *, 1)$ is a BS-algebra, then prove that $(\alpha * \beta) * (1 * \beta) = \alpha$ for all $\alpha, \beta \in \mathfrak{B}$

Proof: From (iv) with $\gamma = 1 * \beta$ we have $(\alpha * \beta) * (1 * \beta) = \alpha * ((1 * \beta) * (1 * \beta))$ From condition (i) $(\alpha * \beta) * (1 * \beta) = \alpha * 1$ From condition (ii), it becomes $(\alpha * \beta) * (1 * \beta) = \alpha$

Theorem 3.5: If $(\mathfrak{B}, *, 1)$ is a BS-algebra, then prove that $\alpha * \gamma = \beta * \gamma \Rightarrow \alpha = \beta$ for all $\alpha, \beta, \gamma \in \mathfrak{B}$

Proof: If $\alpha * \gamma = \beta * \gamma$, then $(\alpha * \gamma) * (1 * \gamma) = (\beta * \gamma) * (1 * \gamma)$ and by previous theorem, we get $\alpha = \beta$

Theorem 3.6: If $(\mathfrak{B}, *, 1)$ is a BS-algebras, then prove that $\alpha * (\beta * \gamma) = (\alpha * (1 * \gamma)) * \beta$ for all $\alpha, \beta, \gamma \in \mathfrak{B}$

Proof: Using (iv) we obtain $(\alpha * (1 * \gamma)) * \beta = \alpha * (\beta * (1 * (1 * \gamma)))$ = $\alpha * (\beta * \gamma)$ (by thm(3.3))

Theorem 3.7: Let $(\mathfrak{B}, *, 1)$ be a BS-algebra. Then prove that for all $\alpha, \beta \in \mathfrak{B}$

(i)
$$\alpha * \beta = 1 \Rightarrow \alpha = \beta$$

(ii) $1 * \alpha = 1 * \beta \Rightarrow \alpha = \beta$ (iii) $1 * (1 * \alpha) = \alpha$

Proof: (i) Since $\alpha * \beta = 1 \Rightarrow \alpha * \beta = \beta * \beta$, by theorem (3.5), we get $\alpha = \beta$

(ii) If
$$1 * \alpha = 1 * \beta$$
, then $1 = \alpha * \alpha = (\alpha * \alpha) * 1$
 $= \alpha * (1 * (1 * \alpha))$
 $= \alpha * (1 * (1 * \beta))$
 $= (\alpha * \beta) * 1$
 $1 = \alpha * \beta$

By (i), $\alpha = \beta$

(iii) For all
$$\alpha \in \mathcal{B}$$
, we get $1 * \alpha = (1 * \alpha) * 1 (b\beta(ii))$
= $1 * (1 * (1 * \alpha)) (b\beta(iv))$

By (ii) part of this theorem, we have $\alpha = 1 * (1 * \alpha)$

Theorem 3.8: If $(\mathfrak{B}, *, 1)$ is a BS-algebra, then prove that $(\alpha * \beta) * \beta = \alpha * \beta^2$ for all $\alpha, \beta \in \mathfrak{B}$

Proof: From (iv), We have
$$(\alpha * \beta) * \beta = \alpha * (\beta * (1 * \beta))$$

= $\alpha * (\beta * \beta)$
= $\alpha * \beta^2$

Theorem 3.9: If $(\mathfrak{B}, *, 1)$ is a BS-algebra, then prove that $(1 * \beta) * (\alpha * \beta) = \alpha$ for all $\alpha, \beta \in \mathfrak{B}$

Proof: From theorem (3.6),
$$(1 * \beta) * (\alpha * \beta) = ((1 * \beta) * (1 * \beta)) * \alpha = 1 * \alpha = \alpha$$

Definition 3.10: A BS-algebra $(\mathcal{B}, *, 1)$ is said to be commutative if $\alpha * (1 * \beta) = \beta * (1 * \alpha)$ for all $\alpha, \beta \in \mathcal{B}$

Note 3.11: The BS-algebra in example:3.2 (i) is commutative but the algebra inexample:3.2 (iii) is not commutative since $c*(1*d) = b \neq a = d*(1*c)$

Theorem 3.12: If $(\mathfrak{B}, *, 1)$ is commutative, then prove that $(1 * \alpha) * (1 * \beta) = \beta * \alpha$ for all $\alpha, \beta \in \mathfrak{B}$

Proof: Since $(\mathcal{B}, *, 1)$ is commutative, then $(1 * \alpha) * (1 * \beta) = \beta * (1 * (1 * \alpha))$ = $\beta * \alpha$ (by thm(3.3))

Theorem 3.13: If $(\mathfrak{B}, *, 1)$ is commutative, then prove that $\alpha * (\alpha * \beta) = \beta$ for all $\alpha, \beta \in \mathfrak{B}$

Proof: By theorem (3.6),

Now,
$$\alpha * (\alpha * \beta) = (\alpha * (1 * \beta)) * \alpha$$

$$= (\beta * (1 * \alpha)) * \alpha \text{ (since } (\mathbf{\mathcal{B}}, *, 1) \text{ is commutative)}$$

$$= \beta * (\alpha * \alpha)$$

$$= \beta * 1$$

$$= \beta$$

Corollary 3.14: If $(\mathfrak{B}, *, 1)$ is commutative, then the left cancellation law holds (i.e) $(\alpha * \beta) = \alpha * \beta' \Longrightarrow \beta = \beta'$

Proof: From theorem 3.13, we have $\beta = \alpha * (\alpha * \beta) = \alpha * (\alpha * \beta) = \beta$

Theorem 3.15: If $(\mathfrak{B}, *, 1)$ is commutative, then prove that $(1 * \alpha) * (\alpha * \beta) = \beta * \alpha^2$ for all $\alpha, \beta \in \mathfrak{B}$

Proof: Now,
$$(1 * \alpha) * (\alpha * \beta) = ((1 * \alpha) * (1 * \beta)) * \alpha$$
 (by thm (3.6))
= $(\beta * \alpha) * \alpha$ (by thm (3.12))
= $\beta * \alpha^2$ (by thm (3.8))

IV.FUZZY IDEAL

Definition 4.1: Let A be a fuzzy set in BS-Algebra **3** is called a fuzzy ideal of **3** if it satisfies the conditions below

i)
$$\varphi(1) \ge \varphi(\beta)$$

ii) $\varphi(\beta) \ge \min{\{\varphi(\beta * \alpha), \varphi(\alpha)\}}$ for all $\alpha, \beta \in \mathfrak{B}$

Example 4.2: A set $\mathcal{B} = \{1, a, b, c\}$ which satisfies the table below

*	1	a	b	c
1	1	a	b	c
a	a	1	С	b
b	b	c	1	a
С	С	b	a	1

Then $(\mathcal{B}, *, 1)$ is a BS-algebra. Define a fuzzy set $\boldsymbol{\varphi}$ in \mathcal{B} by (1) = (b) = 0.7 and $(a) = \boldsymbol{\varphi}(c) = 0.3$ is the fuzzy ideal of \mathcal{B} .

Theorem 4.3: Let φ be a fuzzy ideal of \mathfrak{B} is a, then for all $\alpha \in \mathfrak{B}$, $\varphi(1) \ge \varphi(\alpha)$

Proof: S traight forward

Theorem 4.4: If ϕ_1 and ϕ_2 be two fuzzy ideals of \mathfrak{B} , then $\phi_1 \cap \phi_2$ is also a fuzzy ideal of \mathfrak{B} .

Proof:

Now,
$$(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(1) = (\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha * \alpha)(b\beta (i))$$

 $\geq \min\{(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha), (\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha)\}$
 $= (\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha)$
Therefore, $(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(1) \geq (\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha)$
Also, $(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\beta) = \min\{\boldsymbol{\varphi}_{1}(\beta), \boldsymbol{\varphi}_{2}(\beta)\}$
 $\geq \min\{\min\{\boldsymbol{\varphi}_{1}(\alpha), \boldsymbol{\varphi}_{1}(\beta * \alpha)\}, \min\{\boldsymbol{\varphi}_{2}(\alpha), \boldsymbol{\varphi}_{2}(\beta * \alpha)\}\}$
 $= \min\{\min\{\boldsymbol{\varphi}_{1}(\alpha), \boldsymbol{\varphi}_{2}(\alpha)\}, \min\{\boldsymbol{\varphi}_{1}(\beta * \alpha), \boldsymbol{\varphi}_{2}(\beta * \alpha)\}\}$
 $= \min\{(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha), (\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\beta * \alpha)\}$
 $(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\beta) \geq \min\{(\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\alpha), (\boldsymbol{\varphi}_{1} \cap \boldsymbol{\varphi}_{2})(\beta * \alpha)\}$

Hence $\boldsymbol{\varphi}_1 \cap \boldsymbol{\varphi}_2$ is a fuzzy ideal of $\boldsymbol{\mathcal{B}}$.

Theorem 4.5. Let φ be a fuzzy ideals of \mathfrak{B} . If $\alpha * \beta \leq \gamma$, then $\varphi(\alpha) \geq \min{\{\varphi(\beta), \varphi(\gamma)\}}$

Proof: Let $\alpha, \beta, \gamma \in \mathcal{B}$ such that $\alpha * \beta \leq \gamma$. Then $(\alpha * \beta) * \gamma = 1$,

$$(\alpha) \geq \min\{\boldsymbol{\varphi}(\alpha * \beta), \boldsymbol{\varphi}(\beta)\}$$

$$\geq \min\{\min\{\boldsymbol{\varphi}((\alpha * \beta) * \gamma), \boldsymbol{\varphi}(\gamma)\}, \boldsymbol{\varphi}(\beta)\}$$

$$= \min\{\min\{\boldsymbol{\varphi}(1), \boldsymbol{\varphi}(\gamma)\}, \boldsymbol{\varphi}(\beta)\}$$

$$= \min\{\boldsymbol{\varphi}(\gamma), \boldsymbol{\varphi}(\beta)\}$$
Therefore, $(\alpha) \geq \min\{\boldsymbol{\varphi}(\gamma), \boldsymbol{\varphi}(\beta)\}$

Theorem 4.6: Let φ be a fuzzy ideals of a BS-algebras \mathfrak{B} . If $\alpha \leq \beta$, then $(\alpha) \geq (\beta)$ (i.e) order reversing

Proof: Let $\alpha, \beta \in \mathcal{B}$ such that $\alpha \leq \beta$. Then $\alpha * \beta = 1$

$$(\alpha) \ge \min\{ \boldsymbol{\varphi}(\alpha * \beta), \boldsymbol{\varphi}(\beta) \}$$
 (by (ii) in def 4.1)
= $\min\{ \boldsymbol{\varphi}(1), \boldsymbol{\varphi}(\beta) \}$
= $\boldsymbol{\varphi}(\beta) \boldsymbol{\varphi}(\alpha) \ge \boldsymbol{\varphi}(\beta)$

Hence, φ is order reversing.

Theorem 4.7: Let B be a crisp subset of BS-algebras \mathfrak{B} . Suppose a fuzzy set $F = \varphi(\alpha)$ in \mathfrak{B} defined by $\varphi(\alpha) = \lambda$ if $\alpha \in Y$ and $\varphi(\alpha) = \tau$ if $\alpha \notin Y$ for all $\lambda, \tau \in [0, 1]$ with $\lambda \geq \tau$. Then F is a fuzzy ideal of \mathfrak{B} iff Y is a ideal of \mathfrak{B}

Proof:

Assume that F is a fuzzy ideal of \mathcal{B} . Let $\alpha \in Y$. Let $\alpha, \beta \in \mathcal{B}$ be such that $\beta * \alpha \in Y$ and $\alpha \in Y$. Then $(\beta * \alpha) = \lambda = (\alpha)$, and hence $(\beta) \ge min\{ \varphi(\alpha), \varphi(\beta * \alpha) \} = \lambda$. Thus $(\beta) = \lambda$ (i.e) $\beta \in Y$.

Therefore Y is a ideal of \mathcal{B} .

Conversely, assume that Y is an ideal of \mathcal{B} . Let $\beta \in \mathcal{B}$.

```
Let \alpha, \beta \in \mathcal{B}. If \beta * \alpha \in Y and \alpha \in Y, then \beta \in Y.
Hence, (\beta) = \lambda = min\{ \varphi(\beta * \alpha), \varphi(\alpha) \}
```

If $\beta * \alpha \notin Y$ and $\alpha \notin Y$, then clearly $\varphi(\beta) \ge min\{\varphi(\alpha), \varphi(\beta * \alpha)\}$ If exactly one of $\beta * \alpha$ and α belong to Y, then exactly one of $(\beta * \alpha)$, (α) is equal to τ . Therefore, $(\beta) \ge \tau = min\{\varphi(\alpha), \varphi(\beta * \alpha)\}$ Consequently, A is a fuzzy ideal of.

Theorem 4.8: Let φ be an ideal of \mathfrak{B} then the set \boldsymbol{v} (: x) is an ideal of \mathfrak{B} for every $x \in [0,1]$

Proof:

Suppose that φ is an fuzzy ideal of \mathcal{B} . For $x \in [0, 1]$. Let $\alpha, \beta \in \mathcal{B}$ be such that $\beta * \alpha \in \mathbf{v} (: x)$ and $\alpha \in \mathbf{v} (\varphi : x)$. Then $\varphi(\beta) \ge \min \{ \varphi(\alpha), \varphi(\beta * \alpha) \}$. Then $\beta \in \mathbf{v} (: x)$. Hence $\mathbf{v} (\varphi : x)$ is an ideal of \mathcal{B} .

Definition 4.9: Let $f: \mathfrak{B} \to \mathfrak{B}'$ be the two BS-algebras. Let Y be a fuzzy set in \mathfrak{B}' . Then the inverse image of Y is defined as

$$f^{-1}(\boldsymbol{\varphi})(\alpha) = \boldsymbol{\varphi}(f(\alpha))$$
. The set $f^{-1}(B) = \{f^{-1}(\boldsymbol{\varphi})(\alpha) : \alpha \in \boldsymbol{\mathcal{B}}'\}$ is a fuzzy set.

Theorem 4.10: Let $f: \mathfrak{B} \to \mathfrak{B}'$ be a homomorphism of BS-algebras. If Y is a fuzzy ideal of \mathfrak{B}' , then the pre-image $f^{-1}(Y)$ in \mathfrak{B}' is a fuzzy ideal of \mathfrak{B}

Proof:

For all
$$\alpha \in \mathcal{B}'$$
, $f^{-1}(\varphi)(\alpha) = \varphi(f(\alpha)) \leq \varphi(1) = \varphi(f(1)) = f^{-1}(\square)(1)$
Therefore, $f^{-1}(\varphi)(\alpha) \leq f^{-1}(\varphi)(1)$
Let $\alpha, \beta \in \mathcal{B}'$. Then $f^{-1}(\varphi)(\alpha) = \varphi(f(\alpha))$
 $\geq \min\{\varphi(f(\alpha) * f(\beta)), \varphi(f(\beta))\}$
 $\geq \min\{\varphi(f(\alpha * \beta)), \varphi(f(\beta))\}$
 $= \min\{f^{-1}(\varphi)(\alpha * \beta), f^{-1}(\varphi)(\beta)\}$

Therefore,
$$f^{-1}(\boldsymbol{\varphi})(\alpha) \ge \min\{f^{-1}(\boldsymbol{\varphi})(\alpha * \beta), f^{-1}(\boldsymbol{\varphi})(\beta)\}$$

Hence $f^{-1}(Y) = \{f^{-1}(\boldsymbol{\varphi})(\alpha) : \alpha \in \boldsymbol{\mathcal{B}}'\}$ is a fuzzy ideal of $\boldsymbol{\mathcal{B}}$

Theorem 4.11: Let $f: \mathfrak{B} \rightarrow \mathfrak{B}'$ be an onto homomorphism of BS-algebra. Then Y is a fuzzy ideal of \mathfrak{B}' , if $f^{-1}(Y)$ in \mathfrak{B}' is a fuzzy ideal of \mathfrak{B}'

Proof:

For any
$$u \in \mathfrak{B}'$$
, there exists $\alpha \in \mathfrak{B}'$ such that $f(\alpha) = u$
Then $(u) = (f(\alpha)) = f^{-1}(\varphi)(\alpha) \le f^{-1}(\varphi)(1) = \varphi(f(1)) = \varphi(1)$
Therefore, $(u) \le (1)$
Let $u, v \in \mathfrak{B}'$. Then $f(\alpha) = u$ and $f(\beta) = v$ for some $\alpha, \beta \in \mathfrak{B}'$.
Thus, $(u) = (f(\alpha)) = f^{-1}(\varphi)(\alpha)$
 $\ge \min\{f^{-1}(\varphi)(\alpha * \beta), f^{-1}(\varphi)(\beta)\}$
 $= \min\{\varphi(f(\alpha * \beta)), \varphi(f(\beta))\}$
 $= \min\{\varphi(f(\alpha) * f(\beta)), \varphi(f(\beta))\}$
 $= \min\{\varphi(u * v), \varphi(v)\}$

Therefore, $(u) \ge min\{ \boldsymbol{\varphi}(u * v), \boldsymbol{\varphi}(v) \}$ Then Y is a fuzzy ideal of $\boldsymbol{\mathfrak{B}}'$

Theorem 4.12: Let X and Y be fuzzy ideals of , then $X \times Y$ is a fuzzy ideal of $\mathfrak{B} \times \mathfrak{B}$

Proof: For any $(\alpha, \beta) \in \mathcal{B} \times \mathcal{B}$, we have

$$(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(1, 1) = min\{\boldsymbol{\varphi}_1(1), \boldsymbol{\varphi}_2(1)\}$$

 $\geq min\{\boldsymbol{\varphi}_1(\alpha), \boldsymbol{\varphi}_2(\beta)\} \text{ for all } \alpha, \beta \in \boldsymbol{\mathcal{B}'}$
 $= (\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha, \beta)$

Therefore,
$$(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(1, 1) \ge (\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha, \beta)$$

Let $(\alpha_1, \beta_1), (\alpha_2, \beta_2) \in \boldsymbol{\mathcal{B}}' \times \boldsymbol{\mathcal{B}}'$. Then

$$(\boldsymbol{\varphi}_{1} \times \boldsymbol{\varphi}_{2})(\alpha_{1}, \beta_{1}) = \min\{\boldsymbol{\varphi}_{1}(\alpha_{1}), \boldsymbol{\varphi}_{2}(\beta_{1})\}$$

$$\geq \min\{\min\{\boldsymbol{\varphi}_{1}(\alpha_{1} * \alpha_{2}), \boldsymbol{\varphi}_{1}(\alpha_{2})\}, \min\{\boldsymbol{\varphi}_{2}(\beta_{1} * \beta_{2}), \boldsymbol{\varphi}_{2}(\beta_{2})\}\}$$

$$= \min\{\min\{\boldsymbol{\varphi}_{1}(\alpha_{1} * \alpha_{2}), \boldsymbol{\varphi}_{2}(\beta_{1} * \beta_{2})\}, \min\{\boldsymbol{\varphi}_{1}(\alpha_{2}), \boldsymbol{\varphi}_{2}(\beta_{2})\}\}$$

$$= \min\{(\boldsymbol{\varphi}_{1} \times \boldsymbol{\varphi}_{2})((\alpha_{1} * \alpha_{2}), (\beta_{1} * \beta_{2})), (\boldsymbol{\varphi}_{1} \times \boldsymbol{\varphi}_{2})(\alpha_{2}, \beta_{2})\}$$

Therefore, $(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha_1, \beta_1) \ge \min\{(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)((\alpha_1 * \alpha_2), (\beta_1 * \beta_2)), (\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha_2, \beta_2)\}$

Hence, $X \times Y$ is a fuzzy ideal of $\mathcal{B} \times \mathcal{B}$

Theorem 4.13: Let X and Y be the two fuzzy sets in \mathfrak{B} such that $X \times Y$ is a fuzzy ideal of $\mathfrak{B} \times \mathfrak{B}$, then

- i) Either $\varphi_1(1) \ge \varphi_1(\alpha)$ or $\varphi_2(1) \ge \varphi_2(\alpha) \ \forall \ \alpha \in \mathfrak{B}'$
- ii) If $\varphi_1(1) \ge \varphi_1(\alpha) \ \forall \ \alpha \in \mathfrak{B}'$, then either $\varphi_2(1) \ge \varphi_1(\alpha)$ or $\varphi_2(1) \ge \varphi_2(\alpha)$
- iii) If $\varphi_2(1) \ge \varphi_2(\alpha) \ \forall \ \alpha \in \mathfrak{B}'$, then either $\varphi_1(1) \ge \varphi_1(\alpha)$ or $\varphi_1(1) \ge \varphi_2(\alpha)$

Proof. (i) Assume that $\varphi_1(\alpha) > \varphi_1(1)$ and $\varphi_2(\beta) > \varphi_2(1)$ for some $\alpha, \beta \in \mathcal{B}'$.

Then
$$(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha, \beta) = min\{\boldsymbol{\varphi}_1(\alpha), \boldsymbol{\varphi}_2(\beta)\}$$

> $min\{\boldsymbol{\varphi}_1(1), \boldsymbol{\varphi}_2(1)\}$
= $(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(1, 1)$
 $\Rightarrow (\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(\alpha, \beta) > (\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(1, 1) \ \forall \ \alpha, \beta \in \boldsymbol{\mathcal{B}}',$

Which is a contradiction.

Hence (i) is proved.

(ii) Again assume that $\varphi_2(1) < \varphi_1(\alpha)$ and $\varphi_2(1) < \varphi_2(\beta) \ \forall \ \alpha, \beta \in \mathcal{B}'$

Then(
$$\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2$$
)(1, 1) = $min\{\boldsymbol{\varphi}_1(1), \boldsymbol{\varphi}_2(1)\}$
= $\boldsymbol{\varphi}_2(1)$
Now,($\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2$)($\boldsymbol{\alpha}, \boldsymbol{\beta}$) = $min\{\boldsymbol{\varphi}_1(\boldsymbol{\alpha}), \boldsymbol{\varphi}_2(\boldsymbol{\beta})\}$
> $\boldsymbol{\varphi}_2(1)$
= $(\boldsymbol{\varphi}_1 \times \boldsymbol{\varphi}_2)(1, 1)$, which is a contradiction.

Hence (ii) is proved

(iii) The proof is similar to (ii)

REFERENCES

- [1] P.Ayesha Parveen and M.Himaya Jaleela Begum, *Doubt fuzzy bi-ideals of BS- algebras*, International Journal of Emerging Technologies and Innovative Re-search(JETIR), Vol.6(3), 20-24, 2019.
- [2] Y.Imai and K.Iseki, *On Axiom System of Propositional Calculi*, 15 Proc.Japan Academy, Vol. 42,19-22,1966.
- [3] J.Neggers and H.S.Kim, On B-algebras ,Math. Vensik, Vol.54,21-29, 2002.
- [4] L.A. Zadeh, Fuzzy sets Information and control, 8(1965), 338-353.
- [5] L.A. Zadeh, Toward a generalized theory of uncertainity(GTU)-an outline, In-form.Sci.,Vol. 172, 1-40,2005.