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NANOPARTICLES FOR PHOTOCATALYTIC 

REMEDIATION OF PESTICIDE RESIDUES IN 

ENVIRONMENTAL SAMPLES 

 

Abstract  

 

 Photocatalytic pesticide degradation 

using nanoparticles is a promising technique 

for remediating contaminated water and soil. 

Titanium dioxide, zinc oxide, and iron oxide 

nanoparticles can act as catalysts to accelerate 

the oxidation of organic pollutants by sunlight 

or artificial light sources. The process involves 

the formation of reactive oxygen species, such 

as hydroxyl radicals and superoxide anions, 

which can degrade pesticide molecules into 

innocuous byproducts like carbon dioxide and 

water. Photocatalytic pesticide degradation 

using nanoparticles has several advantages 

over traditional methods, including low cost, 

high efficiency, environmental friendliness, 

and low secondary pollution. However, there 

are some challenges and limitations that must 

be addressed, such as the nanoparticles' 

stability, recyclability, and toxicity, the impact 

of water quality parameters, and the scale-up 

and integration of the technology.  
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I. INTRODUCTION 

 

 Although pesticides are frequently used in agriculture and other industries to manage 

pests and weeds, they also pose significant risks to the environment and human health. 

Pesticides have the potential to contaminate water sources, soil, crops, and aquatic 

ecosystems, as well as cause acute and chronic toxicity, endocrine disruption, 

carcinogenicity, and mutagenicity in humans and animals [1-5]. As a result, there is an urgent 

need to develop effective pesticide residue removal methods for water and soil. 

Photocatalysis, an advanced oxidation process that uses light energy to activate a 

semiconductor catalyst, such as titanium dioxide (TiO2), and generate reactive oxygen 

species (ROS) that can oxidize organic pollutants into harmless products, is one of the 

promising pesticide degradation techniques. TiO2 is a popular photocatalyst because of its 

low cost, high stability, nontoxicity, and high photocatalytic activity. However, TiO2 has 

some drawbacks, including a large band gap that requires UV light to activate, a low quantum 

efficiency, and a high electron-hole recombination rate [6-8]. 

 

 To overcome these limitations, various strategies for modifying TiO2 nanoparticles 

(NPs) and improving their photocatalytic performance have been developed. Doping with 

metal or nonmetal elements, coupling with other semiconductors, loading with noble metals, 

and immobilization on various supports are examples of these. These changes can improve 

TiO2 NPs' light absorption, charge separation, surface area, adsorption capacity, and catalytic 

activity [9]. 

 

 In this review, we examined some recent studies on the use of TiO2 NPs and their 

modified forms in photocatalysis for pesticide removal from water. We will also discuss the 

factors that influence pesticide photocatalytic degradation, such as pH, catalyst concentration, 

irradiation time, pesticide initial concentration, and the presence of other substances [11-14]. 

Photocatalysis is a method of using light to activate a substance (called a catalyst) that can 

accelerate a chemical reaction. Photocatalysis has numerous potential applications, including 

water purification, air purification, and energy conversion. One of the most promising 

applications of photocatalysis is pesticide decontamination using nanoparticles [15]. 

 

 Using nanoparticles for photocatalytic pesticide degradation. Photocatalytic 

degradation is an advanced oxidation process that can effectively mineralize organic 

pollutants into harmless compounds by using semiconductors as catalysts such as TiO2, ZnO, 

CeO2, CdS, and WO3. This technique has a lot of potential for removing pesticides, which 

are widely used in agriculture but pose serious health and environmental risks [16]. 

 

 TiO2 and ZnO have garnered the most attention among semiconductors due to their 

high quantum efficiency, low cost, ease of synthesis, and environmental friendliness. They 

do, however, have some limitations, such as a small surface area, a high electron-hole 

recombination rate, and a limited light absorption range. As a result, many researchers have 

attempted to modify TiO2 and ZnO using various methods, such as doping [17]. 

 

 As an example, Zhu et al. recently developed a ZnO/reduced graphene oxide (rGO) 

nanocomposite for the photocatalytic destruction of the organophosphorus insecticide 

dimethoate using a hydrothermal approach. They discovered that the ZnO/rGO 

nanocomposite outperformed bare ZnO in terms of photodegradation rate and efficiency, 
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owing to the increased surface area, pore volume, charge transfer rate, and carrier transport 

caused by the presence of rGO [18]. 

 

 Another study by Hadei et al. performed a systematic analysis of all studies that 

examined the photocatalytic degradation of pesticides utilizing TiO2 nanoparticles (NPs) and 

ultraviolet (UV) irradiation and were published between 2009 and 2019. They found 53 

active compounds for pesticides as well as 16 different forms of TiO2 with an average 

photodegradation efficiency of 71%. They also discussed approaches to reduce the amount of 

energy required for this process, including the effects of experimental circumstances on 

photocatalytic activity and doping TiO2 with metal and non-metal agents, inventive reactor 

designs, etc. [19-22]. 

 

 In addition, Singh et al.'s recent study investigated into the photocatalytic efficiency 

of ZrO2@Ru and ZrO2@Au nanostructures for the methyl parathion and diuron pesticides. 

Due to the development of Schottky barriers at the metal-semiconductor interface, which 

facilitated charge separation and transfer, they discovered that both nanostructures displayed 

remarkable photocatalytic activity when exposed to visible light [23]. 

 

 These studies show that a promising and effective method for water purification is 

photocatalytic degradation of pesticides using nanoparticles. However, there are still some 

obstacles and knowledge gaps that need to be filled, including the analysis of economic and 

environmental feasibility as well as the optimization of catalyst characteristics, identification 

of intermediate products, and toxicity assessment [24]. 

 

 Photocatalytic degradation is a method of breaking down organic pollutants in water 

by using light and a catalyst. The efficiency of photocatalytic degradation is affected by a 

number of factors, including the type and concentration of the catalyst, the wavelength and 

intensity of the light source, the pH and temperature of the water, the initial concentration and 

nature of the pollutants, and the presence of other substances that could interfere with the 

reaction. These variables can influence the rate and extent of degradation, as well as the 

formation of intermediate and by-products. As a result, it is critical to optimize these 

parameters for each individual photocatalytic degradation application [25-27]. 

 

 These studies demonstrate that photocatalytic pesticide degradation using 

nanoparticles is a promising and efficient water purification technology. However, there are 

still some challenges and gaps to be addressed, such as catalyst optimization, identification of 

intermediate products and toxicity assessment, reactor scale-up and integration, and economic 

and environmental feasibility analysis [28].  

                  

II. OVERVIEW OF PHOTOCATALYSIS 
 

 Photocatalysis is a chemical process that accelerates reactions by using light and a 

photocatalyst. A photo catalyst is a solid material with the ability to absorb light and generate 

excited electrons and holes on its surface. These charge carriers can then interact with other 

molecules, causing them to oxidize or reduce. Photocatalysis has a wide range of 

applications, including water splitting, pollutant degradation, hydrogen production, and air 

purification [29].   
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Some of the principles of photocatalysis are: 

 

 The photo catalyst should have a suitable band gap to absorb light of the desired 
wavelength and generate enough energy for the reaction. 

 The photo catalyst should have a high surface area to increase the contact with the 

reactants and the light. 

 The photo catalyst should have a good charge separation and transport ability to 
prevent recombination of the electrons and holes. 

 The photo catalyst should be stable and resistant to corrosion, poisoning, or 
deactivation under the reaction conditions.   

 Photocatalysis is a promising technique for solving energy and environmental 
problems, but it also faces some challenges, such as: 

 The low efficiency of light utilization and conversion due to reflection, scattering, or 

transmission losses. 

 The limited availability of suitable photo catalysts that can work under visible or solar 
light, which is more abundant than UV light. 

 The complex reaction mechanisms and kinetics that depend on various factors, such 
as pH, temperature, concentration, and catalyst loading. 

 The scale-up and integration of photocatalytic systems for practical applications.   

 

Nanoparticles are ideal for use in photocatalytic processes due to their unique 

features. They have a high surface area to volume ratio, which enhances the number of active 

reactions sites. This can lead to higher photocatalytic activity and faster reaction rates. In 

addition, using nanoparticles can provide accurate mechanistic information regarding the 

photocatalytic process. 

 

In doped, linked, capped, sensitized, and organic-inorganic nanocomposite 

semiconductor systems, nanoparticles can also be employed to increase the photocatalytic 

and/or optical properties of commonly used semiconductor materials.1. Core-shell 

nanoparticles, for example, with metals such as Au, Ag, Pt, Pd, Zn, Ni, and others as a core 

and metal oxide semiconductors such as ZnO, TiO2, SiO2, Cu2O, Fe2O3, and SnO2 as a 

shell have piqued the curiosity of many researchers [30]. 

 

Overall, the use of nanoparticles in photocatalytic processes has many advantages and 

has the potential to provide sustainable solutions to current environmental remediation 

problems. 

 

Photocatalysis has many potential applications in environmental remediation, such as: 

 

 Degradation of organic contaminants in wastewater, soil, and air. Photocatalytic 
materials can oxidize harmful substances like pesticides, dyes, pharmaceuticals, and 

volatile organic compounds (VOCs), converting them into harmless products like 

carbon dioxide and water. 

 Reduction of greenhouse gases and air pollutants. Photocatalytic materials can also 
reduce carbon dioxide to produce fuels like methane or methanol, or reduce nitrogen 

oxides to produce nitrogen and oxygen. This can help mitigate climate change and 

improve air quality. 

https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra18102c
https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra18102c
https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra18102c
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 Production of clean and renewable energy. Photocatalytic materials can split water 
into hydrogen and oxygen, which can be used as fuels in fuel cells or combustion 

engines. Hydrogen is a promising energy carrier that does not emit any greenhouse 

gases or pollutants when used. 

 

III. THE PHOTOCATALYSIS MECHANISM  

 

UV light activates a semiconductor photocatalyst in the photocatalytic process and 

creates a redox environment in the aqueous solution. Due to their electronic structure, which 

is characterized by a filled valence band and an empty conduction band, semiconductors 

serve as sensitizers for light-induced redox reactions [24]. The band gap is the measure of the 

energy disparity between the valence and conduction bands. The semiconductor photocatalyst 

absorbs photons with energies that are equal to or greater than its band gap or threshold 

energy Eg, which excites the occupied valence band electrons to the unoccupied conduction 

band, resulting in excited state conduction band electrons and positive holes in the valence 

band. To use these charge carriers in redox processes involving adsorbed species, 

recombination of these charge carriers must be successfully inhibited. Charge carriers can 

take several pathways, becoming stuck in shallow traps (ST) or deep traps (DT), or 

recombining non-radiatively or radiatively, releasing the input energy as heat. Finally, they 

can react with electron donors or acceptors adsorbed on the photocatalyst's surface [24]. 

Indeed, [26] demonstrated that every photoredox reaction happening at the particle surface is 

caused by trapped electrons and holes [31]. 

 

Semiconductors absorb light with an energy larger than or equal to the band gap 

energy (Eg), promoting an electron from the valence band to the conduction band, resulting 

in an electronic vacancy or hole (h+) at the valence band edge. This hole can also be 

determined chemically. This hole can cause additional interfacial electron transfer or other 

chemical processes to an adsorbate, or it can diffuse into the bulk solvent with surface bound 

OH- ions. The photogenerated electron is typically located at the conduction band edge, 

whereas the hole is located at the valence band edge. If the energies of the electron and hole 

do not match, deactivation of the catalyst via electron-hole recombination may be difficult. 

Unlike metals, semiconductors lack a continuum of interband states to aid in electron-hole 

pair recombination. This ensures that electron-hole pairs have a long enough lifetime to 

participate in interfacial electron transfer [32]. Thus, light excitation often produces an 

electron-hole pair poised at the conduction band and valence band margins (Equation 1.1). 

 

               h 

Semiconductor   e
-
  + h

+  
(1.1) 

 

The photogenerated electron-hole pairs activate a sequence of redox processes in the 

aerated suspension of the semiconductor in contact with organic molecules, as outlined 

below. 

 

 The photogenerated holes oxidize adsorbed water molecules and hydroxyl ions, 
producing hydroxyl radicals. (Equations 1.2 and 1.3).  

  H2O  + h
+   

  OH
•
 + H

+   
(1.2) 

HO
-
 + h

+     
  OH

•
          (1.3) 
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 Photogenerated electrons reduce dissolved oxygen to produce superoxide anion 
radicals (Equation 1.4), which in turn generate H2O2 via a series of redox processes 

(Equations 1.5 to 1.9).  

 O2  + e
-      

O2
•-
   (1.4) 

 O2
•-
 + H

+      
 HO2

•
      (1.5) 

 O2
•-
 + HO2

•
  O2 + HO2 (1.6) 

 HO2
-
 + H

+
    H2O2      (1.7) 

 2HO2
•    

  H2O2 + O2 (1.8) 

 2HO
•
            H2O2          (1.9) 

 

 The photogenerated H2O2 undergoes further decomposition to yield hydroxyl radicals 

(Equations 1.10 to 1.12).  

   H2O2 2HO
•   

(1.10) 

H2O2 + O2
•-
  HO

•
 + OH

-
 + O2    (1.11) 

H2O2 + e
-
  HO

•
 + OH

-     
(1.12) 

 

 Direct involvement of holes in oxidation reactions 

 

 Formation and involvement of singlet oxygen species in oxidation.  
 

These hydroxyl radicals OH and superoxide radicals O2 are important species for 

pollution breakdown. Figure 1 illustrates a visual representation of the numerous activities 

that occur on the lit surface of a photocatalyst. 

 

 
 

Figure 1: The process involved in a semiconductor upon band gap excitation 

 

IV. CATALYSTS CHARACTERIZATION 

 

 Catalyst structural, physical, and chemical qualities are crucial for identifying the link 

between physicochemical properties and catalytic activity. Several approaches were 

employed to characterize the produced and doped catalysts. In this work, the following 

physicochemical characterisation approaches were used [28]. 
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1. X-Ray Diffraction Studies: In order to determine the crystallographic phase, degree of 

crystallinity, unit cell parameter, and crystallite size of the catalysts, X-Ray Diffraction 

(XRD) patterns were mostly used. Typically, high energy electrons are used to attack a 

target to produce X-rays. Commonly utilized X-ray sources include CuK, CoKα, FeKα, 

and MoKα. The typical X-ray source is CuKα radiation, which has a wavelength of 0.154 

nm and an energy of 8.04 keV. The incident monochromatized X-ray interacts with the 

atoms of a periodic lattice in the X-ray diffraction method. X-rays are constructively 

dispersed by atoms in an organized lattice in the directions suggested by Bragg's rule in 

Equation (4.1). 
 

nλ = 2d sin ө  (4.1) 
 

Where, d is the distance between two lattice planes, n is the order of reflection, X-

ray wavelength is, and Bragg's angle is. This law establishes a connection between the 

lattice spacing and diffraction angle in a crystalline sample and the wavelength of 

electromagnetic radiation. A diffraction pattern is the unique arrangement of the 

thousands of individual reflections that can be formed by crystal formations. Each 

reflection may have an index (hkl) assigned to it, indicating where it belongs in the 

diffraction pattern. The relationship between the pattern and the unit cell and crystalline 

lattice in the real space is reciprocal Fourier transformation.  

 

2. Field Emission Scanning Electron Microscopy: Using a Schottky electron gun and a 

Hitachi SU 70 FE-SEM, electron micrograph pictures were captured. The accelerating 

voltage range used for the measurements was 5–15 kV. On a surface covered with 

mounted carbon tape, powdered samples were dispersed equally. A can of air spray was 

used to remove the loose powdered sample. 

 

With the use of a high-energy electron beam that scans the sample surface in a 

raster scan pattern, the Field Emission Scanning Electron Microscope (FE-SEM) creates 

images of the surface. The sample's surface topography, composition, and other 

characteristics, such as electrical conductivity, are revealed through the interactions 

between the sample's electrons and the atoms that make up its shells. These interactions 

result in signals. Secondary electrons (SE), backscattered electrons (BSE), characteristic 

X-rays, light (cathodoluminescence), specimen current, and transmitted electrons (STEM) 

are the several signal kinds that a FE-SEM can create. SE imaging is typically the most 

prevalent or standard detection technique. Because the spot size in a Field Emission SEM 

is smaller than in a typical SEM, it is able to provide images with an extremely high level 

of resolution, revealing features as fine as 1 to 5 nm. 

 

One of the most used methods for determining the shape and size of the catalysts 

is field emission scanning electron microscopy (FE-SEM). FE-SEM will offer 

information on the chemical composition close to the surface in addition to topographical 

data like optical microscopes. Instead of using light, FE-SEM uses electrons to produce 

enlarged pictures. It provides more magnified 3-D images than an optical microscope. the 

numerous ways that primary electron beam interactions with catalysts happen in an 

electron microscope. Back scattered electrons and secondary electrons are collected by a 

detector in the scanning electron microscope to create the image. 
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3. Energy Dispersive X-ray Analysis (EDX): Dispersive Energy The technique used to 

determine the elemental makeup of the samples is called X-ray analysis. The substance 

being studied determines the energy of the X-ray that is released when it interacts with an 

electron beam. Each element in the sample can be visualized by moving the electron 

beam across the material. In EDX, which operates at liquid nitrogen temperature, lithium 

drifted silicon is utilized as the detector. Depending on the energy of the incoming X-

rays, the detector will produce photoelectron when the X-rays hit it. This produces 

electron-hole pairs, which in turn provide the current pulses as the signal. Since X-rays 

are also produced when electrons contact with samples during FE-SEM analysis, EDX is 

always conducted in conjunction with FE-SEM analysis. The samples' EDX spectra were 

captured using a JEOL Model JED-2300 equipment.  

 

4. High Resolution Transmission Electron Microscopy: For determining the size of 

nanoparticles, high resolution transmission electron microscopy (HR-TEM) has been 

widely used. A tungsten anode, an accelerating anode, and a beam aperture control make 

up the electron cannon. At the point where it reaches the specimen, an electron lens 

system concentrates the electron beam, which has an extremely tiny cross section. In 

order to form a picture on a fluorescent screen and capture it on film, the transmitted 

electrons must first pass through another set of electronic optics. Transmitted electrons, 

including unscattered, elastically and inelastically scattered electrons, are used in HR-

TEM. High resolution and reduced chromatic aberration are produced when high energy 

electrons (200 keV or more) are used. 

 

Using a JEOL TEM-3010 electron microscope run at a 300 keV accelerating 

voltage, high resolution transmission electron microscopic (HR-TEM) pictures were 

captured. The catalysts were dissolved in isopropanol using sonication to prepare the 

samples for HR-TEM examination, then they were deposited on a copper grid. 

 

5. Ultraviolet - Visible Diffuse Reflectance Spectroscopy: ultraviolet - diffuse visibility 

for the identification and characterization of metal ion coordination and its presence in the 

frame work or extra-frame work location of metal-containing molecular sieves and doped 

semiconductors, reflectance spectroscopy (UV-DRS) is recognized to be a very sensitive 

and practical approach. It focuses on the investigation of electronic transitions between 

atomic, ionic, or molecular orbitals or bands in the gaseous, liquid, and solid states. This 

method is based on the way a powdered sample reflects light in the visible and ultraviolet 

(UV) ranges. DRS-UV-Vis spectra can be used to study a catalyst's bulk and surface 

properties.  

 

6. Fourier Transform Infrared Spectroscopy: A multidisciplinary analytical method 

known as Fourier Transform Infrared Spectroscopy (FT-IR) provides information about a 

material's structural specifics. It can also be utilized to confirm surface properties like 

acidity and isomorphous substitution by other material constituents. In FT-IR, 

electromagnetic radiation in the infrared part of the spectrum is absorbed, changing the 

vibrational energy of molecules as a result.. It is an effective and powerful method for 

locating organic compounds with strong charge separation and polar chemical bonds, 

such as OH, NH, or CH. The IR spectra can be thought of as the fingerprints of the 

functional groups because each one has a distinct vibrational energy. Using the KBr pellet 

approach, the IR spectra of uncalcined and calcined materials were captured on an FT-IR 
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spectrometer (Nicolet Avatar 360). A pellet was created using a hydraulic press utilizing a 

combination made up of around 10 mg of the sample and 70 mg of spectral grade KBr. 

This pellet was utilized to record the infrared spectra between 400 and 400 cm
-1

 by being 

scanned 50 times at a resolution of 4 cm
-1

. 

 

V. NANOPARTICLES FOR PESTICIDE RESIDUES REMOVAL  
 

Pesticides are commonly used in agriculture to protect crops from pests and illnesses, 

but they can also leave hazardous residues on fruits and vegetables, posing a health risk to 

consumers.  

 

One answer could be nanoparticles, which are tiny particles with diameters ranging 

from 1 to 100 nanometers. Nanoparticles have unique features that make them appropriate for 

a variety of applications such as medication delivery, catalysis, and environmental cleanup. 

Some nanoparticles, in particular, have the ability to bind to pesticide molecules and remove 

them off fruit and vegetable surfaces [30]. 

 

Researchers, for example, have created magnetic nanoparticles coated with a polymer 

that can selectively capture organophosphorus pesticides, which are among the most widely 

used and toxic pesticides. The nanoparticles can be sprayed or dipped onto the fruits and 

vegetables and then removed with a magnetic field. After washing and drying, the 

nanoparticles can be reused [31-32]. 

 

Another example is the application of antibacterial and antifungal silver nanoparticles. 

Some pesticides can be degraded by silver nanoparticles by producing reactive oxygen 

species, which are molecules that can damage the chemical structure of pesticides. Silver 

nanoparticles can also reduce the microbial load on fruits and vegetables, extending their 

shelf life and improving their safety [33]. 

 

Nanoparticles have several advantages over traditional pesticide residue removal 

methods such as washing, peeling, or heating. Pesticides can be removed more efficiently and 

effectively with nanoparticles, without affecting the quality or nutritional value of fruits and 

vegetables. Nanoparticles can also be engineered to target specific pesticides while avoiding 

harming beneficial microorganisms or natural antioxidants found in fruits and vegetables 

[34]. 

 

However, there are some challenges and limitations to nanoparticles that must be 

addressed before they can be widely used for pesticide residue removal. One of the most 

difficult challenges is ensuring the safety and biocompatibility of nanoparticles for both 

human health and the environment. Nanoparticles may cause inflammation, oxidative stress, 

and DNA damage in human cells and organs. Nanoparticles could also [35]. 

 

More research is therefore required to assess the potential risks and benefits of 

nanoparticles for pesticide residue removal, as well as to optimize their synthesis, 

characterization, application, and disposal. Nanoparticles for pesticide residue removal may 

be a promising alternative to conventional methods, but they must be carefully regulated and 

monitored to ensure their safety and long-term viability [36]. 
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VI.  INSTRUMENT ANALYSIS FOR PESTICIDE RESIDUES 

 

Pesticide residue analysis is the detection and quantification of pesticide residues on 

or in food, soil, water, or other samples after they have been applied. Pesticide residues can 

endanger human and animal health and cause environmental issues. As a result, it is critical 

to monitor and control pesticide residue levels in various matrices. 

 

Instrument analysis is one method for pesticide residue analysis that uses 

sophisticated instruments to separate, identify, and measure the pesticides in a sample. For a 

wide range of pesticides, instrument analysis can provide high sensitivity, accuracy, and 

specificity. Gas chromatography (GC), liquid chromatography (LC), mass spectrometry 

(MS), and tandem mass spectrometry (MS/MS) are some of the common instruments used for 

pesticide residue analysis. 

 

The gas chromatography (GC) technique is used to separate volatile and semi-volatile 

pesticides based on their boiling points and affinities to a stationary phase. To improve 

pesticide detection and identification, GC can be combined with other detectors such as a 

flame ionization detector (FID), electron capture detector (ECD), or mass spectrometer (MS). 

 

The separation of non-volatile and polar pesticides by LC is based on their solubility 

and interactions with a mobile phase and a stationary phase. To improve pesticide detection 

and identification, LC can be combined with various detectors such as ultraviolet-visible 

detector (UV-Vis), diode array detector (DAD), or MS. 

 

MS is a method for ionizing pesticides and measuring their mass-to-charge ratios. MS 

can provide structural information as well as confirmation of pesticide identity. MS can be 

used independently or in conjunction with GC or LC. 

 

MS/MS is a mass spectrometry technique that employs two stages of mass 

spectrometry on pesticides. MS/MS can provide more detailed information and greater 

selectivity for pesticide identification and quantification. MS/MS can be used in tandem with 

GC. 

 

VII.  CONCLUSIONS AND PERCEPTION 

 

1. Challenges of using Photocatalysis for Pesticide Decontamination 

 

 Low efficiency: The photocatalytic degradation of pesticides is a slow process, and it 
requires a high amount of energy to achieve complete degradation. 

 Reusability: The photocatalysts used in the process are often not reusable, which 
increases the cost of the process. 

 Selectivity: The photocatalysts used in the process are often not selective, which 

means that they can degrade both target and non-target compounds. 

 Environmental impact: Because of the formation of reactive oxygen species (ROS) 
and other byproducts, the usage of photocatalysts can have an environmental impact. 

 To address these issues, researchers are investigating various strategies such as doping 
TiO2 with metal and nonmetal agents, developing novel reactor designs, and 
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developing heterogeneous doped and immobilized titania with optimized surface area, 

reactive centers, recombination rate, and phase. 

 

2. Future Research Work on Nanophotocatalysis of Removal of Pesticides: We 

provided some insights into future research work on nanophotocatalysis for pesticide 

removal. Nanophotocatalysis is a promising technique that employs nanomaterials to 

improve photocatalytic degradation of organic pollutants in the presence of light. 

Pesticides are a major source of environmental contamination that endangers human 

health and ecosystems. As a result, developing efficient and environmentally friendly 

methods to remove pesticides from water and soil is critical. 

 

However, there are still some challenges and gaps in the current research on 

nanophotocatalysis of removal of pesticides. Some of the pending future research work 

are: 

 

 Exploring new nanomaterials with high photocatalytic activity, stability, and 
selectivity for pesticide degradation. For example, metal-organic frameworks 

(MOFs), covalent organic frameworks (COFs), and carbon-based nanomaterials are 

emerging as potential candidates for nanophotocatalysis. 

 Investigating the mechanisms and kinetics of nanophotocatalytic degradation of 
different types of pesticides, such as organophosphorus, organochlorine, carbamate, 

and pyrethroid pesticides. Understanding the reaction pathways, intermediates, and 

products can help optimize the nanophotocatalytic process and evaluate its 

environmental impact. 

 Developing novel strategies to enhance the nanophotocatalytic performance by 

modifying the nanomaterials or combining them with other techniques, such as 

doping, coupling, heterojunction, plasmonics, magnetic separation, and hybridization. 

For instance, coupling nanophotocatalysts with adsorbents, biocatalysts, or 

electrochemical methods can achieve synergistic effects for pesticide removal. 

 Evaluating the feasibility and scalability of nanophotocatalysis for practical 
applications in pesticide-contaminated water and soil remediation. This requires 

addressing the issues of cost-effectiveness, mass production, reusability, and safety of 

nanomaterials. 
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