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SELECTION OF ZERO-COST REACTIVE MATERIAL 
FOR PERMEABLE REACTIVE BARRIERS: NEURAL 
NETWORKS ADOPTABILITY 
 
Abstract 
 

The selection of superior reactive 
materials for the construction of permeable 
reactive barriers—which are widely utilized 
for ground water treatment operations—is 
heavily influenced by the findings of batch 
experiments. As a result, it is necessary to 
make procedures that make it possible to 
assess the performance of a batch reactor. 
As a consequence, methods for evaluating 
the performance of batch reactors must be 
devised in order to design reactive materials 
that are more effective under diverse 
influent conditions. This chapter 
investigates whether an artificial neural 
network model could be used to simulate 
the results of batch testing utilizing acidic 
ground water, a phenomenon that is 
prevalent in coastal plains all over the 
world. Reaction time, pH, and reactive 
specific surface area were selected as the 
intended model inputs based on historical 
data and the output variables were one or 
more of the following, aluminium, calcium, 
and iron concentrations. Utilizing 
experimental test data gathered from 20 
different nearly cost-free reactive materials, 
the suggested neural network model was 
constructed. Following training, validation 
was conducted using various sets of 
performance data that were collected from 
the same batch of tests. The ANN model 
was also cross-validated using a collection 
of split data sets. For the selected ions of 
interest, non-linear multi regression models 
were also offered for comparison. In order 
to select a material as a potential reactant for 
the design of permeable reactive barriers 
under a variety of input conditions, 
simulation results were carefully examined 
based on a qualitative understanding of 
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batch processes. Additionally, using 
sensitivity analysis, the impact of each 
preferred input variable on the chosen 
output was carefully assessed and ordered, 
demonstrating that the chosen input signals 
are the key factors influencing the estimate 
of the output. Due to the reactive materials' 
existing nonlinear and ambiguous chemical 
reaction properties, ANN models 
outperformed non-linear multi regression 
models in terms of data simulation. 

 
Keywords: Zero-cost reactive media; Batch 
tests; Permeable reactive barrier; ANN 
Modeling; acidic ground water modelling; 
Passive treatment technologies; 
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I.  INTRODUCTION 
 

Acidic groundwater is a global issue caused by the interactions of sulphide minerals 
such as pyrite with oxygen and water. This problem is especially pervasive in coastal plains, 
where over 130 million hectares of acid sulfate soils exist[1]. During the recharge of 
groundwater from rainfall, the release of acid from acid sulfate soils has caused significant 
mobilization of iron and aluminum in groundwater[1] [2], increases the attack on concrete, 
steel infrastructure, clog pores of the soil with iron flocculates, and kill fish. Owing to the 
impacts on environment, the research on acid sulphate water has increased [3][4][5][6]. 

 
In order to clean up contaminated groundwater, a device termedas permeable reactive 

barrier (PRB) is now often employed. The selection of suitable materials to utilize as reactive 
mediums is one of the most crucial factors [7]. The material shouldn't cause any adverse 
chemical reactions or byproducts when interacting with elements of the polluted plume, and 
it should be affordably priced for a sufficient period of time. By bringing the reactive 
materials into touch with the acidic groundwater through precipitation, sorption, 
oxidation/reduction, and other physical, chemical, and/or biological processes, it is remedied 
by bringing the pH level back down. Due to the complex, series, and parallel chemical 
reactions involved in the PRB system, the understanding and selection of the novel reactive 
media is one of the most important practical tasks. 

 
Adaptive learning, self-organization, and real-time operation make artificial neural 

networks an appealing mathematical tool for representing complex relationships. They fall 
under the category of data focused approaches, where the data are used to determine the 
model's structure. When the system's behavior is unclear, ANN models may generalize the 
highly nonlinear data and deliver the required outcomes. Because of these appealing 
qualities, neural networks are being used more and more in modeling, where complex 
physio-chemical processes are common. Numerous researchers adopted ANNs in the field of 
geo-environmental engineering; virtual soil laboratory experiments [8], porosity and 
permeability prediction [9], geotechnical properties [10], settlement of shallow foundations 
[11], contaminant prediction [12][13], waste solidification [14], and swelling behaviour [15].  
 

In contrast, the structure of the model must be established before the unknown model 
parameters may be estimated using the traditional statistical approaches.  These statistical 
methods are constrained by things like a lack of understanding of the manner in which the 
data are distributed. Unfortunately, due to the complexity of the parallel and series chemical 
reactions involved and the lack of a thorough knowledge of multiple processes, the 
application of statistical tools to forecast the effects of PRB reactive materials is confined. In 
the present work, neural networks have been proposed to understand the acidic ground water 
interaction with reactive materials by predicting the ion concentrations. A comparative study 
was also presented with non-linear regression models. The useful approach to choosing the 
unique reactive barrier material that could be used to forecast their behavior without 
requiring substantial practical investigation is the use of ANN models for the prediction of 
ion concentrations. 
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II.  STRATEGY 
 
1. Experimental Description: This investigation comprised batch testing for use in the 

PRB of 20 alkaline materials, with a focus on near-zero cost waste materials, such as blast 
furnace slag, recycled concrete, flyash, zeolitic breccia carrying calcite, limestone, oyster 
shells, and material from dredging shells.Throughout the batch experiments (Figure 1), 
representative acidic water was collected from the Indian Peninsula's southeast coast. The 
testing was performed at atmospheric pressure and laboratory temperature (15–21oC). 
The collected water at the field site was high in Al (up to 55 g/m3) and Fe (up to 20 g/m3) 
and acidic (pH as low as 3; Table 1). The primary objective of batch testing is to figure 
out whether the materials are suitable for neutralizing acidity and removing Al and Fe 
from groundwater. The samples were carefully collected during the experiment in order 
to avoid flow disruption, and the pH was determined right away. After 0 days, 1 days, 7 
days, and 28 days, samples were also collected for analysis using inductively coupled 
plasma atomic emission spectroscopy. Prior to being analyzed for significant ions like 
calcium, aluminum, and iron, the samples were filtered under pressure through a 0.45 m 
membrane and preserved in high density polyethylene bottles in the refrigerator. The 
reactive specific surface area of the selected materials was calculated in the lab prior to 
batch trials. 

 

 
 

Figure 1: Schematic diagram of batch tank 
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Table 1: For training, testing, and validation, batch experiments' statistical parameters 
 

Parameter 
Mode of 

Operation 
T pH  RSSA Al Ca 

 
Fe 
 

(day)  (m2/g) (g/m3) (g/m3) (g/m3) 
Minimum Training  0 3.02 0.40 0 2 0.12 
 Testing 0 3.02 0.40 0.40 2 0.18 
 Validation 0 3.02 10.00 0.50 2 0.75 
        
Maximum Training  28 12.24 717 55.40 870.40 9.65 
 Testing 28 11.04 700 55.40 258.90 20.00 
 Validation 28 12.24 717 55.40 820.60 10.12 
        
Mean Training  9.09 7.19 306.19 17.47 145.63 2.57 
 Testing 8.98 7.10 337.68 12.74 78.48 3.36 
 Validation 8.11 6.54 334.89 18.69 182.20 4.32 
        
Median Training  4 6.59 120 2.40 39.30 0.89 
 Testing 7 8.21 600 1.30 29.80 1.41 
 Validation 1 5.90 120 7.90 38.20 3.35 
        
Mode Training  0 3.09 600 55.40 2.00 6.45 
 Testing 1 3.02 600 1.20 6.70 6.51 
 Validation 1 0 717 0 0 0 
        
Standard 
deviation 

Training  11.44 3.66 303.63 22.26 223.49 2.72 

 Testing 11.28 2.52 309.33 20.16 78.42 4.32 
 Validation 11.60 3.60 337.95 21.16 294.47 3.37 
        
Kurtosis Training  -0.87 -1.72 -1.93 -1.24 4.32 -1.07 
 Testing -0.71 -0.97 -2.03 0.05 -0.86 8.43 
 Validation 0.30 -0.77 -2.44 -0.89 2.11 -1.12 
        
Skewness Training  0.96 0.15 0.18 0.79 2.23 0.83 
 Testing 1.03 -0.65 -0.01 1.37 0.74 2.69 
 Validation 1.40 0.79 0.28 0.88 1.78 0.48 
        
Count Training  98 98 98 98 98 98 
 Testing 45 45 45 45 45 45 
 Validation 9 9 9 9 9 9 
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2. Routes of Reactions and Observable Phenomena: In general, oxidation processes with 
acidic groundwater are complicated, and often a number of intermediates are generated, 
often at varying rates [16]. Different materials form various kinds of precipitates, and 
while some materials may form many of these precipitates, others may not. The 
precipitated products in equations 1-4 are anticipated to occur as a result of calcium 
carbonate being saturated in the groundwater as a result of increased pH and the 
interaction of iron and aluminum with water and carbonates [16]. 
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-2 Fe(OH)OH2Fe ↔++            (1) 
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-2
3
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-2
3
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3. Neural Network Approach to Model Leachate Concentrations : The parallel 

distributed processor called an ANN, which resembles biological neurons, has a built-in 
predisposition to store and make use of experimental knowledge. The selection of 
architecture depends on the tasks to be performed. The network is made up of an input 
layer that takes inputs from the system, a hidden layer that takes inputs from neurons in 
the input layer, and an output layer that takes data from hidden layers and sends its output 
to an outside domain. The general design of the procedure employed in this investigation 
is shown in Figure 2. For the purpose of creating a neural model, the test is considered as 
a batch reactor that responds to different sets of inputs by producing various sets of 
outputs. Such a model makes no assumptions about prior knowledge of the relationship's 
structure between the system's input and output variables. The suitable values of the 
leachate concentrations for the selected reactive components present in the system, at any 
provided feed circumstances, really function as an ANN model. 

 
A representative collection of learning data must be created based on the available 

batch reactor experimental findings in order to successfully train a neural network. This 
stage has a significant impact on the accuracy of process modeling, the applicability of 
the network for knowledge generalization, and the quality of the approximation of the 
output concentrations.The input vector contains three variables-reaction time (T), pH, and 
reactive specific surface area (RSSA)-while the output might be any of the three 
variables-concentrations of aluminum, calcium, or iron-depending on the characteristics 
of the reacting system. Depending on the reaction duration and particular surface area, the 
pH is maybe the most promising physical measure for monitoring the ion concentration in 
the leaching process. The chosen output of ion concentrations serves as the study's 
primary point of interest. 
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Figure 2: Training strategy of feed-forward ANN 
 

It is a standard procedure to separate the data sets into two subsets before 
performing neural modeling: a training set for building the neural network model and an 
independent validation set for determining how well the model performs in the deployed 
environment [17]. Only splitting the data into two subsets, however, might result in model 
overfitting. To circumvent this, the database is randomly partitioned into three sets: 
training, testing, and validation. Cross-validation [18] [19] [20] is then employed as the 
stopping criterion in the present investigation. 30% of the data are used for validation, 
while the remaining 64% are used for training. The remaining 6% of data are used for 
cross validation. To maintain the meaning of the weights and avoid numerical overflows, 
ANN inputs and outputs were normalized to fall within the range of [-1, 1] using the 
associated maximum value. The selection of architectural parameters can influence 
network training and predictions. As the internal network parameters, a learning rate of 
0.5 and the momentum of 0.2 were considered to train, test and cross validate the 
network. The Matlab® source code incorporating the salient features described above was 
used to implement this artificial neural network system on a personal computer. 

 
4. Non-Liner Multi Regression Model Leachate Concentrations : A multivariate analytic 

approach called multi-regression is utilized to forecast an assortment of predictor 
variables. The concept of regression analysis lies in the idea of predicting the scores of 
one dependent variable �from the scores of one or several independent variables ε1, 
ε2,…, εmin an optimal way.  
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Only linear relationships between dependent and independent variables can be 
used in standard multiple regression to assess the relationship between the variables. 
Regression analysis results tend to overstate the underlying relationship if there is a 
nonlinear relationship between the independent and dependent variables. A short code of 
Matlab® was adopted to develop the MRL models for aluminium, calcium and iron ions. 

 
5. Neural Network Approach to Leachate Ion Concentration Network: The network 

weights converge to values during training such that each input vector yields the desired 
output. Through the appropriate modification of the weight matrices, the backpropagation 
approach feeds the output faults back into the network. The output xj of each unit from i 
to j is used to demonstrate how the generalized delta rule was utilized to change weights 
and bias. 

 
xj = Cjwij  +bj               (5) 

 
 

where, Cj is the output of unit j, wij is the connectionsweight from unit i to unit j,  bj is the 
bias of unit j.  
 

The output is then passed through a straightforward sigmoid function, f(C), to 
provide an estimate of the neuron's degree of activity, which is given by, 

 

jCj
e1

1
)C( −+

=f               (6) 

 
A vector of the net parameters (weights) w has been altered during the learning 

process to minimize disparities between the outputs utilized for learning, d, and the 
outputs anticipated with the net, C (Eq. 7). 
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III.    RESULTS AND DISCUSSION 
 
1. Selection of Suitable Hidden Neurons: The appropriate number of neurons in a hidden 

layer was established by trial and error by methodically analyzing various combinations 
of neurons in the hidden layer in the absence of any strict criteria. The network may 
memorize information and perform well during training as the number of neurons in the 
hidden layer of the network rises, but the network may not be able to generalize as the 
problem becomes more complex. The performance of the network improves generally as 
the number of hidden neurons decreases. So, in order to find a solution to the problem, a 
study is done to determine how many buried neurons affect the network's performance. 

 
Figure 3 shows the mean absolute error between the predicted and experimental 

concentrations of selected ions along with epochs by increasing the number of neurons in 
the hidden layer from 1 to 11.As the number of neurons adds to the network the epoch 
size increases with higher error values. Using four hidden neurons, the number of 
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iterations is less with its prediction error is not far from that of the network coupled with a 
smaller number of connection weights. Thus in the present work 4 hidden neurons, single 
hidden layered feed forward back propagation network (i.e 3-4-1) is adopted, and the 
designed optimal network is shown in Figure 4 with its process description given in  
Table 2. 

 

 
 

Figure 3: Impact of hidden layer neurons on the RMS error 
 

Table 2:  Each layer's input, hidden input, and output in a neural network 
 

Performed task 
Neuronsp

resent 
K 

Layer Neuron’s input  Output from neuron 

 
Ion 

concentration 
(Al/Ca/Fe)  

3 
 

Input 
 
xj j = 1, 2…..k 

 
Cj= xj, j =1,2,…k 
 

11  Hidden 
 
xj = ∑k

i-1 Ciwij+ bj , 

j = 1, 2,…..k 

 
Cj= 1/{1+exp(-xj )}      
 J = 1,2,…k 

1 Output 
 
xj= ∑k

i-1Cjwij+ bo 

 
Cj

0= xj
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Figure 4:  The designed ANN architecture for estimation of selected ion concentration

2. Prediction of Ion Concentration
models for aluminium, calcium, and iron ions are shown
the data, developing the network object, training the network, and simulating the 
network's reaction to novel inputs are all phases of the training operation.The predicted 
and actual ion concentrations for the training sets
0.99), with the RMSE errors for the metals aluminum, calcium, and iron comprising 
1.0588, 19.9523, and 0.3258, respectively. Figures 5
data points fall on the 1:1 line. The neural
concentration to the numerous driving signals of acidic water with reactive media, as 
evidenced by the strong correlation between the experimental and predicted leachate 
concentration of reactive materials with
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f Ion Concentration: The performance measure values of the computed 
models for aluminium, calcium, and iron ions are shown in Tables 3a and 3b. Assembling 
the data, developing the network object, training the network, and simulating the 
network's reaction to novel inputs are all phases of the training operation.The predicted 
and actual ion concentrations for the training sets exhibit a very strong correlation (r
0.99), with the RMSE errors for the metals aluminum, calcium, and iron comprising 
1.0588, 19.9523, and 0.3258, respectively. Figures 5-7 show that practically all training 
data points fall on the 1:1 line. The neural model is able to memorize the non
concentration to the numerous driving signals of acidic water with reactive media, as 
evidenced by the strong correlation between the experimental and predicted leachate 
concentration of reactive materials with varying pH and time periods. 
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The designed ANN architecture for estimation of selected ion concentration 

The performance measure values of the computed 
in Tables 3a and 3b. Assembling 

the data, developing the network object, training the network, and simulating the 
network's reaction to novel inputs are all phases of the training operation.The predicted 

exhibit a very strong correlation (r2> 
0.99), with the RMSE errors for the metals aluminum, calcium, and iron comprising 

7 show that practically all training 
model is able to memorize the non-linear ion 

concentration to the numerous driving signals of acidic water with reactive media, as 
evidenced by the strong correlation between the experimental and predicted leachate 
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Figure 5: Correlation between experimental and predicted Aluminium concentrations 
 

 

 
 

Figure 6: Correlation between experimental and predicted Calcium concentrations 
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Figure 7: Correlation between experimental and predicted Iron concentrations 

 
Table 3a: Performance measures of neural network intelligence and regression models 
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Table 3b: Performance measures of neural network intelligence and regression 
models 

 

 
 

3. Generalization of Ion Concentration: The closeness of the points to the equality line 
(Figures 5-7) and the high values of  r2 (0.9939, 0.9156, 0.9903) along with low values of  
MSSE (2.4195,507.4734,0.1763), RMSE(1.5555 g/m3,22.5272 g/m3, 0.4199 g/m3), and 
MAE (1.1306 g/m3, 20.01 g/m3, 0.2876 g/m3) and the displayed concentrations of 
aluminium, calcium, and iron, which range from 0.05 to 55.40 g/m3, 2 to 258.90 g/m3, 
and 0.18 to 20 g/m3, respectively, clearly illustrate the accuracy of the neural 
models.Pursuant to the performance results, back-propagation neural networks are 
capable of predicting ion concentrations of reactive materials, which are to be employed 
as sorbing material in the permeable reactive barrier for treating acidic groundwater, with 
an adequate degree of accuracy. 

 
4. Validation of Ion Concentration: Prior to the usage of a developed model, there is a 

need to establish the validity of the results it generates. The chosen data sets have 
demonstrated fairly good correlation (r2 = 0.9942; r2 = 0.9959;    r2 = 0.9892). The 
network was able to provide nearly ideal solutions to the collection of problems with 
which it was trained, as shown by the anticipated values for the concentrations of iron, 
calcium, and aluminum (Figures 5-7). 

 
To examine the overall performance, a comparative study was made between 

experimental, neural network, and regression models as shown in Figures 8-10. The r2 
values are 0.88, 0.58, and 0.34 times less than those of the regression models, and the 
corresponding RMSE errors are 6.05, 6.40, and 7.58 times more for aluminium, calcium, 
and iron ions, respectively. This reveals that the ANN model performs rather well over 
the whole range of relevant observed ion concentrations. For aluminum, calcium, and iron 
concentrations, respectively, the regression approaches only seem to function well in the 
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range of 45-50 g/m3, 0-30 g/m3, and 0-1 g/m3. 
 

 
 
 

Figure 8: Variation of selected input parameters on output Aluminium concentration 
 

 
 
 

Figure 9: Variation of selected input parameters on output Calcium concentration 
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Figure 10: Variation of selected input parameters on output Iron concentration 
 
5. Effect of Neutralization Ability on Ion Concentrati on: It can be observed from Figure 

11, at nearly 3 pH the aluminium ion concentration is in the range of 42 to 58 g/m3, when 
acidic groundwater interacts with materials. As the experiment progressed, the 
neutralizing ability of the materials increased by releasing the calcium ions (Figure 12) 
and decreasing the aluminium ion concentration in the leachate. It could be due to the 
formation of aluminium hydroxide precipitates [16]. In addition, the formation of iron 
carbonates and iron hydroxide might have increased the pH of the materials in the 
leachate (Figure 13). The regression model was not able to perform for higher ion 
concentrations in the study. 

 

 
 Figure 11: Effect of pH on Aluminium concentration 
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Figure 12: Effect of pH on Calcium concentration 

 
 

Figure 13: Effect of pH on Iron concentration 
 
6. ANN Model Equation for the Selected Ion Concentrations (Cp) Based on generalized 

Neural Network: The benefit of neural networks is that, after training, they can be 
utilized as a quick and accurate tool to estimate the concentration of ions without the need 
for additional batch tests. The drawbacks, on the other hand, include a lack of theory to 
aid in their development and a limited capacity to describe how they employ the facts at 
hand to come up with a solution. The general mathematical form of equation as per the 
ANN relating the batch experimental inputs and the ion concentrations can be written as, 
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where h is the number of neurons in the hidden layer, Ck is the normalized Cp 
value (in the range of -1 to 1), f is the so-called activation function, b0 is the bias at the 
output layer, wki is the connection weight between the eighth hidden layer neuron and the 
single output neuron, bj is the bias at the hth hidden layer neuron, wij is the connection 
weight between the ith input variable and the hth hidden layer neuron, The range of the CP 
value as determined by Eq. (8) is [-1, 1], and thus needs to be denormalized as, 

 
CP = CP model (CP max  – CP  min) + CP  min                         

(9) 
 

where, CP = Predicted model selected ion concentration (g/m3); CP model = The 
model output;     CP max  = The maximum selected ion concentration (g/m3); and CP min = 
The minimum selected ion concentration (g/m3). 

 
7. Proposed ANN Model Paramets Sensitivity Analysis: The sensitivity of neural network 

performance to the selected inputs was investigated to perceive how changes in an input 
variable affect the output variable.Figure 14 shows how sensitive the concentration of 
selected ions was at each of the selected input parameters, and how they would affect the 
changes. As expected, T, pH, and RSSAare the most important factors affecting the 
concentration of ions with an average relative importance equal to 32.21, 36.75, and 
31.04%, respectively. 

 

 
 

Figure 14: Strength of input signal on output 
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8. Non Linear Regression Models for Selected Ion Concentrations: A dependent variable 
and numerous independent variables can be related in a multivariate way using 
regression. The multivariate regression model coefficients for dependent leachate ion 
concentrations are presented in Table 4 and the comprehensive multivariate regression 
model for dependent leachate concentrations is given by, 

 
C = λi+ αι (Τ)  + βi�(pH) + γi(RSSA) +  α1i (T)2  + β1i (pH)2 

+ γ1i (RSSA)2 + α2i (T)(pH)+β2i (T)(RSSA)+ γ2i (pH)(RSSA)                              (10) 
 

where,  T is interaction time (day), pH is the hydrogen ion concentration, RSSA is the 
reactive specific surface area (m2/g). 

 
IV.   SUMMARY ANDCONCLUSIONS  
 

Owing to the advantages of simplicity in experimentation and ease of use in the 
selection of almost cost-free superior reactive materials for the design of permeable reactive 
barriers, which are widely used as passive treatment, for ground water treatment operations, 
batch experimental results were used in this chapter. With the help of batch reactor data, 
neural network-based simulation models for predicting the ion concentration in acidic 
groundwaters were created and tested for applicability. Sensitivity analysis was used to 
evaluate and rank the effects of each desired input variable on the chosen output, indicating 
that the chosen input signals are the important factors influencing the output estimate. 
 

Table 4: Multivariate regression model coefficients for dependent leachate ion 
concentrations 

  

 
 
C = Ion concentration (g/m3) 
 

(RSSA)0.0019(pH) RSSA)0.0002(T)( (pH) 0.0738(T)                 

 (RSSA) 0.00001 1.1931(pH)0.0203(T)                 

 A)0.0034(RSS )22.9693(pHT)(3996.19481.107)g/m(C
222

3
Al

+++
−++

+−−=

  

  (10a) 

(RSSA)0.0147(pH) RSSA)0.0017(T)(  (pH) 0.1934(T)                 

 (RSSA) 0.00059.7983(pH)  0.2867(T)                 

 A)0.3872(RSS  H)103.1703(p  10.0136(T)  229.9974 )g/m(C
222

3
Ca

−+−
−+−

+−+=

  

   (10b) 
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(pH)(RSSA)0.00039647 (T)(RSSA)005-e9138.2 (pH) )0.021968(T                 

 (RSSA) 006-e841.3(pH)0242.0 T)0.0040127(                 

 RSSA)0.0056355(   )0.92682(pH  0.37181(T)  8.992 )g/m(C
222

3
Fe

+++
+++

−−−=

   (10c) 
 
Based On the Study the Following Primary Conclusions Can be Drawn. 
 

• The artificial neural network model (3-4-1) created in this way uses interaction time 
frame, pH, and reactive specific surface area to generalize the desired ion 
concentrations.  All the statistical results confirm that neural networks are precise 
tools in the quantitative study of reactive materials in the complex acid groundwater 
system. Hence the ANNs can be used as a preliminary assessment tool for acid 
sulphate soil remediation. 

• An increase in hidden layer neurons improves network performance up to a certain 
degree, but after that, generalization ability of ionic concentrations drastically 
decreases. 

• The ion concentrations of interest obtained from chosen reactive materials by ANN 
technique shows a good correlation with batch tests (r2 = 0.9964, r2 = 0.9702, and r2 = 
0.9872), leading to the conclusion that ANN is better applicable for complex 
problems than regression methods (r2 = 0.8753, r2 =0.5590, and r2 =0.3359) for 
aluminium, calcium and iron ions, respectively. 

• The structure and parameters of the model are decided by ANNs purely based on the 
data. There is no need to formulate any assumptions or simplify the problem in this 
instance. As new data comes available, ANNs can also be upgraded to produce even 
better results by showing additional training examples. 
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