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Abstract 

 

Since, the beginning of  the  human  

age  man  is  interested  in  develop- ing 

machines. From the stone  age  to  era  of  

artificial  intelligence  we have come a long 

way. Now we have Machine learning 

algorithms i.e. the computer programs which 

can improve themselves through self 

learning. Density functional theory  which  

accquired  a  large  attention of the chemists 

as well as physicists  during  last  decades,  

is  now  cou- pled with ML which can help 

in improving the exchange correlation 

functionals which were  the  major  concerns  

as  far  as  the  accuracy  of the DFT is 

concernerd. In this chapter  a  brief  

introduction  of  the DFT and ML is 

provided with their  combined  application  

in  different fields like heterogeneous 

catalysis, material property prediction etc. 
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I. INTRODUCTION 

 

All branches of chemistry are united by the principles and ideas found in theo- 

retical chemistry[1]. The systematisation, elaboration, and hierarchy-building of 

chemical laws, principles, and norms occur within the context of theoretical chemistry. 

The idea of the connectivity of a molecular system’s structure and properties holds a 

fundamental position in theoretical chemistry. It makes use of mathematical and 

physical techniques to correlate, comprehend, and fore- cast the thermodynamic and 

kinetic properties of chemical systems as well as their structures and dynamics. In its 

broadest meaning, it refers to the expla- nation of chemical processes using theoretical 

physics techniques. In contrast to theoretical physics, theoretical chemistry frequently 

employs semi-empirical and empirical methodologies in addition to approximate 

mathematical tech- niques in order to account for the great  complexity  of  chemical  

systems [2].In recent years, it has mostly focused on quantum chemistry, or using 

quantum mechanics to solve chemical-related problems. Molecular dynamics, statistical 

thermodynamics, theories of electrolyte solutions, reaction networks, polymerization, 

catalysis, molecular magnetism, and spectroscopy are further important components. 

 

The study of chemical structure and the  study  of  chemical  dynamics might be 

considered to be the two main branches of contemporary theoreti- cal chemistry. Studies 

of electronic structure, potential energy surfaces, force fields, vibrational-rotational 

motion, and the equilibrium characteristics of condensed-phase systems and 

macromolecules are all included in the first cate- gory. Bimolecular kinetics, the collision 

theory of reactions and energy transfer, unimolecular rate theory, metastable states, 

condensed-phase dynamics, and macromolecular dynamics are all parts of chemical 

dynamics. Theoretical chemistry can be divided into several branches as discussed: 

 
1. Quantum Chemistry: It is the application of basic interactions from quan- tum 

mechanics to chemical and physico-chemical issues. The most often modelled 

properties include those that are spectroscopic and magnetic. 

 
2.  Computational Chemistry: is the use of scientific computing to chemistry, using 

approximation techniques including force field methods, semiempirical approaches 

(like PM3), density functional theory, and Hartree-Fock and post-Hartree-Fock. The 

most often predicted property is molecular shape. Additionally, computers are able to 

capture and Fourier transform infrared data into frequency information in addition to 

predicting vibrational spectra and vibronic coupling. The projected form is supported 

by a comparison to predicted vibrations. 

 
3. Molecular Modelling:  molecular  structure  modelling  techniques  that don’t 

always use quantum mechanics. Examples include drug design, com- binatorial 

chemistry, protein-protein docking, and molecular docking. The motivating force 

behind this graphical technique is the fitting of shape and electric potential. 

 
4. Molecular Dynamics (MD): applying classical mechanics to model the 

movement of an assemblage of atoms and molecules’ nuclei. Van der Waals forces 

and temperature both influence how molecules in an ensemble rearrange one another. 
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5. Molecular Mechanics (MM): Utilising potentials, MM models the energy 

surfaces of intra- and intermolecular interactions. The latter are often parameterized 

using computations from the beginning. 

 
6. Mathematical Chemistry: Using mathematical techniques, the molecule structure is 

discussed and predicted without necessarily referencing quantum mechanics. With the 

help of the mathematical field of topology, scientists can forecast the characteristics 

of flexible bodies with finite sizes, such as clusters. 

 
7. Theoretical Chemical Kinetics: Study of the related differential equations in the 

theory of the dynamical systems connected to reactive substances, the activated 

complex. 

 
8. Cheminformatics: Often c a l le d  chemo in formatics, is the application of computer 

and informational tools to crop information in order to address chemistry-related 

issues. 

 
9. Chemical Engineering:  The  practise  of  conducting  research  and  development 

on industrial processes using chemistry. This makes it possible to develop and 

enhance both new and existing items as well as manufacturing techniques. 

 

The inhomogeneous electron gas, which consists of a collection of interact- 

ing point electrons travelling quantum mechanically in the potential field of a 

collection of atomic nuclei, is the most common theoretical repre- sentation of solid-

state and/or molecular systems. which, according to the Born-Oppenheimer 

approximation, are static. The employment of approxi- mation approaches, including 

the most fundamental ones—the independent electron approximation, the Hartree theory, 

and the Hartree-Fock theory—is typically necessary to solve such models. Density 

Functional Theory (DFT), is an alternative strategy that has, over the past 30 years or 

more, been more and more popular for solving these issues [3]. This approach has the 

dual benefits of being computationally straightforward and capable of handling a variety 

of issues with a high level of precision. 

 

Since the beginning of time, humans have used a variety of instruments to 

complete various jobs more quickly. The inventiveness of the human mind produced a 

variety of machines. These devices made life easier for humans by allowing them to 

fulfil a variety of demands, such as travel, industry, and com- puting. And among these, 

there is machine learning. Sometimes, even after viewing the data, we are unable to 

evaluate or extrapolate the information. We then use Machine Learning (ML) in that 

situation. The availability of a large number of data sets has increased demand for ML. 

ML is used in many industries to retrieve pertinent data. Learning from the data is the 

goal of ML. How to make robots learn on their own without being explicitly 

programmed has been the subject of numerous studies. Numerous mathematicians and 

pro- grammers use a variety of techniques to solve this problem, which involves large 

amounts of data. 
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As early as the late 20
th

 century, ML was being used in catalysis. One of the 

first studies to employ neural networks to establish a connection between a catalyst’s 

physicochemical parameters and catalytic performance [4]. Fol- lowing Himmelblau’s 

review of the use of Artificial Neural Networks (ANN) in the field of Chemical 

engineering, ANN has found use in a number of cat- alytic processes, including the 

steam reforming and dry reforming of CH4, water-gas shift reactions, and the 

epoxidation of large olefins [5]. Large-scale simulations and their analysis could be 

accelerated to previously unachievable scales with the use of artificial intelligence and 

robust data analysis. For the analysis of such intricate data sets, ML is a fast 

expanding area. In the area of electronic structure simulations, where DFT assumes the 

significant role of being the most popular electronic structure approach, it has recently 

gained traction. As a result, DFT computations place a heavy burden on global aca- 

demic high-performance computing systems. Simulating larger systems is made possible 

by accelerating these with ML, which can also lower the amount of resources needed. 

Consequently, the fusion of DFT and ML has the potential to significantly advance 

applications involving electronic structures, such as the identification of new chemical 

reaction routes and in silico materials [6]. Cal- culations from the electronic structure 

theory support experimental research in chemistry and material science by enabling a 

quantum-level understanding of matter. They are crucial in addressing complex 

scientific and technological issues. Modern, high-performance computational resources 

have in turn made it possible to do extensive simulations of electrical structures. 

However, the ever-growing need for precise first-principles data makes even the most 

effec- tive simulation software impractical. On the other hand, a number of research 

domains have seen a sharp increase in the usage of data-driven ML techniques. These 

techniques are becoming more and more important as they are used to expedite, 

replace, or enhance conventional electronic structure theory tech- niques. DFT is 

frequently the foundation of electronic structure computational workflows. While DFT 

offers a practical compromise between computing cost and accuracy, combining it 

with ML can result in huge speedups. 

 

II.  MACHINE LEARNING: A TOOL FOR PREDICTION 

 

The issue of creating computers that learn automatically through use is addressed 

by ML. The convergence of computer science and statistics, as well as the foundation of 

AI and data science, make it one of the technical domains with the fastest growth rates 

today. ML has advanced recently as a result of the creation of new learning theories 

and algorithms as well as the con- tinual explosion in the accessibility of online data and 

low-cost processing. Science, technology, and business have all adopted data-intensive 

ML tech- niques, which has increased the use of evidence in decision-making in 

numerous fields, such as marketing, manufacturing, healthcare, and financial modelling. 

A ML algorithm’s learning system is composed of three primary components. 

 

1. A Decision-Making Process: ML algorithms are typically used to create a 

prediction or classify data. The algorithm will generate an estimate about a pattern 

in the data based on some input data, which may be labelled or unlabeled. 
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2. An Error Function: It measures the accuracy of the model’s prediction. If there are 

known examples, a comparison can be made to judge the model’s accuracy. 

 

3. A Model Optimisation Process: If the model can match the training set’s data 

points more accurately, weights are modified to lessen the difference between the model 

estimate and the known example. This ”evaluate and optimise” procedure will be 

repeated by the algorithm, with weights being updated automatically, until a 

predetermined level of accuracy is reached. 

Many ML algorithms are frequently employed [7–9]. These consist of: 

 

4. Neural Networks: With a vast number of connected processing nodes, neural 

networks mimic how the human brain functions. Natural language trans- lation, 

picture identification, speech recognition, and image generation are just a few of the 

applications that benefit from neural networks’ aptitude for pattern detection. 

 

5. Linear Regression: Based on a linear connection between various variables, the 

linear regression process is used to forecast numerical values. The method might be 

applied, for instance, to forecast housing values based on local historical data. 

 

6. Logistic Regression: The  supervised  learning  process  known  as  logistic 

regression uses categorical response variables, such as ”yes/no” responses to 

questions, to produce predictions. Applications for it include sorting spam and 

performing quality control on a production line. 

 

7. Clustering: Data can be grouped using clustering, which uses unsupervised 

learning to find patterns in the data. Data scientists can benefit from com- puters’ 

ability to spot distinctions between data points that humans have missed. 

 

8. Decision Trees: Decision trees can be used to categorise data into groups as well as 

forecast numerical values (regression). A tree diagram can be used to show the 

branching sequence of connected decisions used in decision trees. In contrast to the 

neural network’s ”black box,” decision trees are simple to validate and audit, which 

is one of their benefits. 

 

9. Random Forest: By merging the outcomes from various decision trees, the 

machine learning algorithm predicts a value or category in a random forest. 

 

The hundreds of simulations required for some heterogeneous catalysis sce- 

narios cannot be done due to the high cost of DFT calculations. In these strange 

situations, physics-based atomistic potentials have been employed for a long time, 

but they typically lack the necessary accuracy. As a result, there has been an 

increase in interest in using ML to create atomistic potentials using DFT 

calculations [10]. The potential energy of a system of atoms is cal- culated using 

these Machine-learned Atomistic Potentials (MLPs), which are mathematical 

operations. They estimate interaction energies with improved numerical efficiency 

and speed while keeping high accuracy of results since they are typically trained on 

data from QM Modelling techniques like DFT [11]. ML has had considerable 

success in a range of applications over the past few 
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Figure 1: Flow chart representation of a Machine learning process 

 

years, including bandgap property predictions [12], elastic moduli [13], stabil- 

ity analyses of crystals [14, 15], and molecular force-field estimations [16]. The 

figure given below shows the schematic representation of how a ML algorithm 

works. 

 

III. DFT: A GUIDE TO CHEMISTS 

 

Electronic structure computations frequently use the DFT approach because it 

strikes an ideal mix between acceptable accuracy and affordable computational cost. The 

electronic density, or n(r), is the main quantity. The Hohenberg-Kohn theorems [17] 

ensure that the electronic density and the external potential, such as the electron-ion 

potential Vei(r), correspond one to one. This means that any desirable quality may be 

identified as a function of density. The Kohn-Sham density-functional theory (KS-

DFT), the current industry stan- dard for computing electronic structure, has seen 

significant development in recent years [18]. Early DFT approximations relied 

entirely on uniform elec- tron gas models without any empirical characteristics. 

Incorporating density gradients and a few of these techniques resulted in significant gains. 

parameters from fits to atomic data, usually one or two. Even greater advancements were 

made possible by accurate interchange and fitting to molecular data, such as 

experimental heats of formation. However, because there are so many possible chemical 

reactions, this unlocked a Pandora’s Box of possibilities. As a result, there has been a 

recent surge in the number of DFT approximations that have been empirically fitted to 

hundreds or thousands of chemical reference data [18]. DFT has been used in a wide 

variety of applications over the years. This variety developed because it is possible to 

predict the molecule and crystal structures as well as the forces acting on the atomic 

nuclei when they are not in their equilibrium positions by understanding the electronic 

ground-state energy as a function of the locations of the atomic nuclei. DFT is 

currently used frequently to solve issues in atomic and molecular physics, such as the 
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Table 1: Some major historical developments in the field of computational 

chemistry. 

 

Year Event 

1927 First theoretical calculations using valence bond 

theory. 

1940 Revolution in computer technology. 

1950 First semi-empirical calculations were performed. 

1950 The first configuration interaction calculations 

using GTO. 

1956 First HF calculations were done using STO 

basis set. 

1959 The first polyatomic calculations using Gaussian 

orbital. 

1960 First calculation with larger basis set and study of 

minimal basis set. 

1964 Huckel method calculations using LCAO 

approach. 

1970 Use of Computer programs: ATMOL, 

Gaussian, IBMOL, and POLYAYTOM. 

1971 First bibliography of ab initio calculations. 

1973 Development of molecular mechanics, such as 

MM2 force field. 

 

calculation of ionisation potentials and vibration spectra, the study of chem- ical 

reactions, the structure of biomolecules, and the nature of active sites in catalysts, as well 

as issues in condensed matter physics, such as lattice struc- tures, phase transitions in 

solids, and liquid metals.46 DFT turns become a crucial tool while researching bigger 

compounds. With typical quantum chem- istry methods, the computational work 

required increases exponentially as the number of electrons involved increases, whereas 

with DFT it increases roughly as the third power of this number. In actuality, this 

means that although CI can only be used for systems with a few atoms, DFT may be 

applied to molecules with hundreds of atoms. It may be impossible to simply solve the 

noninteracting problem for a complex molecule, thus several techniques are employed to 

make the issue more manageable from a computational stand- point. similar to the 

popular pseudo-potential method, which avoids repeatedly recalculating the wave 

functions of the inactive core electrons. Systems for delivering pharmaceuticals to 

specific bodily parts are known as drug delivery systems. These systems frequently 

include delivery components consisting of biodegradable and bioabsorbable polymers. 

The application of computational material science to the design and development of drug 

delivery materials has greatly benefited by the introduction of DFT. DFT and other 

computer tech- niques are used to circumvent laborious empirical procedures [19]. 

Evolution of the methodological advancements and computer programs in the field of 

computational chemistry is tabulated below: 

 

DFT is one of the most popular computational techniques for heteroge- neous 

catalytic activity prediction. It is well known for its distinctive capacity to accurately 
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simulate the structure of atoms, molecules, crystals, surfaces, and their interactions 

[20]. However, the accuracy of the DFT calculations is dependent upon the accuracy 

of the exchange-correlation functional employed for the estimation of the exchange-

correlation energy, which are still based on certain approximations. ML can help in 

improving of those functionals which in order can result in the results predicted by the 

DFT. The upcoming sections of the chapter discuss the various aspects of 

collaborating DFT with ML in various fields of research. 

 

IV. DFT COUPLED WITH ML: THE UNBEATABLE DUO 

 

The accuracy of the total DFT simulation is mostly determined by the preci- 

sion of the selected exchange-correlation approximation. Exchange-correlation functional 

constructs, but fitting to either experimental or high-level computa- tions data is also a 

typical practise. These have been used for a very long period, particularly in quantum 

chemistry [21]. It follows naturally that similar fits can be performed using ML 

techniques[22]. Here, the electronic density is used as the input quantity for a NN that 

approximates the exact exchange-correlation energy for a system of finite size. 

Automatic differentiation is used to determine the exchange-correlation potential. Since 

standard exchange-correlation func- tionals typically lack nonlocal effects, the resulting 

model includes them with a minor processing burden compared to accurate calculations. 

Similar methods are used in [23], which introduces NeuralXC, a framework for building 

such NN exchangecorrelation functionals, and [24], which uses CNNs to estimate the 

exchange-correlation energy from the density by utilising convolutions of CNN 

architecture to model electronic density. They accurately recreate the B3LYP 

functional exchange. This is crucial because it shows how NNs may derive use- ful 

information from electronic density as the B3LYP functional accomplishes accurate 

exchange by evaluating the KS orbitals rather than density. Build- ing ML functionals 

is not the only method for enhancing exchange-correlation energies. Exchange-

correlation functionals are just one type of density func- tional that can be treated by 

ML. The accuracy of computationally effective OF-DFT simulations largely depends 

on the kinetic energy functional approx- imation selected. It goes without saying that 

ML can help in finding a good functional, and this is a topic of ongoing research [6, 

25–27]. A topical introduc- tion has been provided by Li et. al [28]. Specified restrictions 

are employed to confine ML functionals to improve performance on this task [27]. A 

slightly dif- ferent approach is taken in Reference [29] , which teaches a density 

functional for the entire total energy. In contrast to a direct mapping of atomic locations 

to total energies, it is found [30] that learning electronic density from atomic positions 

and then performing a secondary mapping from electronic density to total energy 

produces findings that are more accurate. Since the KS-DFT energy functional 

contains terms that are just implicit functionals of density, a different mapping is 

required. Similar research is done, but this time it focuses on the exchange-correlation 

energy rather than the total energy [31]. However, the results were contrary to those 

reported by Brockherde et al [30] i.e., the exchange-correlation energy is supplied more 

precisely for a direct mapping. These results may be justified by the fact that indirect 

mappings via the den- sity are more advantageous in extrapolative contexts whereas 

direct mappings perform better elsewhere, according to recent research [32]. However, a 

study based on energy is not the only option available in electronic structure theory. Use 
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of Hamiltonians and ML is done to compute various quantities of inter- est [33, 34]. 

Similar to this, GPR is used to fit potentials on DFT data, which can be utilised to 

enhance computations at lower levels of theory (such density functional tight-binding) 

[35]. Last but not least, ML can be utilised to speed up the numerical treatment of 

DFT by lowering the computational burden of solving the KS equations [36] or by 

locating effective, adaptive basis sets [37]. In the upcoming subsections the 

applications of combined DFT-ML methods is discussed in various fields. 

 

1. DFT-ML Approaches for Lattice Parameters Calculations: Modern 

materials research relies on computational high-throughput investi- gations to find 

novel materials. These investigations are mostly carried out inside the KS-DFT) 

in solid-state physics [38]. Although the many-body Schrödinger  equation  is  

precisely  described  by  DFT,  it  actually  depends  on approximations for the 

exchange-correlation energy. To describe solids’ elastic and electrical properties, one 

must be familiar with their crystal structure. To specifically predict the electrical 

characteristics of materials that have not yet been synthesised, their precise 

prediction is crucial. The PBE approximation and its version PBEsol are most 

frequently used as exchange-correlation functionals in DFT calculations of lattice 

parameters. They are effective at describing the properties of materials, although 

they don’t always match experiments’ accuracy levels. We suggest a crystal 

structure optimisation method that is computationally efficient and based on 

interpretable ML. It is showed that, as a result, PBE- and PBEsolstructure 

accuracy can be consid- erably improved. To describe solids’ elastic and electrical 

properties, one must be familiar with their crystal structure. To specifically predict 

the electrical characteristics of materials that have not yet been synthesised, their 

precise prediction is crucial. The PBE approximation and its version PBEsol are 

most frequently used as exchange-correlation functionals in DFT calculations of 

lattice parameters. They are effective at describing the properties of materials, 

although they don’t always match experiments’ accuracy levels. We suggest a 

crystal structure optimisation method that is computationally efficient and based on 

interpretable ML. It is found that as a result, PBE- and PBEsol- structure 

accuracy can be considerably improved. We examine how well these functionals 

predict lattice parameters and demonstrate how to improve their accuracy using ML. 

The Inorganic Crystal Structure Database’s experimental crystal structures that 

have been matched with PBE-optimized structures kept in the materials project 

database make up our data set. PBEsol com- putations were addes to these data as 

a complement. We show that using straightforward, comprehensible ML models 

can significantly increase the a posteriori accuracy and precision of PBE/PBEsol 

volume estimates. These models can increase PBE unit cell volumes to equal 

PBEsol calculations in accuracy and decrease the latter’s error relative to 

experiment by 35%. The implicit correction of finite temperature effects without 

phonon computations is another advantage of our method [15]. 

 

The accuracy of the quick DU8+ hybrid density functional theory/parametric 

calculations of nuclear magnetic resonance spectra is significantly improved by 

ML, enabling high-throughput in silico  validation  and  revision  of  com- plex 

alkaloids and other natural products. 35 structures of the almost 170 alkaloids studied 
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are altered using the DU8ML approach, the next-generation ML-augmented DU8 

method [39]. 

 

It is essential to create new quaternary semiconductor materials with supe- rior 

qualities in order to speed up the application of quaternary opto-electronic materials 

in the field of luminescence. However, standard trial-and-error tech- niques are 

sometimes time-consuming and ineffective when dealing with a wide range of 

different quaternary semiconductors. The band-gaps of 2180 quaternary 

semiconductors, the majority of which were underdeveloped but environmentally 

friendly, were predicted here using a combination of ML and DFT calculations. The 

model using the random forest technique had an evalu- ation coefficient (R2) of up to 

0.93 in machine learning. Ag2InGaS4, AgZn2In4, Ag2ZnSnS4, and AgZn2GaS4 are 

four new quaternary  semiconductors  with direct band-gaps that were chosen from 

the ML model. The four quaternary semiconductors were then further examined and 

their electronic structures were confirmed by DFT calculations, which showed that 

they had direct band- gaps, a tiny effective mass, a large exciton binding energy, 

and Stokes shift. Our computation has a definite reference value for the research of 

luminous materials and devices and could greatly speed up the discovery of 

innovative opto-electronic semiconductors [40]. 

 

2. DFT-ML Approaches in Thermoelectric Materials: Thermoelectrics are 

employed in a variety of specialised technologies, including wine coolers, hiking 

stoves with mobile phone chargers, and radioisotope ther- moelectric (TE) 

generators that power things like the Curiosity Mars rover. Through waste heat 

recovery, thermoelectrics could also help to lower global greenhouse gas emissions, 

but their current contribution is constrained by the meagre efficacy of devices [41]. 

Another drawback is the presence of rare or hazardous elements in some cutting-edge 

TE materials [42]. Thus, the search for novel TE materials has attracted 

considerable scientific attention lately [43].Recent years have seen a significant 

increase in the use of high-throughput screening based on first-principle calculations 

in the hunt for novel TE materi- als [44, 45]. Many investigations employ 

straightforward models or estimations of lattice thermal conductivity (Kl) and 

concentrate on electrical characteris- tics. This is due, in part, to the high 

computational cost of computing Kl. The expense results from the need to get third-

order force constants from several supercell-based DFT computations in order to 

account for the phonon-phonon interactions resulting from the anharmonicity of 

the lattice vibrations [46]. For predicting Kl, ML techniques are increasingly used in 

addition to first- principles calculations [47]. Additionally, pre-trained ML models 

may be made accessible through practical web-based apps [48]. 

 

3. DFT and ML in Heterogenous Catalysis: Heterogeneous work in catalysis 

is being influenced by ML. Nowadays, the search for optimum catalysts in huge 

combinatory spaces, such as bimetals, is accelerated by combining ML with first-

principle calculation methods. The identification of catalyst output characteristics 

in huge data sets uses inter- atomic capacity gained from ML for accurate and 

quick catalyst modelling. The trend of increasing global energy demands and the 

desire to protect the environment have made it necessary to look for alternatives 
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to fuels based on petroleum. In order to produce hydrogen gas (H2) as a primary 

product or as a product in combination with other gases, such as carbon 

monoxide (CO), as in the case of syngas, research has been conducted into better 

ways of reforming various compounds that contain hydrogen. An alternate renew- 

able energy source is hydrogen. Nevertheless, for the onboard use of hydrogen, 

hydrogen storage is still a key research field [49]. Up until around 20 years ago, the 

majority of research on catalytic reforming was experimental [50]. Since then, 

computational tools, especially DFT, have been applied to the investi- gation of 

the electronic structure of molecules, materials, and processes. DFT calculations 

provide information about heterogeneous catalyst systems that is challenging to get 

through experimental means. The calculations describe the reactivity patterns and the 

characteristics of the transition states of molecules reacting at solid surfaces. In a real 

high-pressure, high-temperature process, a catalyst’s functioning condition is 

characterised using DFT calculations. DFT calculations shed light on the kinetics, 

activity, and reaction mechanism of catalysts in catalytic reactions. The 

hydrogenation of furfural occurs through either a hydroxyalkyl or an alkoxide 

intermediate, according to the results of DFT computations for the reaction path 

on a Cu/SiO2 catalyst at 230-290 

 

C [51]. The predicted energy barriers are of the same order as in experi- 

ments. The accuracy of DFT computing in predicting experimental outcomes is 

very good. A comparison of DFT results and actual results in the semi- 

hydrogenation of acetylene (SHA) in an ethyleneconcentrated stream reveals that the 

PtCu bimetallic catalyst imitates the DFT projections in regard to the electronic 

structures. This was further supported by the catalytic activity and X-ray 

photoelectron spectroscopy [52]. 

 

To enable real-time manufacturing in accordance with feasibility studies, 

modelling the production in any reformation processes is necessary. Computa- tional 

and artificial intelligence have been used in studies of energy engineering for a while 

[53]. Dataset patterns that are hidden from view can be studied using ML, and these 

patterns can then be used to model an objective variable [54]. Computer-based 

method research demonstrates that computational intel- ligence approaches can make 

use of a sizable amount of data that is computed using DFT to achieve a high 

accuracy level [54]. 

 

Based on the photocatalytic degradation of lignin model compounds, a 

collection of lignin-model-compound-photocatalysis conditions and outcomes was 

created. Using input variables that describe the lignin model compound, the cleavage 

dissociation energy and molecular dipole moment, a traditional ML model was able 

to accurately predict selectivity during the photocatalytic cleavage of lignin bonds. 

We initially predicted the photocatalytic breakage of the C-C bonds in lignin using 

the K-nearest neighbour (K-NN), nave Bayes (NB), support vector machine 

(SVM), logistic regression (LR), and random forest (RF) algorithms, with 

accuracy and precision assessed. The classifica- tion prediction performance of 

the RF model was strong, with a prediction accuracy of 0.99. Additionally, by 

integrating DFT and ML, molecular yields were successfully predicted by taking 
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C-C bond cleavage during photocatalytic lignin degradation into account. The total 

feature relevance was found to be 39.22%, with the reaction circumstances being 

found to be more significant than the characteristics of the reactants during the 

photocatalytic breakage of lignin C-C linkages. The risk of a C-C bond breaking is 

reduced when the num- ber of methoxy groups attached to benzene rings in lignin 

increases, increasing the bond dissociation energy. Additionally, it was discovered 

that the bandgap width, followed by specific surface area, which is more significant 

than pore volume and pore size, is the most crucial catalyst property [55]. Using 

the artificial neural network (ANN) and the AdaBoost (AB) algorithms to simu- 

late the syngas composition, Adeniyi et al. examined the steam reforming of biomass 

bio-oil. He came to the conclusion that the two algorithms produced R2¿0.999 

results, and the product selectivity result showed significant data variability 

capture. Overall, for the system under consideration, the ANN pre- dictions 

outperformed the AB predictions in terms of accuracy [56]. In their analysis of 

the CH4 reaction process over a Ni/TiO2 catalyst using DFT, Yang et al. noted 

good carbon tolerance. He focused on the effects of Ni/TiO2 as a catalyst on the 

generation of hydrogen and carbon monoxide while also inves- tigating six potential 

paths for methane reforming processes. The observed results imply that the 

predominant pathway for methane (CH4) reformation is the reaction between 

carbon and the lattice oxygen to produce CO [57]. 

 

4. Correction of Adsorption Energies: For the best and most accurate findings, 

ML is sometimes employed to con- firm DFT computed data[58]. This method is 

used by Okamoto to determine the PtRu bimetal’s ideal composition in order to 

lower the energy required for carbon monoxide adsorption. He first determines the 

adsorption energies. on variously configured PtRu (111) bimetallic slabs, followed 

by the application of multiple regression analysis for the data mining-ML model. 

The estimated DFT data for the identical alloy composition validates that the carbon 

monox- ide adsorption energies on PtRu [59] were correctly predicted. For the 

purpose of correcting system-entrained Alchemical perturbation density functional 

theory (AP-DFT) prediction errors for diverse carbon and oxygen-based adsor- bates, 

three independent support vector regression machine learning models were trained 

using ML [60]. Toyao et al. devised a number of ML techniques to determine the 

binding energies of methane-related molecules on metal alloys [61]. Methane 

activation on metal-organic framework catalysts must be guided by structural 

principles, and Rose et al.’s study of the structure-activity rela- tionship using DFT 

simulations supports this. The investigation was successful in demonstrating the 

inverse correlation between the metal-oxi site’s forma- tion energy and the activation 

energy of methane-x [62]. The problem of CO2 emissions has led to the 

development of carbon capture and storage (CCS), especially bio-route CCS, 

which uses activated carbon derived from biomass to trap CO2. N-doped BAC 

adsorbents’ well-known multi-nitrogen functional groups and microstructure 

characteristics can work together to favour CO2 physisorption. The numerous 

physicochemical characteristics of N-doped BAC were subjected to ML modelling 

in this case as a challenge to identify the as-yet-unidentified mechanism of CO2 

capture. To calculate the in operando effectiveness of microstructural and N-

functionality groups at six situations of pressures ranging from 0.15 to 1 bar at 
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ambient temperature and cryogenic temperatures, a radial basis function neural 

network (RBF-NN) was used. A number of different training algorithms were used, 

and trainbr showed the low- est mean absolute percent error (MAPE), which was 

3.5%. RBF-NN calculates the CO2 capture of BACs as solid adsorbents with an 

R2 range of 0.97-0.99. Additionally, the generalisation evaluation of RBF-NN 

noticed errors, which tolerates 0.5–6% MAPE in 50–80% of all data sets. An 

alternate survey sen- sitivity analysis reveals the significance of several features, 

including nitrogen content (N%), oxidized-N, and graphitic-N as nitrogen functional 

groups, spe- cific surface area (SSA), micropore volume (%Vmic), average pore 

diameter (AVD), and nitrogen content (N%). The physiochemical characteristics 

of N- doped ACs were improved using a genetic algorithm (GA). It suggested a 

value of 9.2 mmol g
−1

 at 1 pressure and 273 K as the ideal CO2 capture. The 

exemplified BACs’ shapes and adsorption energies with CO2 molecules were 

optimised using a combination of the GA and DFT [63]. 

 

V.  POSSIBILITIES AND CONSTRAINTS 

 

Building intricate workflows integrating DFT and ML presents a number of 

technological challenges that must be solved. Any data-driven strategy is, first and 

foremost, wholly dependent on data. With regard to ab initio simulations, Data can be 

exchanged digitally and is expensive to obtain. In light of this, it makes logical sense to 

reuse precalculated data and models in databases. For instance, JARVIS contains 

ready-to-use ML models trained on DFT data in addition to characteristics for almost 

40 000 different  types of materials. The database is continuously growing, which makes 

it easier to create new workflows. Similarly, connected workflows make it easier to 

acquire additional training data [62]. The decisions made in relation to the ML 

techniques are another crucial factor. DFT computations and data can be used with a 

wide variety of ML approaches. Similar to how there are numerous methods for 

encoding data in terms of descriptors. It’s imperative to do research [64–66] to 

determine which of these methods is superior to others. According to Ref. [66], a 

shallow DNN outperformed all other NN types in terms of predicting molecular 

characteristics (CNN, DNN, single-layer NN). Similar comparisons of several 

compositional information encoding schemes for a GB model were made in Ref. [64] . 

None of the methodologies under investigation could pro- vide models that could 

accurately predict the stability of novel materials. In fact, research is still being done to 

generate novel descriptors and methods to express chemical information for specialised 

use cases [67–72]. In the quest for functional groups that may capture CO2, for instance, 

Ref. [67] introduces per- sistent picture descriptors based on ideas from applied 

mathematics to depict chemical structures. In order to compare these descriptors to other 

widely used descriptors, various ML models were trained on data encoded by these 

descrip- tors. SOAP [73], the Coulomb matrix [74], BoB [75], FCHL [76], and 

ACE [77, 78] are common descriptors. This list is not exhaustive, as many ML proce- 

dures represent materials with customised descriptors or just readily available chemical 

data. These publications provide examples of the usefulness of these descriptors. 

References [74–76] learn and forecast atomization energies using their respective 

descriptors and KRR. In contrast, Ref. [73] builds and com- pares GAPs using 

SOAP descriptors, and Ref. [77] builds IAPs based on ACE. To deploy integrated 
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ML-DFT workflows in future applications, transferabil- ity and uncertainty 

quantification must be taken into consideration. Correctly handling such factors lessens 

the requirement for model retraining. The trans- ferability of ML models can be used, as 

Ref. [79] recommends, however there are some restrictions, as shown for modest volume 

changes in the liquid phase. In Ref. [80], the topic of uncertainty quantification, it is 

discussed how to determine whether a prediction can be believed or whether more 

information is required to strengthen the model. 

 

VI. CONCLUSION AND FUTURE PERSPECTIVE 

 

As can be seen, there is a rapid increase in research interest in ML-DFT tech- 

niques, and techniques that directly tackle the electrical structure problem are becoming 

more popular. The number of publications in this field of study is increasing, therefore 

further growth is anticipated. Future research may focus on issues like active learning 

strategies and uncertainty quantification. By doing so, they might increase the 

usefulness of machine learning in computa- tional chemistry and material science. New 

applications, such as large-scale automated materials discovery, multi-scale modelling of 

materials, and digital twins of complex systems, will become feasible with ever-

improving ML-DFT models. Machine learning and the artificial intelligence is the 

future and the future can be great if it holds the hand of the present i.e. DFT firmly. 
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