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PARAMETRIC STUDY OF PHENOMENOLOGICAL 
NUCLEAR POTENTIAL  
 
Abstract 
 

 We have constructed an optical 
potential by considering a family of 
potentials developed by J. N. Ginocchio. This 
phenomenological potential is used for 
analysing experimental data of nuclear 
scattering and fusion. The potential enables 
us to reproduce angular distributions of 
experimental scattering cross-sections in 
wide angular ranges. Our proposed nuclear 
potential deals in ten parameters. The study 
of change in potential shape with variation of 
parameters educates us to theoretically 
reproduce experimental results and explain 
scattering cross-sections and fusion cross-
sections of heavy-ion collision systems.  

 
Key Words: heavy-ion collision, optical 
potential, potential parameters  

 

Authors 
 
Kamala Kanta Jena 
P. G. Department of Physics  
Bhadrak Autonomous College 
Bhadrak, Odisha, India. 
 
Bidhubhusan Sahu 
School of Applied Sciences 
KIIT Deemed to be University 
Bhubaneswar, Odisha, India. 
 
Santosh Kumar Agarwalla 
P. G. Department of Physics  
Fakir Mohan University 
Balasore, Odisha, India. 
 
 
 
 

 
  



Futuristic Trends in Physical Sciences 
e-ISBN: 978-93-5747-725-3 

IIP Series, Volume 3, Book 5, Part 3, Chapter 3 
PARAMETRIC STUDY OF PHENOMENOLOGICAL NUCLEAR POTENTIAL  

 

Copyright © 2024 Authors                                                                                                                        Page | 161  

I. INTRODUCTION  
 
The nucleus-nucleus collision or nucleon-nucleus collision is a many-body system of 

complex nature. It is not easy to handle such many-body systems. That is why it should be 
reduced to one body problem for easy handling. Therefore we describe the nucleus-nucleus 
collision by means of a one-body complex potential. The complex potential is known as 
optical potential [1, 2]. The many-body nuclear interaction is thus replaced with a complex 
nuclear potential. The Schrodinger equation can be easily solved for the effective potential of 
two colliding (target-projectile) nuclei in optical potential, but it is difficult to solve 
Schrodinger equation of a many-body system of complex nature such as nucleus-nucleus or 
nucleon-nucleus collisions.  
  
 There are three broad regimes of energy in which people perform experimental works, 
namely, (a) low and medium energy regime, (b) intermediate energy regime and (c) high 
energy regime. Most of the nuclear properties are explored with the help of nucleus-nucleus 
scattering at low energy regime. Experimental results of scattering systems are analysed by 
various models. The models may be macroscopic and microscopic in nature. The optical 
model potential has been a well-accepted method to analyse experimental results of nucleus-
nucleus or nucleon-nucleus scatterings for exploring nuclear properties. Various 
phenomenological nuclear potentials are used in the analysis of optical models. An optical 
model can also be extended to analyse many complicated nuclear phenomena [3, 4].  
 
II. THEORETICAL FORMULATION 
  
 If the effective potential for the two colliding (target-projectile) nuclei in optical 
potential is denoted by Veff(r) and the two body system is reduced to one-body problem with 
reduced mass , then we can write the Schrodinger equation for the reduced system as 
described below. 
 

−
ħ

μ
∇ + V (r) (r⃗) = E (r⃗)   (1) 

 
 The effective potential Veff(r) is an optical potential describing nuclear interactions. 
Here, (𝑟) represents the wave function in the presence of potential. The optical potential 
essentially contains Coulomb potential and nuclear potential. When target-projectile system 
is reduced to one-body problem, we get angular and radial parts. In the rotating frame of 
reference, an outward centrifugal force acts on the reduced mass. In order to keep the mass in 
its orbit, work must be done against the centrifugal force for which the mass gains potential 
energy at the expense of its kinetic energy. The centrifugal potential is nothing but the 
angular part of the kinetic energy of the reduced mass. Taking contribution of centrifugal 
force into consideration we have the effective potential as   
   

Veff (r) = VC(r) + VN (r) + VCF  (2) 
 

 Here, VC(r) represents the Coulomb potential, which obeys inverse square law, i.e.,  
VC(r)  1/r2. The other term VN(r) represents the nuclear potential. This potential arises due to 
strong, attractive and short range nuclear force. The last term VCF is kept to take care of the 
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centrifugal potential. This is may be represented as l(l+1)ħ2/2r2. Here the reduced mass  
can be expressed as 𝜇 = , where mP and mT are masses of projectile and target. 

 
 The nuclear potential VN(r) is complex in nature. The complex potential can be 
described by  
 
   VN (r) = Vn (r) + i Wn (r)    (3) 
  
Where Vn(r) is real the part and Wn(r) is the imaginary part of the complex potential.  Real 
part Vn(r) of the nuclear potential is obtained from one-dimensional attractive Ginocchio 
potential [5] developed by Joseph N. Ginocchio, in which potential function v(r) is described 
by Ginocchio as 
 

 v(r) = − ( + 1)(1 − 𝑦 ) +


5 1 −  y − 7 −  y + 2 (1 − y )  (4) 

  
Here parameters  and  are dimensionless. Parameter   measures depth and  is related to 
shape (flatness) of potential. The function y(r) can be related to variable r as follows. 
 

  𝑟 =


arctanh 𝑦 − 1 − 𝑦 arctanh 1 − 𝑦 y    … … (5) 

  
The potential function in fact represents a family of potentials. The constituent potentials 
have different depths and shapes. The nuclear part VN(r) of the effective potential can be 
expressed [5, 6] by :  
 

V (r) =
−V  [(B − iW ) + (B − B + iW )(1 − y )] +     if   0 < 𝑟 ≤ R

−V  B (1 − y ) +  ,                   if       r > R
  

 
The real part can be separated from the above relation to get the expression for Vn(r) as, 
 

V (r) =
−V  [B + (B − B )(1 − y )] +     for    0 < 𝑟 ≤ R

−V  B (1 − y ) +                          for      r > R
    (6) 

 where    =


5 1 −  y − 7 −  y + 2 (1 − y ) 

 and     =


5 1 −  y − 7 −  y + 2 (1 − y ) 

  
 The parameters V01 and V02 represent potential strength in MeV. Again the 
parameters V01, B0, B1 and W0 specify the potential for region r  R0. Here, V01 specifies the 
strength of potential in that region. On the other hand, parameters V02, B2 and W2 specify the 
potential for region r > R0. The parameter  basically gives information regarding flatness of 
the potential. Now, y1 and y2 are the function of radial variable ‘r’. These can be obtained as 
follows. 
 

 


𝑡𝑎𝑛ℎ y − 1 −   𝑡𝑎𝑛ℎ  y   1 −  = (𝑟 − 𝑅 )
ħ
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or, 


𝑡𝑎𝑛ℎ y − 1 −   𝑡𝑎𝑛ℎ  y   1 −  = (𝑟 − 𝑅 )𝑏 = 𝜌  

 
 

The parameter bn is given as, 𝑏 =
ħ

 .  Therefore, 𝑏 =
ħ

,         𝑏 =
ħ

 

  
In the potential expression, the parameter bn (n = 1, 2) is the slope parameter. The ranges of 
n and yn can be clearly mentioned with variable r as follows. 
  
For  r  (0, R0],  1  ( – b1R0, 0]  and y1  ( – 1, 0]. 
 For  r  (R0, ],  2  (0, ]   and y2  (0, 1]. 
  
Near the surface at r = R0, we have  y1 = (r – R0) b1 = 0. Similarly, at r = R0, we have  y2 = (r 
– R0) b2 = 0. Putting value of y1 = 0 in Eq.6, we get the height of barrier at r = R0 as,  
 

𝑉 (𝑟 = 𝑅 ) = −V  B +  = −V  B +
1 − 

2
= −V  

 
Putting the value of y2 = 0 in Eq.6, we get the height of barrier at r = R0 as,  
 

𝑉 (𝑟 = 𝑅 ) = −V  B +  = −V  B +
1 − 

2
= −V  

 
 We have to match both the results at r = R0 to create single barrier of height VB (in 
MeV) at position  r = R0. Thus, we can have the Barrier height VB as,  
 
  VB = VB1 = VB2 
 

i.e.,  V  B +


= V = V  and  V  B +


= V = V  

 

Then,  V =
 

   and  V =
 

 

  
 The parameters n and Bn are important, because n controls flatness of the potential, 
when Bn decides the range of the potential. If we put the condition, 1=1 and 2=1, we will 
get, 1 = 0 and 2 = 0. The zero values of 1 and 2 will give, 
 

  V =   and V =  

  
Thus, real part of nuclear potential Vn(r) assumes the expression as described below. 
 

 V (r) =
− {B + (B − B )(1 − y )}     for    0 < 𝑟 ≤ R

− V (1 − y )                                 for      r > R

    ... (7) 
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Putting  n = 1 in the expression of n, i.e., 

 𝜌 =


𝑡𝑎𝑛ℎ y − 1 −   𝑡𝑎𝑛ℎ  y   1 −  = (𝑟 − 𝑅 )𝑏 , we get,

  tanh –1 yn = (r – R0) = n or,  yn = tanh (n) 
 
 
Using the relations y1 = tanh (1) and y2 = tanh (2) in Eq.7, we obtain 
 

 V (r) =
− B + (B − B ) 1 − tanh ρ              for    0 < 𝑟 ≤ R

− V 1 − tanh ρ                                          for      r > R

  

   =
− B + (B − B ) sech ρ              for    0 < 𝑟 ≤ R

− V  sech ρ                                          for      r > R
  

or, V (r) =
− B +

ρ
,                               for   0 < 𝑟 ≤ R

−
ρ

,                                  for   r > R

   .(8) 

  
 The parameter λ is related to shape of potential. The barrier flatness is controlled by 
lambda (). Although 0 < λ < ∞. We choose λ = 1 in order to get smooth shape which can 
serve our purpose to analyse various results. Sahu et al. [7] have discussed in detail about the 
variation of this parameter of the potential  
 
 We have mentioned a slope parameter bn earlier. This slope parameter is defined 

as  𝑏 =
 

ℏ
=

 

ℏ
 and VB is the barrier height in MeV at r = R0, where R0 is the 

radial distance. Parameter B0 controls potential depth at the origin r = 0, whereas, parameter 
VB is related to the potential depth at R0 position. VB controls parameter bn as well. The slope 
parameter is also affected by parameter Bn on either side of R0.  
  

Our potential possesses an inbuilt non-trivial neck-formation. For a given energy if 
we vary the amplitude of wave function with radial distance, then it does not possess any 
discontinuity at position r = R0. The potential consists of two analytically solvable regions. 
One is inner (volume) region and the other is outer (surface) region. The slopes of volume 
region and surface region are taken to be b1 and b2 respectively. The two regions are 
smoothly joined near r = R0. The location where the volume and surface regions meet is 
analytically solvable. Schrodinger equation can also be solved in this region [8, 9, 10]. Both 
the regions smoothly coincide here. The derivatives respect to ‘r’ have the same value (zero) 
at the point [11]. The smooth continuation nature of wave function justifies the physical 
nature of adopted nuclear potential for analysing heavy ion collisions.  
  
 As stated earlier, the nuclear potential has real and imaginary parts. Imaginary part 
has similar structure. The strength of real part differs from that of imaginary part. Following 
the structure of real section in Eq.7 and Eq.8, the imaginary part is given as, 
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 W (r) =
− {W + (W − W )(1 − y )}       for    0 < 𝑟 ≤ R

− [W (1 − y )]                             for      r > R
   (9) 

 
  
 With the substitution of   yn = tanh (n), V01W = VBW /W1 and V02W = VBW /W2 the 
imaginary part of the nuclear potential may be expressed as,  
 

 W (r) =
−V W +

ρ
,         if 0 < 𝑟 ≤ R

−V
ρ

,              if r > R

    (10)  

  
  
 Two nuclei, namely, projectile (P) and target (T) interact in the process. They behave 
as a uniformly charged sphere. The radius (RC) of that sphere is known as reduced radius and 
is represented as RC = rC (AP

⅓ + AT
⅓). The Coulomb potential VC(r) arises due to these two 

interacting nuclei involved in the scattering system. The potential can be given by 
 

 V (r) =
 

3R − r ,   if 𝑟 < R

,                          if r ≥ R

    ... ... (11) 

  
 The atomic numbers in the above expression are denoted by ZP and ZT respectively 
for the projectile nucleus and the target nucleus. In the expression of reduced radius, rC is the 
Coulomb radius parameter, AP is the mass number of projectile nucleus and AT is the mass 
number of target nucleus. The value of the Coulomb radius parameter (rC) is taken within the 
range from 1.2 fm to 1.4 fm while analyzing different collision systems.  
 
III. STUDY OF PARAMETERS OF THE OPTICAL POTENTIAL 
  
 The proposed nuclear potential deals in ten parameters. The parameters are R0, VB, 
B0, B1, B2, R0W, VBW, W0, W1 and W2. Five parameters, namely, R0, VB, B0, B1, and B2 are 
used for the real part, whereas, the other five parameters R0W, VBW, W0, W1, and W2 are used 
for the imaginary part of the complex optical potential. All these parameters simultaneously 
help us theoretically reproduce different experimental results in different energy ranges. They 
also explain angular distribution in scattering cross-sections as well as fusion cross-sections 
of different scattering systems. 
 
1. Parameters of Real Part: Real part Vn(r) of the potential VN(r) is represented in Fig.1. It 

has two parameters B0 and VB to specify the depths of potential. Parameter B0 gives 
potential depth at origin, r = 0. Parameter VB describes the potential depth at r = R0. 
Therefore, the depth of attractive potential well can be increased by increasing the B0 
value. Similarly, the depth of neck from the zero-line can be altered with the variation of 
VB. Greater the magnitude of VB, the bigger will be the depth of neck-structure from the 
zero-line. The non-trivial structure (neck formation) occurs at the surface region around r 
= R0. The distance from the origin to the location of this non-trivial structure is R0. The 
location of the neck-structure is dependent upon R0 value. The position of the neck-
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structure is shifted towards right when the value of R0 increases, and shifted towards left 
when the value of parameter R0 decreases. 
 

 
    
   Figure 1: real part    Figure 2 : imaginary part 
  

Figure 1: Representation of real part of potential (VN). Real part has five 
parameters, i.e., VB, B0, R0, B1 and B2. Parameters VB and B0 represent depths of the 
potential. B1 and B2 are the slope parameters. The parameter R0 represents nuclear radius. 

  
Figure 2: Representation of imaginary part of potential (VN). It has five 

parameters, i.e., VBW, W0, R0W, W1 and W2. Parameters VBW and W0 specify depths of the 
potential. W1 and W2 are the slope parameters. The parameter R0W represents nuclear 
radius. 

 
As far as B1 and B2 are considered, these are connected with slope parameter. 

Parameter B1 controls slope of potential curve in region r < R0, whereas, parameter B2 
controls slope of potential curve in region r > R0. If we increase B1, then the value of 1 
will increase, and the slope of the lower part of the curve will decrease. If we decrease B1, 
then the value of 1 will decrease, and the lower part of the curve will be steeper. The 
upper part of the curve also behaves in similar fashion. When B2 increases, the value of 2 
increases, and hence the slope of the upper portion decreases. When B2 decreases, the 
value of 2 decreases, and the upper portion becomes more steep. Thus, Bn is directly 
proportional to n. 

 
2. Parameters of Imaginary Part: Imaginary part Wn(r) of the potential VN(r) is 

represented in Figure.2. It has two parameters W0 and VBW to control the depths of the 
potential. The parameter W0 describes potential depth at origin, r = 0. Other parameter 
VBW describes the potential depth at r = R0. Therefore, the depth of attractive potential 
well can be increased by increasing the W0 value and the depth decreases with fall of W0. 
Similarly, the depth of analytic junction from the zero-line can be altered with the 
variation of VBW. If the magnitude of VBW increases, then the depth of neck-structure 
from the zero-line increases. The distance from the origin to the location of this non-
trivial neck-structure is given by R0W. The location of the neck-structure shifts towards 
right when the value of R0W increases, and shifts towards left when the value of R0W 
decreases. 
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The other two parameters W1 and W2 behave in similar fashion as that of real 
potential parameters B1 and B2. The parameters W1 and W2 describe the inclinations of 
the lower portion and the upper portion of the potential curve. So these are connected to 
the slope parameter. Parameter W1 controls slope of the potential curve in region r < R0, 
whereas, parameter W2 controls the slope in region r > R0. If we increase W1, then the 
value of 1 will increase, and the lower portion will move away from vertical line and 
incline more towards the horizontal line. Thus, the slope of the lower part of the curve 
will decrease. If we decrease W1, then the value of angle 1 will decrease, and 
simultaneously the lower part of the curve will be steeper. The upper part of the curve 
also behaves in similar fashion. When W2 increases, the value of angle 2 increases, and 
hence the slope of the upper portion decreases. In the similar fashion, when W2 decreases, 
the value of 2 decreases, and the upper portion becomes more steep. Thus, the slope 
parameter Wn is directly proportional to n. 

 
3. Parameters of Effective Potential: The effective potential explicitly depends on five 

parameters, namely, R0, VB, B0, B1 and B2. The other parameters R0W, VBW, W0, W1 and 
W2 have no effect on the effective potential. The effects of those five parameters, namely, 
R0, VB, B0, B1 and B2 on the effective potential are discussed in detail in this chapter. The 
effective potential Veff(r) is represented in Fig.3. The physical description of potential 
parameters is depicted in the figure. The attractive potential-well is shown with a depth 
B0, when the depth of neck-formation from the maximum of surface part is determined by 
the parameter VB. The slope parameters B1 and B2 are also shown separately. R0 locates 
the non-trivial structure from the origin. 

 
Figure 3 : The figure represents the effective potential. Parameters, i.e., VB, B0, R0, B1 and B2 
are physically shown in the figure. The parameters VB and B0 are related to the depths in the 
potential, whereas, B1 and B2 are the slope parameters. The parameter R0 decides the location 

of non-trivial structure from the origin. 
 

 Effect of R0 on Effective Potential: The non-trivial structure (neck formation) occurs 
at the surface region around r = R0. The distance from the origin to the location of this 
non-trivial structure is given by R0. The location of the neck-structure shifts towards 
right when the value of R0 increases, and shifts towards left when the value of R0 
decreases. This is shown in Fig.4 with three different values of parameter R0, i.e., R0 
= 6 (blue line), 7 (red line), and 8 (black dash). The depths of potential at the origin 
remain the same for all values of R0. The three curves are almost parallel, which 
indicates that the corresponding slopes remain unchanged. 
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  Figure 4 : parameter R0     Figure 5 : parameter B0 
  

 Figure 4 : Plot showing the effect of parameter R0 on the effective potential. 
Three curves represent effective potential for three different values of R0 parameter. 
They are R0 = 6 (blue line), R0 = 7 (red line), and R0 = 8 (black dash). 

  
 Figure 5 : Plot showing the effect of parameter B0 on the effective potential. 
Three curves of different shapes represent the effective potential for three different 
values of B0 parameter, namely, B0 = 8 (blue line), B0 = 18  (red line), and B0 = 28 
(black dash).  

 
 Effect of B0 on Effective Potential: The parameter B0 specifies the depth of the 

effective potential. Particularly, the potential depth at origin r = 0 is affected by B0 
value. The depth of attractive potential-well can be increased by increasing B0 value, 
which is evident from the three different curves obtained for three different values of 
B0. The variations in the shape of potential are explicitly presented in Fig.5. The 
dashed curve (black) is shown for B0 = 28. The depth of red curve drawn for B0 = 18 
at the origin is less than that of black curve. Further, the potential level (blue line) for 
B0 = 8 is above the level of other two potentials at the origin.  

 
 Effect of VB on effective potential: The parameter VB specifies the potential depth at 

r = R0, where the non-trivial neck-formation is located. The depth of non-trivial 
structure from the maximum of surface part can be altered with VB value. More the 
magnitude of VB, more will be the depth of neck-structure from the maximum. This is 
evident from the Fig.6 in which three curves are represented for three different values 
of VB. When the curves are compared for parameter values VB = 4, VB = 6 and VB = 
8, the depth for the highest VB value is found maximum, which is represented by 
black dash. The curve (blue) with lowest VB is found to have the minimum depth. The 
curve (red) for intermediate value VB = 6 finds its place between black and blue 
necks.  
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 Fig.6 : parameter VB   Fig.7 : parameter B1          Fig.8 : parameter B2 
 

 Fig.6 : Plot showing the effect of parameter VB on the effective potential. 
Three curves of different colours represent the effective potential for three different 
values of the parameter, i.e., VB = 4 (blue line), VB = 6  (red line), and VB = 8 (black 
dash). VB determines the depth of non-trivial structure from the top of surface part. 
 
 Fig.7 : Plot showing the effect of parameter B1 on the shape of effective 
potential. Six different curves represent the effective potential for six different values 
of the parameter, i.e., B1 = 2, 4, 6, 100, 1000 and 10000. Parameter B1 determines 
slope of the lower part. 
 
 Fig.8 : Plot showing the effect of parameter B2 on the shape of effective 
potential. Six different curves represent the effective potential for six different values 
of the parameter, i.e., B2 = 2, 3, 4, 100, 1000 and 10000. Parameter B2 determines 
slope of the upper part.  

 
 Effect of B1 on effective potential: The parameter B1 is related to the slope of the 

lower (volume) part, as it controls the slope of potential curve in region r < R0. If we 
increase the value B1, then the value of 1 (Fig.3) will increase in clockwise sense. 
Thus the slope of lower part decreases with rise of B1 value. If we decrease B1, then 
1 will decrease making the lower part steeper. With B1 = 0, the lower portion of the 
curve (r < R0) vanishes and the upper portion only appears. The lower portion only 
changes with B1 without altering the upper portion (r > R0). Different orientations of 
the lower portion imply that B1 is directly proportional to 1 for non-zero B1. 

 
 Effect of B2 on Effective Potential: The parameter B2 is related to the slope of the 

upper (surface) part. It controls the slope of potential curve in region r > R0. If we 
increase the value B2, then the value of 2 (Fig.3) will increase in clockwise sense. 
Thus the slope of upper part decreases with rise of B2 value. If we decrease B2, then 
2 will decrease making the upper part steeper. With B2 = 0, the upper portion of the 
curve vanishes and the lower portion only appears. The upper portion only changes 
with B2 without altering the lower portion. Different orientations of the upper portion 
imply that B2 is directly proportional to 2 for non-zero B2. 
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IV. CONCLUSION 
  

We introduce some basic concepts of the optical model. The idea of optical model 
was introduced long back in late 40s. Interestingly, this simple theory is still used for many 
types of common applications. The optical model is a general nuclear reaction model that is 
proposed to explain heavy-ion collision phenomena. We use an optical potential of complex 
nature developed from a versatile Ginocchio potential. It has ten different parameters, five 
each for real and imaginary parts. We study the effect of all those parameters on the shape of 
the potential. The detail study parameters help us compute scattering and fusion cross-
sections theoretically in order to reproduce experimental data. Therefore, we can explain 
various experimental results.   

 
 The potential has non-trivial behaviour at r = R0. This arises due to presence of two 
different parts, i.e., surface part and volume part. This small disturbance has been helpful for 
us in explaining diffelrent complicated results of scattering experiments. In particular, the 
region r = R0 has been taken as the sensitive region. Therefore, we check the sensitivity of the 
optical potential for different systems in our works prior to explaining experimental results.  
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