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Abstract 
 
 In the world of Biotechnology, Next-
Generation Sequencing (NGS) has emerged 
as a revolutionary technology with profound 
implications for scientific research, 
diagnostics, and therapeutic development. 
This chapter explores the central role played 
by NGS in revolutionizing biotechnology 
through its remarkable advancements and 
diverse applications. Beginning with a 
discussion of the foundational principles 
and evolution of NGS, it highlights the 
technology's accessibility, working, and 
making high-throughput sequencing a 
ubiquitous tool across multiple scientific 
disciplines. Further, the chapter delves into 
the myriad applications of NGS, from 
unraveling the intricacies of the human 
genome and deciphering genetic variations, 
RNA sequencing, role in epigenetics, and 
facilitating investigations in agriculture and 
environmental science. It underscores 
NGS's transformative power in advancing 
scientific discovery and reshaping 
healthcare and beyond. 
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I. INTRODUCTION 
 
 DNA sequencing methods have evolved greatly in recent years due to the advent and 
rapid evolution of next (NGS), also known as massively parallel sequencing [1]. NGS 
technologies have significantly transformed high-throughput genomics research, offering up a 
plethora of new fields of study and cutting-edge applications [2]. NGS technology has 
demonstrated tremendous promise for biologists and physicians [3]. Rapid advances in next-
generation sequencing (NGS) technologies in recent years have enabled researchers to 
generate large numbers of sequence reads at significantly lower costs, allowing for 
unprecedented expansion of the scope of genome-based research projects while also 
revolutionizing biological and biomedical research, including studies of human disease [4-5]. 
Furthermore, as NGS technologies become more inexpensive, they are replacing micro array-
based genotyping approaches that are confined to interrogating regions of known sequence 
variation [5]. This capability enabled numerous successful applications, the first of which was 
whole-genome sequencing (WGS), a method for sequencing the complete genome. It offers 
the most comprehensive landscape of genomic information and associated biological 
implications. Next-generation sequencing technologies are increasingly being applied in a 
range of disciplines. Their power stems from the ability to collect massive volumes of data 
and discover unique and important information about the human genome [6]. The term 
"NGS" refers to a group of methods that produce millions of short read sequences more 
quickly, more affordably, and throughput-efficiently than Sanger sequencing. The majority of 
NGS-based techniques that investigate genomic variation and its link to phenotypes employ a 
case-control study design with unrelated individuals. Because patients and controls have 
genetically distinct ancestries, these study designs are subject to population stratification bias 
(PSB) [7]. The NGS platforms that are currently available use several approaches to achieve 
high-throughput sequencing. The various ways of sequencing have an impact on the number, 
quality, and variety of sequencing applications. The extraction of genomic DNA from test 
samples is usually the first step in a normal NGS run. Next comes library preparation, which 
comprises DNA fragmentation, adaptor ligation, adaptor sequencing, sample enrichment, and 
sequencing. [8]. There are several NGS systems available right now [9]. Sanger sequencing, 
sometimes known as 'first-generation' sequencing, has been substantially displaced in recent 
years by technologies for 'next-generation' sequencing (NGS). It allows for the identification 
of biomarkers for early detection and personalized treatment. Next-generation sequencing 
(NGS) has altered clinical research as well as basic and applied sciences. The NGS allows for 
the generation of millions of data points at a lower cost. NGS has changed not only genome 
sequencing and personal therapy, but also previous genome research. The application of a 
technique that aids in establishing the amount and order of nucleotides present in the DNA of 
a certain organism is known as sequencing. DNA sequencing provides essential knowledge to 
several biological study fields as well as other industries like as biotechnology, forensic 
science, and biological systematic. The odd arrangement of bases has a significant impact on 
health, such as how we respond to a certain illness and the type of treatment necessary to cure 
it. NGS is a type of DNA sequencing technique that identifies the sequence by using parallel 
sequencing of multiple small segments of DNA [10]. High-throughput technology is quick 
and produces a large amount of data, far more than the Sanger technique; it is also less 
expensive. Third-generation sequencing is comparable to NGS in many ways, however 
unlike NGS; it employs single DNA molecules as a template rather than amplified DNA. As 
a result, third generation sequencing may eliminate mistakes in DNA sequence that occur 
during the DNA amplification procedure in the laboratory [11]. 
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High-throughput technology is faster and produces significantly more data than the 
Sanger procedure; it is also less expensive. Third-generation sequencing is similar to next-
generation sequencing in many aspects, however unlike NGS; it uses single DNA molecules 
as a template rather than amplified DNA. As a result, third generation sequencing may erase 
errors in DNA sequence that occur during the laboratory DNA amplification method [11]. 
 
II. STEPS INVOLVED IN NEXT GENERATION SEQUENCING 
 
Step 1: Extraction of Sample: Any DNA or RNA-producing sample can be used for NGS. 
Depending on the starting material, there are different extraction methods that can be used. 
Each extraction method has been improved to yield the best quality and most nucleic acid 
from the relevant sample type. After extraction, evaluate the quantity and quality of DNA or 
RNA since successful sequencing requires high-quality starting material [12]. 
 

 
 
Figure 1: Figure shows various steps involved in NGS. The first step involves extraction of 
the genetic material to be sequenced followed by Step 2 which is library preparation. In Step 
3, the library is sequenced followed by analysis in Step 4.  
 
Step 2: Library Preparation: These are the steps required for creating a sequencing library 
from your RNA or DNA sample:  
 

• Amplification to build a pool of target sequences of adequate size; and  
• The incorporation of adapters for sequencing that will eventually connect to the NGS 

platform.  
 
If RNA is utilized as the initial template, reverse transcription to cDNA is required. 

PCR amplification generates a library of DNA fragments of precise sizes that are compatible 
with the sequencing system to be used. Sequences of interest, which can range from the entire 
genome to specific RNA transcripts, are combined to create primers. Amplicons, also known 
as amplified DNA or cDNA fragments, are bound to particular oligonucleotide sequences at 
the adaptor ligation stage so that they can interface with the surface of a sequencing flow cell. 
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A unique identity, or barcode, is also ligated to the amplicon if a large number of samples are 
to be sequenced in a single run. The resulting libraries can then be combined into a single 
sequencing run and "demultiplexed" during the analysis of the data. [13].  
 
Step 3: DNA Sequencing: An NGS platform is used for parallel sequencing. The sequencer 
"reads" the nucleotides one by one after loading the library. The amount of reads generated is 
determined by the sequencing platform and kit utilized. Pyrosequencing, sequencing by 
ligation (SOLiD), sequencing by synthesis (SBS - Illumina), and Ion Torrent sequencing are 
a few of the NGS methods that have been developed [14].  
 
• Platforms of Illumina: Several sequencing approaches exist, despite the fact that all 

NGS platforms sequence millions of tiny fragments of DNA or cDNA. Some systems can 
generate more reads or longer reads than others. Illumina invented and popularized the 
most frequently used and successful sequencing technique. Illumina sequencers make use 
of a glass flow cell that has been coated with millions of complementary Oligonucleotides 
to the sequencing adaptors. Each library fragment is amplified after hybridizing with the 
primers, resulting in millions to billions of clonal clusters. The fluorescently labeled 
nucleotides are then employed to create a complimentary strand for each piece. The flow 
cell is photographed after each labeled nucleotide is injected, and the fluorescence from 
each cluster is recorded. The template sequence is determined by the wavelength and 
intensity of the fluorescence emission [15].  

 
Step 4: Analysis of Data and Alignment: Following the completion of the sequencing 
procedure, particular software is utilized to make sense of the massive amount of data 
collected. Variant annotation can be used to connect variants to known genes or regulatory 
regions once data have been matched to a reference genome [16]. The use of NGS in 
healthcare, as well as variant identification and numerous gene panels will be discussed. A 
cohesive section discussing the essential Next Generation Sequencing characteristics in the 
clinic should be useful for newcomers, scientists, researchers, and health care providers who 
translate genetic information into genomic medicine [17]. 
 
• Clinical Applications: NGS has recently enabled greater understanding of genetic 

disorders and has emerged as a critical technological innovation in the field of detection 
and medical practice. NGS enables the examination of several parts of the genome in a 
single reaction, and it has been demonstrated to be an affordable and effective tool for 
investigating genetic disorders in individuals. NGS-generated genomic data has 
significant implications for medical practice, including the accurate identification of 
disease biomarkers, the detection of inherited disorders, and the finding of genetic factors 
that may help predict drug reactions [18]. However, clinical adoption guidelines for NGS 
are still being contested, restricting its application in the genetic clinic. Technology of 
sequencing is used in several molecular diagnostic approaches, single- and multi-gene 
panel tests, cell-free DNA for non-invasive prenatal testing, and whole-exome and whole-
genome sequencing (WES and WGS) are examples of such assays. Due to the recent use 
of NGS as a diagnostic tool, questions about when to order, who to order from, and how 
to interpret and inform the patient and family of the results have come up. As a result, in 
order to identify which method is most suited to your scenario, you must first grasp its 
application, strength, and limitations [19]. 
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• Panels of Multi-Genes: The traditional method is still highly effective for many 
ailments. Testing of single-gene is recommended when a patient's clinical symptoms are 
typical for a specific condition and the link between the disease and the individual gene is 
well established with little locus heterogeneity [20]. However, due to clinical diversity 
and genetic locus heterogeneity, many genetic disorders, X-linked intellectual disability, 
congenital muscular dystrophy, epilepsy, and cancer risk in families with unusual 
phenotypes are a few of the more challenging diagnoses, along with cardiomyopathies. 
[21]. The process of diagnostic has concluded, with clinical evaluation followed by 
sequential laboratory testing, the majority of which were negative. Undiagnosed genetic 
illnesses (some examples include developmental delay/cognitive disability and autism 
spectrum diseases) have a high diagnosis rate; hence a multi-gene panel is preferable. 
Tothill and colleagues show how these multi-gene panels might be used in cancer 
diagnoses by evaluating samples from patients with cancers of uncertain origin (CUP). 
The lack of a particular origin hinders clinical management of CUP patients, and this 
form of NGS analysis could be used to find new therapeutic possibilities. Multiple genes 
linked with a certain phenotype are simultaneously sequenced and assessed in multi-gene 
panel testing, which lowers costs and boosts the effectiveness of genetic diagnostics. [22]. 

 
III.  SEQUENCING OF THE COMPLETE GENOME AND EXOME 
 
 Sequencing whole-genome is a technique for determining an organism's complete 
DNA sequence all at once. The primary advantage of WGS is that it covers the entire 
genome, including promoters and regulatory regions. Whole-exome sequencing (WES) 
sequences all coding regions in great detail.  Coding and functional areas of the genome 
contain 85% of the mutations that result in illness, according to Botstein et al. Exome 
sequencing therefore has the potential to shed light on the aetiologies of numerous 
uncommon, genetically monogenic abnormalities as well as predisposing variants in 
prevalent illnesses and cancers [23]. In order to genetically diagnose congenital chloride 
diarrhea in individuals who were thought to have Bartter syndrome, a renal salt-wasting 
condition, Choi and colleagues employed WES in clinical practice in 2009. Six patients who 
lacked mutations in the classic Bartter syndrome genes underwent WES. All of the patients 
exhibited a homozygous deletion in the SLC26A3 gene, resulting in a molecular diagnosis of 
congenital chloride diarrhea that was later clinically verified Long-range PCR or Sanger 
sequencing. The 'known' phenotype-specific gene panels are covered more thoroughly, and 
compared to WES, our customized approach enables deeper coverage of these genes, 
boosting confidence in the discovered variations.. All NGS systems, however, are susceptible 
to sequencing abnormalities, and the Sanger method is advised before releasing results to 
patients [24]. Furthermore, all components of WES and WGS must be explained to the 
patient and their family. It is critical to inform them that the test might not be accurate to 
produce favorable results and that positive results, while providing diagnoses, do not improve 
prognosis or therapy. 
 
1. Sequencing of RNA: The entire collection of RNA molecules from every genome at any 

time or place is known as a transcriptome, including untranslated RNA species like 
microRNAs (miRNAs), is crucial in many biological processes. RNA-sequencing (RNA-
sequencing) is a transcriptomic technique that involves an in-depth RNA analysis using 
technologies of NGS [25]. A well-planned RNA-sequencing experiment typically 
includes preparation of samples, library creation, sequencing, and data interpretation. 
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However, due to the abundance of potential experimental possibilities, extensive 
preparation and expense estimation are necessary before beginning. Examples include 
throughput, read length, sequencing depth, and coverage. Discovering new genes and 
isoforms, gene fusions, splicing and chimaera variations, genomic changes, and 
quantifying gene expression are all made possible by RNA sequencing. [26]. Despite the 
fact that RNA sequencing performs better than microarray in transcriptome analysis, 
clinical applications are still in their infancy and won't, for instance, replace current 
methods. RNA-sequencing is viewed as a supplement to traditional methods, assisting 
doctors in making decisions based on the requirements and resources at hand. RNA 
analysis has practical applications in a wide range of human health domains, including 
drug selection, disease diagnosis, and therapy [27]. 

 
Infectious illness diagnosed clinically with RNA-sequencing is currently 

uncommon because the most often used approach for virus detection is quantitative PCR 
(RT-qPCR) and genotyping. In virology, NGS diagnostic applications can be utilized to 
study patients with unusual illnesses, particularly when outbreaks and epidemics occur. 
Additionally, it has the detection of novel pathogens, the characterization of viral 
communities, and the reconstruction of the full viral genome, antiviral medicine 
resistance, epidemiology, and transcriptome research. The use of next-generation 
sequencing and the application of NGS to virology are raising our understanding of the 
dynamics of viral infections and how they relate to human health and medicine [28, 29]. 

 
NGS is also useful for detecting circulating tumor ctRNA. The investigation of 

ctRNA is still present in plasma its early stages and presents distinct challenges. Because 
circulating tumor DNA (ctDNA) degrades faster than circulating tumor RNA (ctRNA), it 
must be separated rapidly or placed in preservation solutions and frozen at 80°C, a 
method that is not always available in many clinical settings. Despite these challenges, 
ctRNAs show promise for early detection of a range of tumor types, including breast, 
lung, prostate, and colorectal cancer. Despite the fact that NGS is a more advanced 
approach for detecting ctRNA, RT-qPCR is still more useful for clinical diagnostic 
applications [30]. 

 
2. Epigenetics: Epigenetics is a rapidly emerging field that has far-reaching implications for 

health and clinical diagnostics. In the 1940s, Conrad Waddington invented the word to 
describe the investigation of heritable alterations in gene expression and activity without 
altering the DNA sequence, i.e. a phenotype change without a genotype change. 
Epigenetic processes are there is yet more gene regulation, and NGS enables researchers 
to determine the status of epigenetics on a broad at a single base-resolution scale, 
particularly non-coding RNA (ncRNA)-associated silencing, methylation of DNA, and 
modification of histone [31]. DNA methylation was the first epigenetic process 
discovered, and it is the most well-known and prevalent in cancer patients. It entails 
methylating cytosines in CpG (cytosine/guanine) islands and covalently modifying 
cytosine. DNA methyltransferases (DNMTs) maintain this methylation, which is required 
for gene transcriptional repression, transposable element silencing, and virus protection. 
Active chromatin has unmethylated DNA, whereas inactive chromatin contains 
methylated DNA [32]. 
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Alterations made to histones after they have been translated, for example 
acetylation and methylation of conserved lysines on the regions of the amino-terminal 
tails, are chromatin activity markers: acetylation is found in active euchromatic or 
heterochromatic regions, in contrast, hypo acetylation is present in inactive euchromatic 
or heterochromatic areas. Histone acetylases, histone deacetylases, and histone 
methyltransferases are some of the enzymes involved in this process. Gene expression is 
altered through epigenetic cell changes, which can also result in inherited diseases or 
acquired human illnesses because epigenetic mechanisms control DNA accessibility [33]. 

 
IV. APPLICATION OF NGS IN AGRICULTURAL BIOTECHNOLOGY FOR CROP 

IMPROVEMENT 
 
1. Genetic Modification: The use of selection using genetic markers facilitation has 

considerably risen over the last thirty years. Thanks to fast genomic resource buildup, 
researchers now have access to an unprecedented quantity of data to access and regulate 
beneficial genetic variation for enhancement of crops [34]. In order to create superior 
cultivars for sustainable agriculture, genomic-assisted breeding is expected to increase the 
precision and effectiveness of breeding programmes. Ideas like genomics have emerged 
as a result of genotyping's incredibly high throughput and declining cost breeding-assisted 
genomics and breeding-assisted breeding [35]. The International Consortium of 
Agricultural Research Centres has adopted a new paradigm that promotes using "Omics" 
and interventions facilitated by bioinformatics to evaluate the level of genetic variation 
that is currently present, to broaden the genetic base by creating new intra- and inter-
species variations, and to create novel cultivars using more efficient selection methods 
that combine desirable and unique features. The ultimate objective is to hasten genetic 
gain, which would boost food and nutritional security in developing nations while being 
environmentally sustainable. The enormous advances in science and technology in the 
fields of genetics and bioinformatics can benefit smallholder farmers in underdeveloped 
countries. Genetic advancement can be extremely important for increasing crop output in 
underdeveloped nations with limited access to agricultural inputs in a way that is 
environmentally sustainable. Modern genomic techniques and procedures are being used 
to design an efficient and productive breeding plan, driven by continually dropping 
genotyping costs and remarkable advancements in computational capacities. The main 
obstacles to breeding progress include slow genetic gain, complicated traits, and genotype 
by environment interaction. Before the advent of NGS, neglected crops in Africa suffered 
from a lack of genetic data in addition to these general limitations. Re-sequencing the 
entire genomes of thousands of accessions is now a practical way to access genome-wide 
nucleotide variation, as is using one of the complexity reduction techniques to create 
high-density, genome-wide SNP markers linked to important agronomic traits related to 
quality, environmental resistance, and biotic stresses. These technical developments 
allowed for the creation of experimental populations with multiple parents as well as the 
conventional genetic mapping inside specific biparental crossings. The efforts of IITAs 
(and CGIARs) to address crop productivity and other agricultural challenges have been 
well-documented [36]. 

 
2. Genetic Resource Management and Utilization: In order to protect crop genetic variety 

from continuous decline, gene banks are crucial. In order to continue adapting to shifting 
environmental conditions and consumer demands, they supply genetic variety for 
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breeding [37, 38]. The ability to generate enormous amounts of data from DNA 
sequencing technology has recently advanced, providing a chance to better explore the 
genetic variation preserved in the vast germplasm collections held in trust by the CGIAR 
and boost the effectiveness of gene banks. The 11 CGIAR gene banks preserve more than 
666,000 accessions of primarily food crops [39]. The major African food crops cowpea, 
soybean, maize are maintained by the International Institute of Tropical Agriculture 
(IITA). Along with other essential crops for emerging nations, including grass pea, and 
their wild cousins, the aforementioned were judged understudied. To promote the use of 
all accessions and other genetic stocks used in breeding plans, these stocks must be 
thoroughly characterized [40, 41]. Although morphological descriptors have typically 
been used by genebanks to categorize germplasm, they are significantly influenced by the 
environment and different stages of plant development [42]. Additionally, there may not 
be as many characteristics as there should be, which makes it much harder to tell apart 
consanguineous kinds [43]. Technologies for molecular markers have allowed for the 
classification and application of a significant amount of genebank material [44]. 
However, due to their low prevalence in the genome, prior to the invention of NGS, 
marker systems that sample a portion of the genome had limited applicability. Thanks to 
NGS, a substantially higher density of marker analysis is now feasible. Using NGS for 
genotyping techniques like GBS, it has been used to investigate the genetic diversity of 
both farmed and wild varieties of yam. [45]. Inbreds are subjected to whole-genome 
fingerprinting as part of public and private breeding initiatives to better understand 
genetic diversity at the haplotype level [46]. 

 
3. Breeding Data Management: By applying cutting-edge Omics technologies, breeding 

projects in impoverished countries may improve the success of their breeding initiatives. 
There is a growing push to take advantage of improvements in the methodologies of 
computational biology and information and communication technology in order to 
effectively use a variety of morphological, genetic makeup and other datasets to supply 
conclusive supportive tools at various points in the breeding process. Analysis requires 
efficient informatics tools, automated data analysis pipelines, and decision-making tools 
and integration in modern breeding strategies like GS and MAS because they involve a 
flood of genotype data, including SNP markers procured from GBS, newly discovered  
statistical analysis to compute GEBV, and a lot of highly-efficient morphological data. 
[47]. For the efficient use of such massive quantities of genotypic, phenotypic, and other 
data, informatics, database, and decision support systems must be developed. Scientists in 
developing countries now have access to a low-cost genotyping platform thanks to 
multiple bilateral researches for development projects. The instruments for integrating, 
analyzing, and making decisions will be made easier with the help of current breeding 
tools and management procedures, but advancement is not possible without them. The 
breeding management system (BMS) of the integrated breeding platform (IBP), which 
was developed and marketed, is one effort that attempts to give some of these tools. The 
BMS service is offered by IBP regional hubs, which are hosted by collaborative research 
organizations like IITA in Nigeria and placed strategically throughout developing 
countries. The hubs promote the adoption, adaptation, and utilization of BMS and similar 
facilties, primarily through self-sufficiency development, technical assistance, and 
knowledge of particular crops. IBP already includes implemented tools and information 
for over 10 crops, inclusive of trait dictionaries and diagnostic markers [48, 49]. 
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Plant breeding in the modern era and genetic study is interdisciplinary, and this 
multidisciplinary is supported by the collection, analysis, and use of "big data" from both 
field trials and laboratory investigations. Analytical chemistry is used in laboratory 
analysis to profile nutritional content and other metabolites, which calls for an effective 
data management system. An efficient data management system is required because 
analytical chemistry is employed in laboratory analysis to profile nutritional content and 
other metabolites. To make it easier to integrate various data from plant breeding, such as 
phenotypes from field experiments, a large open-access database containing phenotype 
and marker data, as well as trial design, dependable and user-friendly database is required 
for genotypic data, gene expression, and analytical chemistry. Additionally, a database 
like this must include built-in quantitative genetics analytic tools and pipelines that would 
enable breeders to do more than only store and retrieve raw data but also to compute 
breeding values and selection indices, plan crossings, and conduct field trials [50- 52]. 

 
V. ENVIRONMENTAL BAR-CODING: NEXT-GENERATION SEQUENCING 
 
 Keeping the environment healthy and the economy sustainable depend on an 
understanding of biodiversity that is vital to ecological study. But biodiversity science 
continues to be an area of unknowable.  Since Linnaeus began the effort 250 years ago, more 
than 1.9 million species have been formally described, although it is thought that 10-100 
million species currently exist on Earth [53]. As a result, not only is our depiction of 
biological variability laboriously lethargic, but the reality is that our best estimate of the total 
amount of species on Earth is subject to orders-of-magnitude uncertainty [54] shows that the 
tools and methodologies in use today are insufficient for making an accurate evaluation. 
"What species make up this ecosystem specifically?" What are the alterations in biodiversity 
across time, space, and in relation to upcoming environmental changes? Using biotic surveys 
to evaluate change in vulnerable ecosystems, biomonitoring programmes attempt to provide 
answers to these two fundamental issues. Both queries are challenging to respond to 
consistently and on time, and they are almost impossible to put into practice as monitoring 
targets. Because species are vulnerable to environmental disruptions that modify their natural 
territory, ecological authorities are increasingly employing biomonitoring approaches to 
assess ecosystem condition and trends. However, using conventional morphological 
approaches, it has proven challenging to identify taxa accurately and consistently. This is 
especially true for the extensive macro invertebrate sampling used in river biomonitoring, 
where it is frequently impossible or difficult to identify larval stages below the level of 
taxonomic family. Large-scale biomonitoring programmes have been difficult to execute as a 
result, especially in relatively less populous nations like Canada where remoteness and a lack 
of familiarity with the local fauna present considerable logistical challenges. The 
development of DNA sequencing by Sanger revolutionized every area of the biological 
sciences [55]. At almost any level of the taxonomic hierarchy, from individuals in 
populations to species to the farthest reaches of the Tree of Life, DNA sequence information 
can give a wealth of replicable and robust genetic data. Ecologists and evolutionary biologists 
now have the chance to address topics that they were unable to do so using other types of data 
thanks to DNA sequence-based analysis. Recent years especially after the concept of DNA 
barcoding was introduced in 2003 [56]. To create a common sequence library for all 
eukaryotes, efforts to focus DNA sequencing efforts on tiny, species-specific sections of the 
genome known as DNA barcodes have been successful. [57,58]. By comparing the query 
sequence to a DNA barcode reference library created using known species, DNA barcoding's 
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primary goal is to recognize unknown specimens at the species level. [59]. It is also possible 
to use sequence variation trends to locate novel and cryptic species. By sampling more genes 
or people, DNA barcode programs can shift to population-level research or in-depth 
phylogenetic difficulties [60]. The DNA barcode database presently has about 1.1 million 
individuals from over 95,000 species, all of which were contributed in the last seven decades 
[61]. But given that DNA barcoding has spent the last seven years primarily focused on 
proof-of-concept initiatives to increase application through the creation of better protocols, 
this advancement is substantial [62-64]. The high-throughput analysis of DNA barcodes has 
overcome significant obstacles, and single analytical facilities can currently analyze hundreds 
of thousands of samples annually. Sequence coverage in DNA barcode libraries will be 
significantly increased by international initiatives like the International Barcode of Life 
project and other coordinated efforts to barcode taxonomic groups or regional biota. 
 

Considering that Sanger-based DNA sequencing has demonstrated its dependability 
for building substantial sequence libraries, including DNA barcode reference libraries, 
because bulk environmental samples can contain thousands of people from hundreds of 
species ranging from higher eukaryotes to bacteria, it is not a feasible strategy for dealing 
with them. Separating such individuals and utilizing single-species samples Sanger 
sequencing has historically been difficult and is not currently feasible using conventional 
procedures for some materials. Cloning and sequencing a library of cloned fragments 
somewhat solves this issue, but this approach has drawbacks and can induce biases. 
Consequently, a single-specimen Sanger sequencing technique cannot be used to routinely 
conduct large-scale biomonitoring programmes or other large-scale investigations of 
biodiversity in ecological and environmental studies. To put it another way, even while 96-
well and even bigger collections of samples can be used in traditional Sanger sequencing, it is 
laborious to sort and segregate each individual organism into sets of 96 samples for 
processing. The number of organisms in a typical environmental sample ranges from 
hundreds to thousands, and a biomonitoring regime frequently calls for many environmental 
samples to be taken repeatedly over time and location. As a result, the bottleneck in this 
instance might not just be at the DNA sequencing phase but might also be at the steps of 
collecting, sorting, and preparation. It is laborious, time-consuming, and expensive to work 
with specimens one at a time. The 454 Genome Sequencer FLX is the primary NGS platform 
for biodiversity investigations because larger sequence lengths result in improved taxonomic 
resolution [65, 66] because it can provide sequence readings that are 250–400 bases long as 
opposed to the two rival platforms' less than 100 base reads.  This trait is crucial since each 
sequencing reaction's sequenced DNA fragments (such as PCR products) would be subjected 
to a bioinformatics analysis in order to calculate biodiversity metrics from a set of 
environmental samples. Longer sequences have been found to deliver more precise 
biodiversity data, including species-level resolution [67]. For determining the variety of 
bacteria in the sample, these investigations often use sequence variation in a brief fragment of 
ribosomal genes. Statistical clustering techniques like BLAST are used to compare the 
outcomes to a relatively large sequencing library of 16S genes [68]. For large environmental 
samples of eukaryotic species, the same method can be used. It has been demonstrated that a 
short mini-barcode fragment of the mitochondrial cytochrome c oxidase 1 (COI) DNA 
barcode sequences—a sequence length that can be obtained easily and reliably through 454 
pyrosequencing can provide the details necessary for identifying specific species with more 
than 90% species resolution [69-70]. 
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VI. SUMMARY 
 
 Role of Next-Generation Sequencing (NGS) in Biotechnology: Advancements and 
Applications," explores how NGS technology has revolutionized biotechnology. It delves 
into the foundational principles and evolution of NGS, emphasizing its accessibility and cost-
effectiveness. We tried to highlight the diverse applications of NGS in animal and plant 
biotechnology, from studying the human genome to personalized medicine, agriculture, and 
environmental monitoring. It also addresses methodology for data analysis, providing a 
comprehensive view of NGS's transformative impact on biotechnology and the life sciences. 
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