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PERFORMANCE AND EMISSION 
CHARACTERISTICS OF VARIOUS COMBUSTION 
MODES 
 
Abstract 
 
 Concern about diesel engine 
emission and growing global need for energy 
in case of transportation sector have made 
biofuels for IC engines more significant. 
Huge number of researchers have looked 
into biofuels in case of dual fuel engines in 
order to optimize emission profiles and 
energy consumption for transportation and 
distribution activities. This review article 
comprehensively compares the engine 
performance, combustion, and emission 
characteristics of alternative fuels in 
conventional, dual fuel, and RCCI mode 
combustion. The RCCI engine had 
favourable emission characteristics due to 
differences in fuel qualities, spray droplet 
size distribution, and subsequent mixing 
with ambient air. The RCCI technique is 
capable of controlling the combustion phase, 
peak pressure rise and heat release rate 
through regulating the reactivity 
stratification to attain the resolution of 
combustion process optimization. 
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Nomenclature: BTE: Brake thermal efficiency, HC: Hydrocarbon, CO: Carbon monoxide, 
NOx: Oxides of nitrogen, PM: Particulate matter, RCCI: Reactivity controlled compression 
ignition, HCCI: Homogeneous charge compression ignition, EGR: Exhaust gas recirculation, 
aTDC: After top dead center, bTDC: Before top dead center, CNG: Compressed natural gas: 
CBG: Compressed biogas, HSU: Hartridge smoke unit, IC: Internal combustion   
 
I. INTRODUCTION 
 

Population expansion is increasing energy demand in the transportation sector, while 
economic policies strive to increase efficiency and decrease dangerous emissions such as 
NOx, HC and PM. Clean, high efficiency engines are required to meet the strict emissions 
rules and deliver power effectively. The effectiveness of modern engines has been increased 
by the investigation of numerous approaches. Increased mixing of air and fuel will boost 
combustion performance while lowering PM emissions. The development of dual fuel 
combustion techniques can also make use of more sophisticated fuel injection systems. Both 
compression ignition and spark ignition engines have shown to benefit from dual fuel 
combustion techniques [1-17]. Dual fuel injection systems have lately been employed to 
promote the use of less reactive fuels and to enable more advanced combustion strategies. 
Some dual fuel combustion modes have showed substantial promise in terms of efficiency 
and pollution emission. This is frequently accomplished throughout a large operating range 
by using two fuels with different concentrations at the same time to induce premixing of the 
fuel or stratification of the reactivity of the in-cylinder mixture. Dual fuel injection techniques 
have historically been employed on compression ignition engines to convert old diesel 
engines to run on less expensive fuel. The implementation allowed for lower PM emissions in 
addition to the use of a different power source. Although dual fuel engines have the potential 
to be extremely efficient and environmentally friendly, their use may also be constrained by 
infrastructure issues and customer acceptance. Users will need to fill up two fuel tanks, and 
they must have access to the necessary fuels over a sufficiently large area [18-30]. The RCCI 
technique is capable of controlling the combustion phase, peak pressure rise and heat release 
rate through regulating the reactivity stratification to attain the resolution of combustion 
process optimization, stimulating thermal efficiency and decreasing engine-out emissions.  

 
RCCI mode of combustion is emerged from dual fuel combustion in which two fuels 

of variant reactivity are used to increase the process of combustion and diminish the engine-
out emissions. RCCI combustion characteristics are controlled by changing the fuel quantity 
of the charge. Low reactive fuel is most important key factor that affects the performance and 
combustion characteristics of RCCI engine. It is not only affects the mixing of fuel and air 
inside the combustion chamber, but also affects the processes of heat transfer and heat 
release. At initial stage of RCCI combustion study, gasoline is used as the low reactive fuel 
and it could achieve lower emissions of NOx and soot along with higher indicated mean 
effective pressure. In latest years, alcoholic fuels are used as the low reactive fuels for RCCI 
combustion mode and gained huge attention from various researchers due to their outstanding 
physico-chemical properties [31-39].  
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II. EXHAUSTIVE REVIEW ON CONVENTIONAL, DUAL FUEL AND RCCI 
COMBUSTION MODES 
 

1. Conventional Mode of Combustion: 
 

 BTE: At 80% load, the maximum BTE values for diesel and methyl ester of rice bran 
oil were determined to be 31.09% and 28.27%, respectively [3]. Injection timing of 
26° bTDC was shown to be more thermally efficient for 3-hole nozzles than injection 
timings of 23 and 20° bTDC [4,11,15]. The BTE increased with increasing load for all 
of the fuels examined. At all power outputs, the BTE of biodiesel blends was found to 
be lower than that of diesel. At 80% load, all evaluated fuels had higher BTE than at 
100% load [5-8, 16]. Among the many nozzles examined, the 5-hole nozzle provided 
the highest BTE [9]. The karanja B20 blend’s BTE was 25.52%, which was higher 
than that of other biodiesel mixtures [10]. For diesel, simarouba oil methyl ester, and 
hippe oil methyl ester biodiesels, the BTE amplified with load. At full load, hippe oil 
methyl ester B20 outperformed simarouba oil methyl ester B20 in terms of BTE [12]. 
Among the injection pressures examined, 230 bar provided the highest BTE, followed 
by 210 and 250 bar. Thermal efficiency decreased at 250 bar when compared to 230 
bar [13]. Among the biodiesels tested, diesel had the highest efficiency, with 2.79%, 
5.89%, 7.75%, 9.64%, and 14.03% higher than B10, B20, B30, B40, and B100 
karanja biodiesel blends [17]. Ceiba pentandra oil methyl ester B20 demonstrated 
higher BTE than nigella sativa oil methyl ester B20 due to its higher calorific value 
and lower viscosity [25]. Because of their lower calorific value and higher viscosity, 
higher biodiesel blends have lower BTE than diesel [40-52]. 
 

 Smoke Emissions: Rice bran oil methyl ester produced more smoke than diesel. At 
100% load, the smoke level was 72 HSU for diesel and 80 HSU for rice bran oil 
methyl ester [3]. For diesel, jatropha oil methyl ester, and their mixtures, the smoke 
opacity rose as the brake power increased. The smoke opacity rose as the proportion 
of jatropha oil methyl ester in the diesel blend increased. At 80%, the smoke level was 
67 HSU for the methyl ester, 63 HSU for the B20 blend, and 84 HSU for the B80 
mix. At 80% load, the smoke level with diesel was 63 HSU [7]. Because of the B0 
fuel blend mixed better with the air, it emitted less smoke than the other blends tested. 
Among the several injection timings evaluated, 26° bTDC produced the least amount 
of smoke [11]. Among the various injection pressures evaluated, 230 bar produces 
less smoke than 210 and 250 bar [13,15]. The viscosity of the blends grew as the 
percentage of biodiesel in the blends increased, resulted in greater smoke. Among the 
biodiesels tested, diesel had the lowest smoke emissions, which were 6.06%, 12.9%, 
20.68%, 29.62%, and 39.88% lower than B10, B20, B30, B40, and B100 fuel blends 
[17]. Due to better fuel characteristics, ceiba pentandra oil methyl ester B20 emitted 
lower exhaust emissions than nigella sativa oil methyl ester B20 [25]. 
 

 CO and HC Emissions: Rice bran oil methyl ester produced more CO and HC than 
diesel. For diesel and rice bran oil methyl ester, the HC emissions were 60 ppm and 
71 ppm at full load. CO levels at full load for diesel and rice bran oil methyl ester 
were 0.2% and 0.51%, respectively [3]. The HC emissions from B20, jatropha oil 
methyl ester, and diesel were found to be 66 ppm, 70 ppm, and 40.5 ppm. The CO 
emissions from B20, jatropha oil methyl ester, and diesel were 0.1245%, 0.132%, and 
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0.1125% [7]. When compared to biodiesel blends, plain diesel emitted less CO and 
HC emissions [8]. Among the numerous nozzles evaluated, the 5-hole nozzle emits 
the least amount of CO and HC emissions. The CO and HC emissions increased with 
the 4-hole nozzle [9]. When compared to other biodiesel blends, the karanja B20 fuel 
blend emitted 63 ppm less HC emissions. When compared to biodiesel blends, the 
karanja B20 blend emitted 0.26% less CO emissions [10]. Among the different 
injection timings examined, 26° bTDC has the lowest CO and HC emissions because 
there was more time available for fuel and air mixing as the injection timing advanced 
from 20 to 26° bTDC [11]. Because of nanoparticles supply oxygen for the oxidation 
of HC during combustion, the addition of aluminum oxide nanoparticles reduced HC 
emissions [12]. Among the various blends evaluated, the B100 blend emitted more 
HC emissions than the other gasoline mixtures [13,16]. Among the various injection 
pressures studied, 230 bar emitted less HC than 210 bar and 250 bar [13]. The CO and 
HC emissions from incomplete combustion were more visible in karanja biodiesel and 
its mixtures B30 and B40 than in diesel. In comparison to the other B30 and B40 
blends tested, B20 yielded acceptable levels of CO and HC [17]. Due to differences in 
fuel characteristics, ceiba pentandra oil methyl ester B20 emitted less CO and HC 
than nigella sativa oil methyl ester B20 [25]. 
 

 NOx Emissions: The NOx emission values for rice bran oil methyl ester were 1147 
ppm, compared to 1120 ppm for diesel operation at 100% load [3]. For all fuel 
combinations, NOx emissions increased as load increased. The NOx emissions were 
1193 ppm, 1096 ppm, 921 ppm, 903 ppm, and 1100 ppm for B20, B40, B60, B80, 
and B100, respectively, compared to 900 ppm for diesel running at full load [7]. 
When compared to biodiesel mixtures, plain diesel emitted a higher level of NOx 
[8,16]. Among the several nozzles studied, the 5-hole nozzle emitted the most NOx. 
Because the spray pattern of the 4-hole nozzle was uneven, the greatest amount of 
fuel impinged on the cylinder wall, NOx emissions were reduced [9]. When compared 
to biodiesel blends, the karanja B20 blend emitted more NOx (1205 ppm) [10]. 
Among the several injection timings investigated, 26° bTDC emitted the most NOx 
[11]. Among the various injection pressures studied, 230 bar emitted more NOx than 
210 and 250 bar [12]. B20 produced slightly higher NOx emissions than the other 
B30 and B40 blends tested [17]. Due to differences in fuel characteristics, ceiba 
pentandra oil methyl ester B20 produced more NOx than nigella sativa oil methyl 
ester B20 [25]. 

 
2. Dual Fuel Combustion: 

 
 BTE: The rate of EGR increased the BTE [18]. Venture carburettor exhibited greater 

performance over the simple carburettor in terms of BTE. At 80% load, the BTE 
values for diesel and CNG for 3 mm hole geometry carburettor was 26.16%. The BTE 
for rice bran biodiesel and CBG operation was 22.88% with the same engine 
condition [19]. The BTE amplified for 80 and 100% load conditions as the timings of 
injection were moved from 19 to 27° bTDC [20,21]. The pilot fuel’s timings of 
injection enhanced the BTE of a engine operated with biogas. In comparison to the 
biodiesel and biogas mode of combustion, the diesel and biogas mode demonstrated 
higher BTE [22]. More hydrogen gas flow rates reduced the BTE. The BTE of a 
engine powered by B20 nigella sativa oil biodiesel was greater than that of a B20 jack 
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fruit biodiesel [23]. Increasing the timing of injection for a engine boosted engine 
performance, and hence BTE increased until 27° bTDC, after which it dropped. Due 
to differences in fuel characteristics, biogas, a typical diesel fuel powered dual fuel 
engine, demonstrated increased BTE [24]. When compared to dairy scum biodiesel 
based dual fuel combustion, induction of producer gas and injection of diesel 
combustion improved BTE by 12.5% [26].   
 

 CO and HC Emissions: The use of 9 mm venture reduced CO and HC emissions. 
The B100 and B20 blends with CNG had lower amounts of CO and HC than B100 
and B20 blends with biogas [27]. In comparison with baseline operation, the engine 
powered with an emulsion of 20% water in the diesel fuel with the manifold ethanol 
injection reduced CO and HC emissions by 24.3% and 21% at 80% load condition 
[28]. Dual fuel engine operating with B20 mixture of jack fruit and nigella sativa with 
hydrogen induction emits less CO and HC than pure biodiesels [29]. Although the 
induction of producer gas was the same, the biodiesel operated dual fuel operation 
produced 32.6% and 29.8% more HC at 80% load than diesel fuel combustion 
without any nanoparticles. CO levels reduced by 20.6%, 14.8% and 8.2% at 80% load 
as related with biodiesel powered dual fuel combustion without nanoparticles [30]. 
 

 NOx Emissions: NOx emissions reduced as the rate of EGR was increased [18]. At 
80% load, NOx levels for diesel-compressed biogas and biodiesel-compressed biogas 
operation with a 3 mm hole geometry carburettor were 943 and 815 ppm, respectively 
[19]. NOx emissions increased significantly when injection timing increased [20,21]. 
Advancing injection timing from 19 to 31° bTDC resulted in a 40.02% increase in 
NOx emissions [22]. The engine powered with B100 fuel blend exhibited greater 
NOx emissions as related with the B20 fuel blend. As the hydrogen flow rate 
increased, resulting in higher peak pressure rise and heat release rates within the 
combustion chamber of dual fuel engine operation, and hence higher NOx emissions 
[23]. Adding nanoparticles to algae biodiesel increased dual fuel engine performance 
significantly by increasing peak pressure rise and heat release rates resulted in higher 
NOx output when compared to algae biodiesel and its blend [24]. Diesel based dual 
fuel combustion mode raised NOx levels by 26.4% when compared to dairy scum 
biodiesel based dual fuel operation for same quanity induction of producer gas. Dairy 
scum biodiesel and producer gas with hydrogen and 5% EGR had 12.4% higher NOx 
levels than without EGR. When compared to combustion with a 5% EGR rate, higher 
EGR rates reduced NOx emissions by 32.2% [26].   
 

 Smoke Emissions: Ceiba pentandra biodiesel B100 and B20 with purified biogas in 
dual fuel mode operation produced less smoke than Ceiba pentandra biodiesel B100 
and B20 with raw biogas operation. The B20 blend produced less smoke than the 
B100 blend due to the blending of biodiesel with diesel, which affected and enhanced 
the fuel property of the B20 blend [22]. With greater hydrogen gas flow rates, there 
was less smoke emissions. When compared to B20 fuel, the B100 fuel produced more 
smoke for pilot fuels [23]. As the performance of the dual fuel engine improved, 
smoke emissions decreased until they reached 27° bTDC, after which they increased 
again. In dual fuel mode, algae biodiesel B20 emitted less smoke than B100 blend 
with biogas induction [24]. Diesel based dual fuel operation with producer gas 
emitted 27.4% less smoke than dairy scum biodiesel based dual fuel combustion. 
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Dairy scum biodiesel and producer gas with hydrogen and 5% EGR reduced smoke 
levels by 10.2% when compared to the same fuel combination without EGR [26]. The 
9 mm venture had lower smoke opacity than the other ventures examined. Smoke 
levels were found to be higher in jamune oil biodiesel and biogas injected operation 
than in CNG powered dual fuel mode operation [27].  
 

3. RCCI Combustion:  
 

 BTE: With amplified in the amount of gasoline as the low reactive fuel, BTE 
decreased [31]. RCCI engine BTE improved against HCCI mode up to 40% gaseous 
energy share, but declined with further increament in the gaseous energy share [32]. 
With increasing pentanol content, BTE declined. At 10% injection of pentanol, the 
diesel and pentanol fuel combination had a better BTE of 22.15%, which was roughly 
9.1% and 27.3% greater than other fuel mixtures [33]. The 75% load variation has 
higher BTE than 50% load variation. At 75% load, a higher BTE of approximately 
29.74% was attained for the diesel and CNG fuel combination [34]. The BTE 
amplified as the timing of injection increased from 45 to 50° aTDC. The BTE reduced 
as the injection timing increased from 50 to 55° aTDC [35]. The engine’s BTE 
increased as the gaseous energy contribution grew up to 40%, but dropped over 40% 
[36,38].  

 
When CNG was used as a low reactive fuel, the engine’s BTE improved [36]. 

The BTE of dropped as the proportion of n-butanol amplified. The highest BTE was 
found for a diesel and n-butanol mixture containing 10% injection of n-butanol [37].  
 

 NOx Emissions: The concentration of NOx decreased as the fraction of gasoline 
increased [31]. NOx emissions were lowered as the energy percentage of gaseous 
fuels amplified. When compared to other fuel combination types, diesel and hydrogen 
produce more NOx emissions [32]. NOx emissions reduced as pentanol fraction 
increased. At 10% pentanol, the diesel and pentanol fuel combination produced the 
highest NOx emissions [33]. The 75% load variation produced more NOx than the 
50% load variation. The diesel and CNG fuel mix produced higher NOx emissions 
[34]. Among the various injection timings studied, 50° aTDC emitted more NOx than 
45 and 55° aTDC [35]. As the energy share increased, the fuel and mixture become 
lean, resulted in low-temperature combustion. The low temperature combustion 
technique reduced NOx emissions [36]. NOx emissions dropped as the proportion of 
n-butanol amplified. The highest NOx emissions were obtained for a diesel and n-
butanol fuel mixture containing 10% injection of n-butanol [37]. When compared to 
other fuel combinations, RCCI engines operated by diesel and producer gas produced 
higher NOx emissions [38]. 
 

 Smoke Emissions: In comparison with other fuel combinations, the pilot diesel and 
manifold hydrogen fuel combination produced less smoke emissions [32]. Smoke 
emissions reduced as the quantity of pentanol amplified. The pentanol and diesel had 
the lowest engine-out smoke emissions when 10% pentanol was used in injected fuels 
[33]. When compared to the 50% load variation, the 75% load variation emitted less 
smoke. Among the various fuel combinations, diesel and compressed natural gas 
emitted less smoke than other fuel combinations [34]. Smoke emissions were quite 
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minimal while using the RCCI combustion mode. Injection timing of 50° aTDC 
produced less smoke than injection timing of 45 and 55° aTDC [35]. Smoke 
pollutants dropped as the proportion of n-butanol increased. At 10% n-butanol 
quantity in manifold injected fuels, the fewer smoke engine-out emissions were 
recorded for n-butanol and diesel [37]. When compared to other fuel combinations, 
the RCCI engine driven by diesel and producer gas produced less smoke. Biodiesel 
activity produced more smoke [38]. 
 

 CO and HC Emissions: The growth in gasoline percentage increased CO and HC 
emissions. Biodiesel fuelled engine resulted in higher CO and HC emissions [31]. 
When compared to other fuel combination types, diesel and hydrogen produce less 
CO and HC emissions [32]. As the pentanol injection percentage was increased, the 
CO and HC emissions were also increased. At 10% pentanol in injected fuels, diesel 
and pentanol produced the lowest CO and HC emissions [33]. In comparison with 
50% load condition, the 75% load condition resulted into lower CO and HC 
emissions. Diesel and CNG produced the least amount of CO and HC emissions of 
the fuel combinations examined [34]. Among the numerous injection timings 
investigated, 50° aTDC emitted the fewest CO and HC emissions. Biodiesel-powered 
RCCI combustion provided a greater quantity of CO and HC emissions [35]. CBG 
powered engine exhibited higher CO and HC engine-out emissions than CNG as a 
low reactive fuel [36]. The proportion of n-butanol enhanced the CO and HC 
emissions. At 10% n-butanol concentration in manifold injected fuels, the lowest CO 
and HC emissions were recorded for n-butanol and diesel fuelled engine [37]. When 
compared to other fuel combinations, diesel and producer gas powered RCCI 
combustion modes produced lower CO and HC emissions [38].  
 

III.  CONCLUSION 
 
 According to the extensive literature review, RCCI mode is one of the best 
combustion control that maintains higher thermal efficiency along with lower emissions. The 
RCCI mode of combustion is more advanced than other low temperature combustion modes. 
The ignition timing in RCCI combustion can be adjusted by altering the ratio of higher cetane 
fuel to higher octane fuel. With the addition of high reactive fuel to RCCI combustion, nitric 
oxide emissions were reduced. The CO and HC emissions from RCCI combustion were 
somewhat increased. Biodiesel can be used to partially replace diesel, reducing the 
requirement of diesel and providing an environmentally friendly energy source. 
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