# ANTHELMINTIC ACTIVITY OF PLANT EXTRACTS AND SYNTHESIZED GREEN METAL NANOPARTICLES AGAINST GUT HELMINTHS OF RUMINANTS

# Abstract

India's economy is heavily dependent on its livestock industry. It improves the financial situation of rural impoverished people. It is a key agricultural source that boosts household income in rural regions and benefits the economy by generating jobs. Goats, cows, and buffaloes are raised for a number of purposes, including the production of leather, meat, and milk. Helminths are known for infecting humans, goats, cows, and buffaloes. The country's economy is impacted by these illnesses since they result in serious livestock ailments. kinds of synthetic drugs albendazole, mebendazole, etc. like are easily available in the local market, widely used for helminth control. However, long-term use of these synthetic medications reveals significant toxicity and adverse clinical side effects to both target and non-target species, including loss of appetite, nausea, vomiting, headaches, stomach discomfort, diarrhoea, and hepatotoxicity. It is therefore imperative to find anthelmintic medications that are more effective, less toxic, and have few to no adverse effects. The current review effort compiles research on medicinal plants' effectiveness against various cattle helminths conducted in vitro and in vivo. The development of efficient anthelmintic drugs with minimal side effects and non-resistance to parasitic helminths is expected to be possible using these plant-based herbal remedies. Recently, various types of plant synthesizedmetal nanoparticles have proved highly effective in controlling helminth diseases, they have been examined in broad range of research field because they are safe, cost-

# Authors

# Jayeeta Khanrah

Laboratory of Parasitology Vector Biology, Nanotechnology Department of Zoology The University of Gour Banga Malda, West Bengal, India.

# Dr. Anjali Rawani

Ph.D.

Assistant Professor Laboratory of Parasitology Vector Biology, Nanotechnology Department of Zoology The University of Gour Banga Malda, West Bengal, India. effective, and easily available having simple biosynthesis process. This review paper also emphasizes the therapeutic applications of diverse biologically produced metal nanoparticles, which presents a new avenue with pharmacological support for the successful treatment of numerous helminth illnesses.

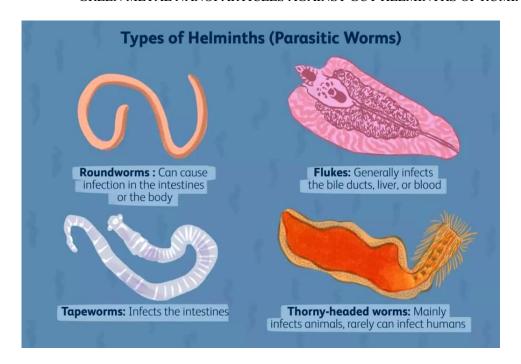
**Keywords:** Anthelmintic activity, plantextract, synthesized green nanoparticles, parasitic helminth.

# I. INTRODUCTION

Worldwide, helminth parasite diseases affect billions of people as well as ruminants (WHO 2010), with the majority of cases occurring in tropical and sub-tropical nations with low per capita incomes and unhygienic living conditions (Hotez et al., 2007). India is responsible for about 25% of all helminth infections worldwide. In the livestock industry, this infectious agent causes anorexia, anaemia, diarrhoea, weight loss, and significant production losses (WHO, 2017). The three groups of helminth parasites are cestodes (flatworm), trematodes (flukes), and nematodes (roundworms). Gastrointestinal (GI) nematodes, such as Haemonchus contortus, Bunostomum sp., and Trichostrongylus sp., are among these helminths and have a significant impact on the security of the food supply. All types of ruminants are adversely affected by helminths; some helminths are bloodsuckers and cause anaemia, while many others affect the body's physiology, metabolism, and immune system, leading to significant economic losses in the production of meat, milk, and wool as well as in reproduction (Suarez et al., 2009). Since a decade, broad spectrum synthetic anthelmintic medications like ivermectin, albendazole, and levamisole have been utilized to protect our animals against gastrointestinal helminth infections. The main source of resistance as well as the toxicities growing out of their use is the residue of all these dangerous synthetic medications in animals and animal products (Kundu et al., 2015). According to Devi et al. (2009), these sorts of dangerous medications exhibit high levels of toxicity and severe clinical symptoms such as loss of appetite, nausea, vomiting, headaches, abdominal discomfort, diarrhoea, and hepatotoxicity. The most recent strategy involves using herbal treatments either by alone or in conjunction with conventional anthelmintics. Researchers have shown that herbal anthelmintics contain natural plant components that are safe for the environment, non-toxic, cost-effective, and have very few or no side effects. Numerous researchers have examined plant anthelmintics and established their efficacy as complementary anthelmintic treatments. The majority of in vitro studies concentrated on how plant extracts and their fractions affected helminths while they were in their free-living phases. Animal feed was the main source of medicine for in vivo research, which revealed poorer efficacy than in vitro tests. To assess the anthelmintic effects of plant extracts and products, in vitro anthelmintic tests such as the egg hatch inhibition assay/test (EHIA/EHIT), adult mortality inhibition assay/test (AMIA/AMIT), larval development inhibition assay/test (LDIA/LDIT), larval mortality inhibition assay/test (LMIA/LMIT), larval migration inhibition assay/test (LMIA/LMIT), larval feeding inhibition assay. The most common tests, such as LMIT and AMIT, evaluate different plant extracts' abilities to affect helminth larvae and adult motility, and EHIT evaluates their ability to prevent egg hatching. Due to their quicker turnaround times and comparable cost-effectiveness, in vitro procedures are preferred to in vivo methods for testing plant materials on a wide scale. The faecal egg count reduction test (FECRT) and the controlled efficacy test (CET) are two in vivo anthelmintic tests that aren't the best due to their higher cost, lack of precision, and reproducibility due to inter-animal variation and the drug's pharmacodynamics in the host (O'Craven et al., 1999; Santos et al., 2019).

Botanical anthelmintics are known to be abundant in the plant kingdom (Satyavati et al., 1985). For primary healthcare and other health benefits, almost 80% of the world's population still uses our traditional medicines made from plant extracts (WHO, 2008). According to Temjenmongla and Yadav (2005), traditional medicines have a lot of potential

as sources of easily accessible efficient anthelmintics drugs. In poor nations like India, China, Bangladesh, etc., helminthiasis is historically treated with a variety of folklore medicinal herbs (Choudhary et al., 2015). The anthelmintic efficacy of several fabled medicinal plants against liver fluke and other parasites has been investigated (Tandon et al., 1997; Mehlhorn et al., 2011). In order to cure parasite infection, plant-derived medications and herbal remedies are becoming increasingly popular (Mehlhorn et al., 2010; Dehuri et al., 2021). These herbal medications are appealing since they are easily accessible, affordable, have few to no adverse effects, and do not result in resistance (Wakayo and Pewo, 2015).


Recently, efficient green chemistry techniques for the synthesis of metal nanoparticles, which is of special interest to researchers, have been developed. They have done extensive research and have discovered a method for producing well-characterized nanoparticles that is both secure and environmentally benign. The use of organisms to produce metal nanoparticles is one of the approaches that is most frequently discussed. Among these creatures, plants seem to be the most appropriate and best option for the mass synthesis of nanoparticles. Compared to microbes, plants create nanoparticles that are more stable and synthesize them at a faster rate. In addition, the nanoparticles differ from those made by other animals in form and size (1-100 nm). Due to the advantages of employing plants and products made from plants for the biosynthesis of metal nanoparticles, researchers are investigating the mechanisms of metal ions uptake and bio-reduction by plants as well as the potential mechanisms of metal nanoparticle formation in plants. Typically, diverse biomolecules, particular medications, nucleic acids, peptides, and antibodies are carried by metal nanoparticles made of gold, silver, platinum, iron, silica, copper, zinc, and some lanthanides. For a variety of illness types, such as cancer, microbial infections, parasitic infections, cardiovascular disease, and neurological disorders, they can serve as diagnostic and therapeutic agents (Zhang et al., 2020). Metal nanoparticles derived from plants offer hope for new therapies for the management of parasitic illnesses.

Studies are done both in-vitro and in-vivo to determine the efficacy of plants with anthelmintic activity. Various medicinal plants and artificial green nanoparticles that may be effective against various gastrointestinal helminths (cestode, trematode, and nematode) have been described and tabulated in this review. These findings may pave the way for basic pharmacological studies that will result in the development of new anthelmintics to replace the traditional ones that suffer from anthelmintic resistance and high cost.

- **1. Objectives:** The purpose of this review of the literature is to compile and update information on crude extracts and green metal nanoparticles created from medicinal plant extracts that have been suggested to have potential anthelmintic activities (ovicidal, larvicidal, and adulticidal) against various types of ruminant's gut helminth.
- 2. Material and Methods: The review of literature has been made by following various research articles including 8 databases (5 English databases: PubMed, Elsevier, Research Gate Google scholar, Science Direct) And (3 Persian databases: Scientific Information Database or SID, Magiran, and ISC) through the years between 2002 2022, where anthelmintic activity of plants extracts and green synthesis of Metal Nano particles were reported. The combination of the words "Herbal medicine," "Plant extract," "In vitro,"

"In vivo," "Anthelmintic", "Ruminant", "Green synthesis", and "Nano particles" were used for searching. I have collected those data from the relevant papers and enlisted them in this review of literature.

- **3.** General concept about Helminth: Helminth means parasitic worm in general term. They are invertebrates characterized by flat, elongated or round bodies. Flukes and tapeworms are examples of platyhelminthes, sometimes known as flatworms (the word "platy" is derived from the Greek for "flat"). Nematodes are roundworms; the term nemato means "thread" in Greek. These categories are further separated into the host organs that each group inhabits, such as intestinal roundworms, extra intestinal tapeworms, and lung flukes. The internal and exterior morphology of the egg, larval, and adult stages form the basis for the final classification. Aschelminthes and Platyhelminthes, parasitic helminths largely belong to the two classes Trematoda and Cestoda, however in the Phylum Aschelminthes, there is only one class Nematoda that has parasitic helminth. These intestinal and blood endoparasites are the source of a number of illnesses referred to as helminthiasis.
- 4. Cestodes (Tapeworms): They are commonly known as tapeworms. The body of the cestode is divided into several segments known as proglottids and lacks cilia and an epidermis. Scolex is present on the front end and has hooks and suckers. They are always hermaphrodites. Adult tapeworms inhabit in the intestinal lumen and larva are cystic or solid, they inhabit in extra intestinal tissues. Some of the most widespread diseases caused by cestodes are Taeniasis (*Taenia saginata* and *Taenia solium*), Hymenolopiasis (*Hymenolepis nana*), Echinococcosis or Hydatid cyst disease (*Echinococcus* sp.), diphyllobothriasis (*Diphyllobothrium latum*), Hymenolepis diminuta etc.
- 5. Trematodes (Flukes): Flukes are flatworms with a leaf-like form that are adults and have distinct oral and ventral suckers that aid in maintaining posture. With the exception of blood flukes, all parasites are hermaphroditic. A snail serves as an intermediary host during the life cycle. Some of the most common and widespread diseases caused by trematodes are Schistosomiasis (*Schistosoma mansoni, Schistosoma japonicum* and *Schistosoma haematobium*), Opisthorchiasis or clanorchiasis (*Opisthorchis* sp.), paragonimiasis {*Paragonimus* sp.), Fasciolopsiasis (*Fasciolopsis buski*), Fascioliasis (*Fasciola hepatica*).
- 6. Nematodes (Roundworms): They are frequently referred to as roundworms because of their cuticle-covered body wall, lack of cilia, cellular or syncytial epidermis, and longitudinal muscles in four bands. In most cases, internal fertilization happens in dioecious animals. Both the larva and the adults have a cylindrical form and are bisexual. They reside in both intra- and extraintestinal locations. The most common widespread diseases caused due to infestation with the nematodes are Ascariasis (*Ascaris* sp.), Ancylostomiasis (*Ancylostoma duodenale*), Enterobius (*Enterobius vermicularis*), Trichuriasis (*Trichuriasis trichura*), Trichinosis (*Trichinella* sp.), Filariasis (*Wucheraria bancrofti*), Loiasis (*Loa loa*), Onchocerciasis (*Onchocerca volvulus*).



**Figure 1:** Types of helminths (parasitic worms) (Source: https://www.verywellhealth.com/helminths-5207511)

# **II. ABOUT NANOPARTICLES**

The word nanoparticles come from the Greek word "nano". Nano is a very small size. According to Horikoshi and Serpone (2013), nanoparticles are particles with sizes between one and one hundred nanometers. Any unit can have it as a prefix to denote a billionth of that unit. The active substances are dispersed, trapped, encapsulated, adsorbed, or connected to micromolecular components that make up these products. It is a colloidal particle that is solid.

Green synthesis is a method for creating nanomaterials that is clean, safe, economical, and ecologically beneficial. The green synthesis of nanomaterials uses microorganisms like bacteria, yeast, fungi, algal species, and some plants as substrates. The green synthesis method offers quick, inexpensive, and repeatable methods for producing metallic nanoparticles that are environmentally benign.

Metal-based nanoparticles are widely used in engineering and medicinal sciences. Their market has expanded considerably over the past few years, and it is not expected to decline. AgNPs, CuONPs, AuNPs, and ZnONPs are a few examples of the several types of nanoparticles that are frequently utilized in pharmaceutical and medical applications (such as antibacterial, antifungal, antiviral, antiamebic, anticancer, and anti-angiogenic drugs).



Figure 2: Different metal Nanoparticles (Gold, Silver, Zinc, Cadmium, Iron)(Source: https://www.frontiersin.org/articles/10.3389/fchem.2020.00799/full)

# **III. MODE OF ACTION OF PLANT AS AN ANTHELMINTICS**

According to the WHO (2002), two-thirds of the world's population rely on plants as their main source of medical treatment. According to Newman and Cragg (2016), between 50,000 and 70,000 plant species are employed in both traditional and Western medical practices, and 25% of prescription drugs are made from plants or secondary metabolites obtained from them (Hammond et al., 1997; Akhtar et al., 2000; Githiori et al., 2006). Even today, at least 25% of medications are still derived from plants, and many more are semi-synthetic and constructed on plant-derived prototype chemicals (Kalia, 2005). All plant anthelmintics essentially kill helminth by paralyzing or starving them to death. If a paralyzed parasite loses their ability to hold their position in the stomach for a while, they will also die (Schoenian, 2010). Scanning electron micrograph (SEM) showed that plant Anthelmintic mostly causes tegumental damages, sucker disruption, scolex and entire body shrinkage in helminth and transmission electron micrograph (TEM) showed loss of parenchymal layer and chromatin clumped in nucleus occurs in helminth in most cases. Phytoconstituents showing anthelmintic effect includes tannins, alkaloids, polyphenols, saponins, flavonoids etc.

**1.** Alkaloids operate on the CNS, which causes paralysis, reduce the support of glucose to the helminths, and inhibit the transfer of sucrose from the stomach to the small intestine (Roy, 2010).

- **2.** According to Wang et al. (2010), saponins cause vacuolization and the disintegration of teguments by interfering with the permeability of the helminths' cell membrane.
- **3.** According to Tiwari et al. (2011), Sutar et al. (2010), and Mali et al. (2007), polyphenols and tannins increase the supply and absorption of digestible proteins by forming protein complexes in the rumen, which dissociate at low pH in the abdomen and release more protein for metabolism. They also suppress energy generation by uncoupling oxidative phosphorylation and reduce gastro-intestinal metabolism, which causes helminth paralysis and death.
- **4.** By linking through H-H bonds, tannins bind to free proteins in the GI tract of the host animal or to the glycoprotein in the cuticle of helminths. This reactivity results in toughness in the skin, which renders worms immobile and non-functional. Tannins also reduce nutrient availability, which causes starvation in the larvae or reduced GI metabolism, which causes paralysis and then death (Vidyadhar et al., 2010). According to several reports, improving the availability of digestible protein helps sheep be more resilient and resistant to gastrointestinal nematodes. It also causes physiological changes in the host's gut, which leads to the rapid secretion of mucous and chemicals that are toxic to the helminths (Bachaya et al., 2009).
- **5.** Steroidal alkaloid oligoglycosides prevent sucrose from being transferred from the stomach to the small intestine while decreasing the support of glucose in helminths and its antioxidant function. which inhibits the production of nitrate (which might be used in protein synthesis) and any potential inflammatory effects on the gastric and intestinal mucosa that might disrupt local homeostasis, both of which are necessary for the growth of helminths (Cruz, 2008).
- **6.** According to Laverack (1963), ethanol extract can lower pH, which has the effect of starving the worms or causing osmotic anomalies.
- **7.** On adult parasites, hydro-alcoholic extracts typically perform better than aqueous extracts. Recent research suggests that it may have occurred because hydro alcoholic extracts were more easily absorbed through the skin into the helminth's body than aqueous extracts. Hydro alcoholic plant extracts frequently include specific non-polar chemical components with lower polarity than aqueous extracts for improved anthelmintic activity. As a result, they are lipid soluble in comparison to aqueous extracts (Kumar et al., 2010).

Here some Medicinal plants list with proven anthelmintic effects are given below (in table 1).

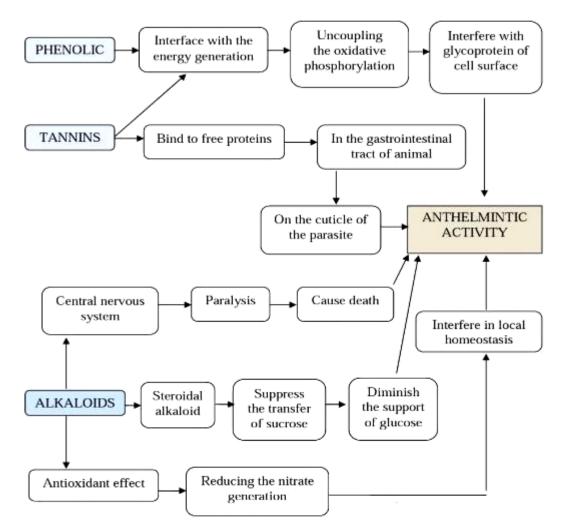



Figure 3: Different phytochemical's mode of action in Anthelmintic activity(Source: Kumar et al., 2010)

| Table 1: Medicinal | plants list with | proven anthelmintic effects |
|--------------------|------------------|-----------------------------|
| Lable Li Mculcinal | plants hot with  | proven untileminité effects |

| Plant name           | Family          | Plant part used |
|----------------------|-----------------|-----------------|
| Tamarindus indica    | Caesalpiniaceae | Bark            |
| Tephrosia purpurea   | Fabaceae        | Leaves          |
| Terminalia arjuna    | Combretaceae    | Bark            |
| Uncaria gambier      | Rubiaceae       | Leaves          |
| Mimuosops elengi     | Sapotaceae      | Bark            |
| Murraya koenigii     | Rutacae         | Root            |
| Nicotiana tabacum    | Solanaceae      | Leaves          |
| Albizia schimperiana | Fabaceae        | Stem and root   |
| Paederia foetida     | Rubiaceae       | Leaves          |
| Pajanelia longifolia | Bignoniaceae    | Bark            |
| Portulaca oleracea   | Portulacaceae   | Leaves          |
| Saraca indica        | Leguminosae     | Leaves          |

| Spermacoce ocymoides   | Rubiaceae      | Leaves    |
|------------------------|----------------|-----------|
| Strobilanthes discolor | Acanthaceae    | Leaves    |
| Curcuma amada          | Zingiberaceae  | Rhizome   |
| Diplazium esculentum   | Athyriaceae    | Rhizome   |
| Drypetes sepiaria      | Euphorbiaceae  | Leaves    |
| Ficus bengalensis      | Moraceae       | Fruit     |
| Flacourtia sepiaria    | Flacourtiaceae | Leaves    |
| Gymnema sylvestre      | Asclepiadaceae | Leaves    |
| Hedychium spichatum    | Zingiberaceae  | Rhizome   |
| Helicteres isora       | Sterculiaceae  | Fruit     |
| Heliotropium indicum   | Boraginaceae   | Leaves    |
| Physalis minima        | Solanaceae     | Leaves    |
| Cotyledon orbiculate   | Crassulaceae   | Shoots    |
| Achyranthes aspera     | Amaranthaceae  | Stem      |
| Croton bonplandianium  | Euphorbiaceae  | Leaves    |
| Baliospermum montanum  | Euphorbiaceae  | Root      |
| Bambusa vulgaris       | Bambusoideae   | Leaves    |
| Juglans regia          | Juglandaceae   | Stem bark |

# IV. MODE OF ACTION OF GREEN SYNTHESIS METAL NANOPARTICLES ASAN ANTHELMINTICS

The majority of research studies on the use of metal-based nanoparticles in the treatment of infectious diseases are built on preclinical analysis. In the treatment of helminth infections, combining metal nanoparticles with plant extract increased the anthelmintic activity. The nanoparticles that are currently being used have better cell interaction and uptake, and some of them even exhibit good selectivity when given specific functional modifications.

- **1. Silver Nanoparticles:** Plant extracts and silver nanoparticles combined to produce effective anthelmintic action. Rashid et al. used fruit extract to show that polyaniline-coated silver nanoparticles have anthelmintic properties. While the plant extract contains phytochemicals that attach with the free proteins in the gastrointestinal system on the helminth's cuticle, causing paralysis and death, the +ve charge on the Ag ion was attracted to the -ve charged cell membrane of microorganisms by electrostatic interaction (Rashid et al., 2016).
- 2. Gold Nanoparticles: Gold nanoparticles, in addition to silver nanoparticles, have the potential to be anthelmintic agents. Kar et al. evaluated the anthelmintic activity of gold nanoparticles. Gold nanoparticles were produced by mixing gold chloride with a mycelia-free culture filtrate of the phytopathogenic fungus. The gold nanoparticles caused the helminth's paralysis and eventual death by directly affecting its physiological processes. The helminth's enzyme activity considerably changed following treatment with gold nanoparticles, illuminating the potential of these particles (Kar et al., 2014).
- 3. Metal Oxide Nanoparticles (Zinc and Iron Oxide): Nanoparticles made of iron oxide

andzinc oxide, for instance, have an antihelmentic impact on helminth parasites. Khan et al. (2015) revealed that zinc oxide nanoparticles have an anthelmintic effect on the helminth parasite that affects Indian livestock. By causing the helminths to create ROS, low nanoparticle concentrations caused oxidative stress. The flukes showed signs of a survival strategy by increasing the activity of antioxidant enzymes to scavenge the ROS. When they were treated with a high quantity of nanoparticles, the survival effort was hampered. The detoxification process was rendered ineffective because the worm's antioxidant enzymes were saturated. The antioxidant enzymes of the worm were saturated, rendering the detoxification process ineffective. It is hypothesized that the increased intracellular ROS level will change the contractile activity, interfere with the electron transport chain and make the cell membrane more permeable in helminths (Khan et al., 2015). Zinc oxide and iron oxide nanoparticles were tested for their anthelmintic properties against helminth by Dorostkar et al. (Dorostkar et al., 2017). Iron oxide nanoparticles were shown to be more effective than zinc oxide nanoparticles due to the nature of the nanoparticles.

Superoxide Dismutase activity (SOD) was increased following treatment with low doses of both nanoparticles. Because the enzyme was saturated at high nanoparticle concentrations, there was a noticeable decrease in SOD activity in helminths. High concentrations of the oxidative stress caused by the nanoparticles overwhelm ATP production and cause structural damage. According to Dorostkar et al. (2017), the anthelmintic action of metal oxide nanoparticles is caused by the development of oxidative stress.

Metal-based nanoparticles have beneficial biological interactions with biomolecules located within and on the surfaces of cells. They can also be modified to have improved therapeutic efficacy at the diseased site by introducing potent biological components with specific binding activity to choose target cells.

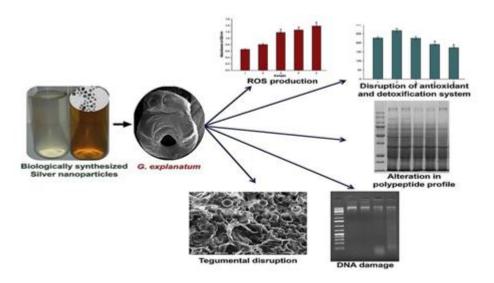



Figure 4: Morphological alternation in *Gigantocotyle explanatum* (Trematode) due to application of biologically synthesized silver nanoparticles. (Source: Rehman et al., 2019)

# Table 2: Plants reported for having Anthelmintic activity against cestode

| Name of the helminth    | Name of the plant                                            | Plantpart<br>used                                               | Solventused                                           | Stage of<br>helminth                                            | Test conducted          | Result /LC50 values                                                                                                                                                                                                                                                              |
|-------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Oroxylum<br>indicum                                          | Stem,Bark                                                       | Methanol                                              | 2 <sup>nd</sup> stage of<br>Juvenile &<br>Adult inAlbino<br>rat | In vitro and in<br>vivo | In vitro, juveniles died after<br>being exposed to 30 mg/ml of<br>extract for the first time (0.25<br>$\pm$ 0.00 hrs.) of the extract<br>reduced EPG counts by<br>79.3% andworm numbers by<br>70.8% in vivo.                                                                     |
| Hymenolepis<br>diminuta | Cynodon<br>dactylon                                          | Whole plant                                                     | Methanol                                              | Adult,<br>EPG in<br>Wister rat                                  | In vitro and in<br>vivo | The 40 mg/ml conc. resulted<br>in worm paralysisand<br>mortality in an invitro test<br>after $4.12 \pm 0.55$ and $5.16$<br>$\pm 0.34$ hrs. respectively.<br>800 mg/kg administered<br>orally for 5days in vivo<br>showed up to 77.64% and<br>79.00% reductions in EPG<br>counts. |
|                         | Pinus sp.,<br>Corylus<br>avellana and<br>Trifolium<br>repens | Pine bark<br>hazelnut<br>Pericarp<br>White<br>clover<br>flowers | Acetone/<br>water (7:3;<br>v/v)<br>Condense<br>tannin | Cysticercoidsin<br>beetle                                       | In vitro and in<br>vivo | In vitro, condense tannin from<br>all three plant extracts had<br>dose- dependent inhibitory<br>effect, In vivo, hazelnut<br>extract was most effective on<br>cysticercoid development.                                                                                          |
|                         | Acorus calamus                                               | Rhizomes                                                        | Methanol                                              | EPG in rat                                                      | In vivo                 | 800 mg/kg of rhizome extract<br>for 5 days causes a 62.30%<br>decrease in the EPG of faeces                                                                                                                                                                                      |

|                                                       | Psidiumguajava<br>and Lasia<br>spinosa                                | Leaves                         | Aqueous    | Adult in rat                                                      | In vitro                | and an83.25% decrease in<br>the number of worms.<br>40 mg/ml of aqueous extract<br>showed best result.                                                                                |
|-------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|------------|-------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Caesalpinia<br>bonducella and<br>Croton<br>joufra                     | Leaves                         | Methanol   | 2 <sup>nd</sup> stage of<br>Juvenile and<br>adult inWister<br>rat | In vitro                | 30 mg/ml of methanol<br>extracts showed best result.                                                                                                                                  |
|                                                       | Caesalpinia<br>bonducella                                             | Leaves                         | Methanol   | Egg, Adult in<br>mice                                             | In vitro and in<br>vivo | In vitro, 30 mg/ml of<br>methanol extract caused<br>mortality in $2.5 \pm 0.2$ hrs. In<br>vivo 85% worm load<br>reduction in rats.                                                    |
| Raillietina<br>tetragona<br>and<br>Ascaridia<br>galli | Imperata<br>cylindrica                                                | whole<br>undergr<br>ound parts | Chloroform | Adult in fowl                                                     | In vitro                | Chloroform extract 20 mg/ml<br>took time for <i>R. tetragona</i><br>$36.53 \pm 2.66$ hrs. to kill and<br>took $81.56 \pm 1.71$ hrs. took for<br><i>A. galli</i> to kill respectively. |
| Raillietina<br>tetragona                              | Cassia alata,<br>Cassia<br>angustifolia and<br>Cassia<br>occidentalis | Leaves                         | Alcohol    | Adult fromfowl                                                    | In vitro                | At 40 mg/ml, <i>C. alata</i> took<br>less time $(1.68 \pm 0.27$ hrs.) to<br>be paralyzed combination<br>with any of this plant took<br>shorter time to be paralyzed.                  |
|                                                       | Iiex khasiana                                                         | Leaves                         | Methanol   | Adult in fowl                                                     | In vitro                | 20 mg/ml of the methanolic<br>extract took 20.40 $\pm$ 2.55 h<br>to kill all the adults.                                                                                              |

| Raillietina<br>echinobothr<br>ida | Lysimachia<br>ramose                                     | Leaves                    | Crude & N-<br>butanol | Adult in fowl         | In vitro | At a dosage of 6 mg/ml of<br>PBS, crude leaf extractand<br>N-butanol fractioncaused<br>adults' glycogen conc. to drop<br>by 26–51%.        |
|-----------------------------------|----------------------------------------------------------|---------------------------|-----------------------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Acmella<br>Oleracea                                      | Aerialparts               | Methanol              | Adult in fowl         | In vitro | $\begin{array}{c} 20 \text{ mg/ml the plant extract} \\ \text{took } 18.42 \pm 0.95 \text{ hrs to kill} \\ \text{the adults.} \end{array}$ |
|                                   | Spilanthes<br>acmella                                    | Aerial parts of the plant | Chloroform            | Adult in fowl         | In vitro | Plant extract was effectiveat all conc.                                                                                                    |
|                                   | Carex baccans                                            | Root                      | Aqueous               | Adult in fowl         | In vitro | 50 mg/ml of the plant extract<br>caused paralysis and death<br>after 3.59±0.02 hrs and 4.13<br>±0.06 hrs. of incubation<br>respectively.   |
| Moneizia<br>expansa               | Abutilon<br>indicum                                      | Leaves                    | Methanol              | Adult,Egg in<br>sheep | In vitro | At 100 mg/ml conc. the<br>paralysis and death time were<br>recorded at $66.3 \pm 0.03$ and<br>$93.2\pm0.09$ minutes<br>respectively.       |
|                                   | Tephrosia<br>purpurea                                    | Root                      | Methanol              | Adult in goat         | In vitro | Methanolic extract of 125<br>mg/ml showing 1.29±0.17hrs.<br>and 2.63±0.36 hrs. for<br>paralysis and death,<br>respectively.                |
| Taenia<br>saginata                | Gongronema<br>latifolium,Piper<br>guineenseand<br>Ocimum | Leaves                    | Ethanol               | Ova in cow            | In vivo  | 8 hrs. of exposure to 50%<br>conc. of <i>O. gratissimum</i><br>resulted in 100% death for<br>each ovum.                                    |

|                     | gratissimum            |             |          |             |          |                                                                                                                                                                                      |
|---------------------|------------------------|-------------|----------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hymenolipes<br>nana | Punica<br>granatum     | Peel        | Methanol | Eggs in rat | In vivo  | Methanolic extract withdoses<br>of 0.5 ml, 1.0 ml and 1.5 ml<br>decreased the number of<br>worms at $15.6\pm2.6$ , $8.4\pm2.1$<br>and $5.7\pm2.5$ in treated groups<br>respectively. |
|                     | FerulaAssa-<br>foetida | Aerialparts | Methanol | Eggs in rat | In vitro | When compared to the control,<br>the highest conc. Of<br>methanolic extract<br>significantly reduced the<br>number of eggs and<br>helminths.                                         |
| Taenia<br>tetragona | Acmella<br>Oleracea    | Aerialparts | n-Hexane | Adult       | In vitro | Lethal conc. (LC50) of then-<br>Hexane extract was 5128.61<br>ppm.                                                                                                                   |

# Table 3: Plants reported for having Anthelmintic activity against trematode

| Name of the     | Name of the plant          | Plant parts | Solventused    | Stages of      | Test      | Result /LC50 values    |
|-----------------|----------------------------|-------------|----------------|----------------|-----------|------------------------|
| helminth        |                            | used        |                | helminth       | Conducted |                        |
| Carmyerius      | Cassia siamea,             | Leaves,     | Ethyl acetate, | Adult inCattle | In vitro  | Most effective extract |
| spatiosus and   | Plumbago zeylanica,        | Heartwoods, | n-butanol,     | and Buffalo    |           | washexane having LC50  |
| Paramphisto mum | <i>Plumbago indica</i> and | Roots and   | Hexane and     |                |           | value                  |
| sp.             | Terminalia catappa         | Flowers     | Water          |                |           | 34.38 ppm and LC90     |
|                 |                            |             |                |                |           | value                  |
|                 |                            |             |                |                |           | 64.09 ppm.             |

| Fasciolahepatica       | Acacia farnesiana,<br>Acacia cornigera,<br>Artemisia absinthium,<br>Bocconia frutescens,<br>Artemisia Mexicana,<br>Cajanus cajan, Hibiscus<br>rosa sinensis, Cordia<br>spp, Leucaena<br>diversifolia, Lantana<br>camara, Melia<br>azedarach,<br>Mentha sp, Piper<br>auritum, Ocimum<br>basilicum and | Leaves      | Hexane, Ethyl<br>acetate and<br>Methanol | Newly excysted<br>flukes in<br>ruminant | In vitro | <i>C. cajan, L. camara,</i> and<br><i>P. auritum</i> all<br>demonstrated 100%<br>efficacy at a dose of 500<br>mg/l, whereas <i>B.</i><br><i>frutescens</i> and <i>A.</i><br><i>Mexicana</i> demonstrated<br>100% efficacyat a level<br>of 125 mg/l. |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|-----------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Teloxy sambrosioidesCorydalis crispa and                                                                                                                                                                                                                                                             | Whole plant | Methanol                                 | Adult inmice                            | In vitro | IC50 value is 8.6 µg/ml                                                                                                                                                                                                                             |
| Schistosoma<br>mansoni | Pleurospermum amabile<br>Eryngium triquetrum                                                                                                                                                                                                                                                         | leaves      | Essential oil                            | Larva                                   | In vitro | 0.1 ppm had a prevalence<br>of3.3%, which was less<br>infectious than untreated,<br>which had a prevalence<br>of 44%.                                                                                                                               |
|                        | Teclea nobilis                                                                                                                                                                                                                                                                                       | Leaves      | Essential                                | Eggs                                    | In vitro | Essential oil showed<br>LC50                                                                                                                                                                                                                        |
|                        |                                                                                                                                                                                                                                                                                                      |             | oil                                      |                                         |          | and LC90 values of<br>196.29 and 367.24 ppm<br>respectively after30 mins.                                                                                                                                                                           |

|              | Ficus carica and Olea | Leaves     | Alcohol       | Adult inmice   | In vitro | The LC50 about both        |
|--------------|-----------------------|------------|---------------|----------------|----------|----------------------------|
|              | europaea              |            |               |                |          | extractsmight have been    |
|              |                       |            |               |                |          | 21. 35 and 47.98 after     |
|              |                       |            |               |                |          | 120 hrs. of exposure.      |
|              | Foeniculum vulgare    | Fennel     | Essential oil | Adult inmice   | In vitro | Conc. of 100 µg/ml, was    |
|              |                       |            |               |                |          | more effective against     |
|              |                       |            |               |                |          | adult.                     |
|              | Crocus sativus        | Flower     | Aqueous       | Egg frommice   | In vivo  | Significant reduction in   |
|              |                       |            |               |                |          | overall worm burden        |
|              |                       |            |               |                |          | $(7.00 \pm 1.00)$ and      |
|              |                       |            |               |                |          | significant increasein the |
|              |                       |            |               |                |          | number of dead ovules      |
|              |                       |            |               |                |          | $(13.11 \pm 1.68).$        |
|              | Mentha x villosa huds | Leaves     | Essential oil | Adult inSwiss  | In vitro | Essential oil caused the   |
|              |                       |            |               | webstermice    |          | deathof all worms at 500   |
|              |                       |            |               |                |          | μg mL- 1 after 24 hrs.     |
| Cotylophoron | Nigella sativa        | Seeds      | Ethanol       | Adult in small | In vitro | After 8 hrs. of treatment, |
| cotylophorum |                       |            |               | ruminant       |          | thehighest motility        |
|              |                       |            |               |                |          | inhibition was seen at 0.5 |
|              |                       |            |               |                |          | mg/ml conc.                |
|              | Acacia concinna       | Pods       | Aqueous       | Adult insmall  | In vitro | Effective at 0.5 mg/ml     |
|              | ~                     | ~          |               | ruminant.      |          | after 8hrs. of exposure.   |
|              | Syzygium aromaticum   | Clove buds | Ethanol,      | Adult in small | In vitro | Ethanolic extract showed   |
|              |                       |            | Hexane,       | ruminant       |          | maximum inhibition in      |
|              |                       |            | Chloroform    |                |          | themotility at highest     |
|              |                       |            | and Ethyl     |                |          | conc. 86.86%.              |
|              |                       |            | acetate       |                |          |                            |

|                         | Allium sativum                                                                  | Bulb                                | 70% Ethanol        | Adult incattle       | In vitro | Alcoholic extract showed<br>highest mortality rate at a<br>conc. of 1 mg/l after 8<br>hrs. exposure.                                                                                     |
|-------------------------|---------------------------------------------------------------------------------|-------------------------------------|--------------------|----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gastrothylax<br>indicus | <i>Azadirachta indica,<br/>Calotropis procera</i> and<br><i>Punica granatum</i> | Flower,<br>Leaves and<br>Fruit peel | Aqueous<br>Ethanol | Adult in<br>ruminant | In vitro | LC50 values were<br>$12.05 \text{ mg/ml} \pm 3.24 \text{ and}$<br>$23.52 \text{ mg/ml} \pm 6.4 \text{ for } C.$<br><i>procera</i> for ethanolic and<br>aqueous extracts<br>respectively. |
| Fasciola gigantica      | Curcuma aeruginosa                                                              | Rhizome                             | Methanol           | Adult incattle       | In vitro | 50% of <i>C. aeruginosa</i><br>extractshowed highest<br>mortality. Allflukes died<br>after 48 mins. of<br>treatment.                                                                     |
|                         | Terminalia catappa                                                              | Leaves                              | Ethanol            | Adult incattle       | In vitro | Maximum efficacy was<br>observed in ethanolic<br>extractof 1000 µg/ml,<br>where 100 % death occur<br>after 3 hrs. of incubation.                                                         |
|                         | Veitchia merrillii                                                              | Nut                                 | 96% methanol       | Adult incattle       | In vitro | 50% of extract showed<br>highest mortality. All<br>flukesdied after 30 mins.<br>of treatment.                                                                                            |

|                            | Dioscorea bulbifera L.                                                    | Bulbils                        | Methanol                                          | Adult incattle                                             | In vitro | The median lethal conc.<br>values for liver fluke<br>were 61.73 and 41.79<br>mg/ml forthe meat and<br>peel extracts,<br>respectively.                                                                     |
|----------------------------|---------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Dregea volubilis                                                          | Leaves                         | Methanol                                          | Adult incattle                                             | In vitro | With a conc. of 100<br>mg/ml,the maximum<br>fasciocidal activity was<br>discovered at 38.83 3.41<br>minutes.                                                                                              |
| <i>Fasciola</i> spp        | <i>Cantharellus cibarius</i><br>and <i>Ganoderma</i><br><i>applanatum</i> | Mushroom<br>fruiting<br>bodies | Ethanol                                           | Eggs and<br>Miracidiastage<br>in gall bladder<br>of cattle | In vitro | <i>G. applanatum</i> ethanolic<br>extract (GEE) tested at 8<br>mg/ml with 91.3%<br>ovicidal activity was<br>significant. higher than<br><i>C. cibarius</i><br>ethanolic extract (CEE)<br>at thesame conc. |
| Gastrothylax<br>crumenifer | Microlepia Speluncae                                                      | Leaves                         | Methanol                                          | Adult insheep                                              | In vitro | LC50 value was 3.666<br>with a95% confidence<br>interval of<br>1.508-4.046.                                                                                                                               |
|                            | SpilanthesAcmella                                                         | Leaves                         | Hexane Ethyl<br>acetate<br>Methanoland<br>Aqueous | Adult insheep                                              | In vitro | Most effective in<br>aqueous extract of callus<br>at 5 mg/mlconc., caused<br>onset of paralysis in 45.7<br>min and death in 87<br>mins.                                                                   |

| Fasciolahepatica                 | Eugenia uniflora,<br>Harpagophytum<br>procumhens, Psidium<br>guajava and<br>Stryphnodendron<br>Nad stringens | Leaves, Roots<br>andBark | Alcohol                                           | Eggs                  | In vitro | 100% effective at 0.10%<br>( <i>E. uniflora</i> ) and 100 %<br>effectiveat 0.25% ( <i>H. procumbens</i> ).              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|-----------------------|----------|-------------------------------------------------------------------------------------------------------------------------|
| Paramphisto mum<br>Microbothrium | Balanites aegyptiaca                                                                                         | Fruits                   | Methanol                                          | Adult                 | In vitro | The fruit's 200 g/ml<br>methanolic extract<br>demonstrated the<br>maximum potency.                                      |
| Paramphistomum<br>explanatum     | Drega volubilis                                                                                              | Leaves                   | Methanol                                          | Adultfrom<br>buffalo  | In vitro | 100 μg/ml of methanolic<br>extract took 10.67±0.61<br>mins.<br>for death.                                               |
|                                  | Bombax malabaricum                                                                                           | Leaves                   | Methanol                                          | Adult from<br>buffalo | In vitro | 100 μg/ml of methanolic<br>extract took 22.17±0.48<br>mins.for death.                                                   |
|                                  | Jatropha gossypifolia                                                                                        | Root                     | Petroleum<br>ether extract<br>(60-80°C)<br>(PEJG) | Adult incattle        | In vitro | PE extract of J.<br>gossypifolia (PEJG) at 25<br>mg/ml killed the<br>trematodes within 158.83<br>$\pm$ 4.94 mins.       |
| Mixed<br>trematodes inbird       | Punica gramatum                                                                                              | Bark                     | Acetic acid                                       | Adult infowl          | In vitro | 100 % mortality observed<br>at 5 % conc. after 360<br>mins. of exposure.                                                |
| Paramphistomum<br>sp             | Clerodendrum viscosum,<br>Eryngium foetidum,<br>LippiaJavanica, and<br>Murraya koenigii                      | Leaves                   | Methanol                                          | Adult incattle        | In vitro | Paralysis and death time<br>wererecorded at $0.56 \pm$<br>$0.09$ hrs. and $1.35 \pm 0.07$<br>hrs. for L. javanica at 50 |

|                         |                                                              |                               |                                                         |                 |          | mg/ml conc.                                                                                                                                                                                                                    |
|-------------------------|--------------------------------------------------------------|-------------------------------|---------------------------------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paramphistomum<br>cervi | Physalis minima                                              | Leaves and<br>Stem            | Ethanol                                                 | Adult incattle  | In vitro | Paralysis took 10.5 mins.<br>for leaves and 11.3 mins<br>for stemand mortality<br>took 28.8 mins.for leaves<br>and 20 mins. for stem of<br>worms by an<br>ethanolic extract at 100<br>mg/ml.                                   |
|                         | Carica papaya L.                                             | Leaves                        | Ethanol                                                 | Adult incattle  | In vitro | Higher conc. (100<br>mg/ml) ofethanolic<br>extracts of the leaves<br>responsible for the<br>paralysis and death.                                                                                                               |
|                         | Balanites aegyptica                                          | Fruit, leaves<br>and seed     | Alcohol                                                 | Adult inbuffalo | In vitro | Alcoholic extract at 125<br>mg/ml conc. showed total<br>mortality at 5 hrs.                                                                                                                                                    |
|                         | Ananas sativus,<br>Erythrinavariegata and<br>Alocasia indica | Leaves, Bark<br>and Rootstock | Crude<br>aqueous and<br>Hydro-<br>alcoholic<br>extracts | Adult incattle  | In vitro | The hydroalcoholic leaf<br>extract of <i>A. sativus</i><br>showed paralysis in all<br>three conc. (25, 50, and<br>100 mg/ml), withdeath<br>times ranging from 7.26<br>to 26.76 and 15.40 to<br>35.55 minutes,<br>respectively. |

| Faciola gigantica  | Gongronema latifolium, | Leaves | Ethanol | Ova in        | In vitro | P. guineense at 75%        |
|--------------------|------------------------|--------|---------|---------------|----------|----------------------------|
| andSchistosama sp. | Piper guineense and    |        |         | ruminant,mice |          | conc. showed mortality     |
|                    | Ocimum gratissimum     |        |         |               |          | after 2 hrs.of exposure to |
|                    | _                      |        |         |               |          | F. gigantica               |
|                    |                        |        |         |               |          | O. gratissimum at 75%      |
|                    |                        |        |         |               |          | conc.showed mortality      |
|                    |                        |        |         |               |          | after 4 hrs.of exposure to |
|                    |                        |        |         |               |          | Schistosoma sp.            |

# Table 4: Plants reported for having Anthelmintic activity against nematode

| Name of helminth | Name of plant          | Plant<br>parts | Solvent used    | Stages of<br>helminth | Test<br>Conducted | Result/ lc <sub>50</sub> values         |
|------------------|------------------------|----------------|-----------------|-----------------------|-------------------|-----------------------------------------|
| Meloidogyne sp.  | Asteriscus imbricatus, | Aerial         | Petroleum ether | Egg and               | In vitro          | At 2000 ppm, 89, 31 % and               |
|                  | Lavendula dentata,     | parts          | Chloroform      | Larva in              |                   | 92, 71% of mortality                    |
|                  | Pulicaria mauritanica  |                | Distilled water | plant root            |                   | observed in A. imbricatus PE            |
|                  | and Globularia         |                |                 |                       |                   | and chloroform extracts                 |
| Meloidogyne      | Raphanus               | Seed,          | Aqueous and     | Eggs and              | In vitro and      | The extract of R. communis              |
| incognita        | raphanistrum L.,       | Root and       | Ethanol         | 2 <sup>nd</sup> stage | In vivo           | had the highest $LC_{50}$ of all        |
|                  | Peganum harmala L.,    | Aerial         |                 | Juvenile in           |                   | methanolic extracts in vitro,           |
|                  | Taxus baccata          | parts          |                 | plant root            |                   | which was 0.75 ml/ml,                   |
|                  | L. Ricinus             |                |                 |                       |                   | whereas the extract of T.               |
|                  | communis L.            |                |                 |                       |                   | baccata had the lowest LC <sub>50</sub> |
|                  | and                    |                |                 |                       |                   | of all aqueous extracts,                |
|                  | Sinapis arvensis L.    |                |                 |                       |                   | which was 0.51 ml/ml. After             |
|                  |                        |                |                 |                       |                   | the application of methanolic           |
|                  |                        |                |                 |                       |                   | extracts of the three plants,           |

| Abrus precatoriusLinn., Buniumpersicum Boiss.,Amaranthus virdisLinn., Dioscoreadeltoidea Wall. ExGriseb., Teraxacumofficinale Weber.,Malva neglecta Wall.,Robina pseudoacaciaLinn. and Podophylumhexandrum Royle | Seed               | Chloroform and<br>methanol (50:50,<br>v/v)                                | Eggs and<br>2 <sup>nd</sup> stage<br>Juvenile in<br>plant root | In vitro | The highest rates of death<br>were seen in seed extracts<br>from T. officinale (93.67%)<br>and B. persicum (89.66%)<br>after 72 hrs.   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|
| Azadirachta indica,<br>Ocimum tenuiflorum,<br>Arthemisia pallens,<br>Ficus hispida and<br>Hibiscus rosasinensis                                                                                                  | Leaves             | Methanol                                                                  | Eggs and<br>2 <sup>nd</sup> stage<br>Juvenile in<br>plant root | In vitro | The methanolic extracts of<br>five plant species decreases<br>the viability of nematodes as<br>the conc. of the extracts<br>increases. |
| Curcuma longa                                                                                                                                                                                                    | Root               | Crude extract,<br>Methanol,<br>Chloroform<br>Ethyle acetate<br>and Hexane | Eggs and<br>2 <sup>nd</sup> stage<br>Juvenile in<br>plant root | In vitro | The chloroform extract<br>showed maximum mortality<br>at highest<br>Conc.                                                              |
| Lantana camara L.                                                                                                                                                                                                | Leaves             | Aqueous                                                                   | 2 <sup>nd</sup> stage<br>Juvenile in<br>plant root             | In vitro | The highest mortality<br>(98.6%) was recorded in<br>100% Conc. of leaf extract at<br>48 hrs of exposure period.                        |
| Jatropha curcas                                                                                                                                                                                                  | Leaves and<br>Root | Distilled water                                                           | Eggs in root                                                   | In vitro | The highest % of nematode<br>mortality was achieved by<br>application of alkaloids                                                     |

|                                                         |                                     |                     |                                                                |          | (94.73%).                                                                                                                                                                                                                                 |
|---------------------------------------------------------|-------------------------------------|---------------------|----------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vernonia<br>Searsia la<br>Pelargoni<br>and<br>Cucurbita | ncea,<br>um sidoides                | Methanol            | Eggs and<br>2 <sup>nd</sup> stage<br>Juvenile in<br>plant root | In vitro | 100% of root gall growth<br>was inhibited in seedlings<br>given the methanolic extract<br>of <i>V. colorata</i> . At 0.8 mg/ml,<br>all 8 plant extracts<br>demonstrated positive<br>nematicidal action.                                   |
| Catharant<br>and<br>Solidago v                          | hus roseus Leaves<br>virgaurea      | Aqueous,<br>Ethanol | Eggs and<br>2 <sup>nd</sup> stage<br>juvenile                  | In vitro | Inhibition of egg hatching by<br><i>C. roseus</i> extracts was higher<br>than <i>S. virgaurea</i> extracts.<br>LC <sub>90</sub> was found to be<br>achieved by a conc. of<br>almost 1 g D. Wt./L in <i>S.</i><br><i>virgaurea</i> .       |
| -                                                       | <i>a hirta</i> and Stem and Fruit   | Aqueous             | Eggs and<br>Larva in<br>root                                   | In vitro | Maximum reduction (24.3%)<br>in egg hatching while using<br>2% concentrated <i>C. album</i><br>stem extract. Maximum<br>larval mortality (33%) was<br>noted in <i>C. album</i> leaf<br>extract at 10% conc. after 48<br>hrs. of exposure. |
|                                                         | liversifolia,<br>ena odorata<br>uum | Aqueous extract     | Second<br>stage<br>of juveniles                                | In vitro | Within 24 hrs. of exposure,<br><i>T. erecta</i> resulted in 100%<br>juvenile mortality.                                                                                                                                                   |

|                         | Aloe vera                                                 | Leaves                                                         | 70%<br>Ethanol                 | 2 <sup>nd</sup> stage of<br>Juvenile,<br>Adult male<br>and adult<br>female | In vitro                | Highest efficacy was found<br>at 80 mg/ml treatments.                                                                                                                 |
|-------------------------|-----------------------------------------------------------|----------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Mentha piperita,<br>Mentha spicata and<br>Mentha pulegium | Leaves                                                         | Aqueous and<br>Essential oil   | 2nd stage of<br>Juvenile                                                   | In vitro                | The aqueous extract exhibited the $EC_{50}/72$ hrs.                                                                                                                   |
| Meloidogyne<br>javanica | Ochradenus baccatus                                       | Seedling,<br>Stem,<br>Flower,<br>Root core<br>and Root<br>bark | Aqueous                        | Eggs and<br>2 <sup>nd</sup> stage<br>Juvenile in<br>plant root             | In vitro                | After 48 hrs. of exposure to<br>the highest conc. (16%) in<br>both trials, the aqueous<br>extracts of stem and flower<br>immobilised 40-7-100% of<br>juveniles.       |
|                         | Myrtus communis                                           | Leaves                                                         | Methanol and<br>Ethanol        | 2 <sup>nd</sup> stage of<br>Juvenile<br>stage and<br>eggs in root          | In vitro                | Methanol or ethanol extracts<br>showed the highest<br>nematicidal activity among<br>all extracts tested.                                                              |
| Haemonchus<br>contortus | Caesalpinia coriaria                                      | Fruit                                                          | Hydro-alcoholic<br>and aqueous | Infective<br>larval stage                                                  | In Vivo and<br>in vitro | The in vitro findings<br>demonstrated a clear<br>larvicidal efficacy. In the in<br>vivo trial, there was a 78.6%<br>reduction in the elimination<br>of EPG of faeces. |
|                         | Anacardium<br>occidentale, Illicium<br>verum, and         | Shell,<br>Seed and<br>Fruit                                    | Hydro-alcohol                  | Eggs,<br>Infective<br>larva and                                            | In vitro                | A. Occidentale shell caused<br>adult worm mortality (LD <sub>50</sub><br>= 1.0365 mg/mL) at a lower                                                                   |

|  | Artocarpus<br>heterophyllus                                             |                                                 |          | Adult in sheep                            |                             | conc. (LD <sub>50</sub> ), larval paralysis<br>(LD <sub>50</sub> = $0.196 \text{ mg/mL}$ ), and<br>50% egg hatch inhibition                                                                                                                                                                            |
|--|-------------------------------------------------------------------------|-------------------------------------------------|----------|-------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Artemisia herba-alba,<br>Balanites aegyptiaca,<br>and<br>Allium sativum | Stem,<br>Leaves,<br>Fruits and<br>Cloves        | Ethanol  | EHA, AMA<br>Eggs and<br>Larva in<br>sheep | In vitro and<br>in vivo     | $(LD_{50} = 0.0255 \text{ mg/mL}).$ Clove ethanolic extract<br>(CEE) of <i>B. aegyptiaca</i><br>demonstrated the greatest<br>anthelmintic effect on adult<br>worms in vitro. At 7 days<br>after treatment, the CEE of<br><i>B. aegyptiaca</i> achieved<br>faecal egg removal (100%)<br>in vivo.        |
|  | Artemisia herba- alba<br>and<br>Punica granatum                         | Flower,<br>Aerial<br>parts,<br>Peel and<br>Root | Methanol | Eggs and<br>Adult                         | In vitro<br>AMA and<br>EHIA | In vitro.<br>In vitro EHIA, flower<br>methanolic extract of <i>A</i> .<br><i>herba-alba</i> exhibited 98.67%<br>inhibition and 94.63 % at<br>1 mg/ml conc. of peel<br>extracts of <i>P. granatum</i><br>respectively. In AMA, all<br>helminths were dead within<br>5 hrs. at a conc. of<br>0.25 mg/ml. |
|  | Chenopodium<br>ambrosioides and<br>Castela tortuosa                     | Aerial<br>parts,<br>Leaves and<br>Stem          | n-Hexane | Larvae in                                 | In vitro and<br>in vivo     | The E-Cham extract<br>produced an in vitro impact<br>(96.3%) after 72 hrs. At 40<br>mg/ml, the maximum<br>combined effect (98.7%) was<br>attained after 72 hrs.<br>Individual treatment of the                                                                                                         |

|  |                                        |                    |                                                                       |                                                |                          | E-Cato and E-Cham extracts<br>decreased the parasite by<br>27.1% and 45.8%,<br>respectively, in an in vivo<br>experiment.                                                                                                                                                                                                                                         |
|--|----------------------------------------|--------------------|-----------------------------------------------------------------------|------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Allium sativum and<br>Tagetes erecta   | Bulb and<br>Flower | Aqueous                                                               | Larva in<br>ruminant                           | In vitro and<br>in vitro | Larvicidal activity% in vitro<br>was 68% with <i>A. sativum</i> and<br>36.6% with <i>T. erecta</i> at a<br>conc. of 40 mg/ml. Mortality<br>was induced by the mixture<br>by 83.3%. <i>A. sativum</i> and <i>T.</i><br><i>erecta</i> extracts at a conc. of<br>40 mg/ml reduced the<br>parasite burden in living<br>organisms by 68.7% and<br>53.9%, respectively. |
|  | Annona muricata and<br>Arachis pintoic | Leaf               | NP/PEG,<br>Dragendroff<br>Kedde reagents,<br>Acetic acid,<br>Methanol | Eggs<br>Larva,<br>Adult in<br>ruminant         | In vitro                 | Egg hatch test (EHT) and<br>larval motility test (LMT)<br>results at higher doses of <i>A</i> .<br><i>muricata</i> extract<br>demonstrated 84.91% and<br>89.08% efficacy,<br>respectively.                                                                                                                                                                        |
|  | Caesalpinia coriaria                   | Fruits             | Methanol                                                              | Eggs and<br>Infective<br>Larvae in<br>ruminant | In vitro                 | The highest activity of the extract at the highest conc. (with $LC_{50}$ are 8.38 and 0.00064 mg/ml and $LC_{90}$ % are 235.63 and 0.024 mg/ml, respectively, for larvae and                                                                                                                                                                                      |

|                       |                                                  |         |                                                                                                                      |                               |                          | eggs.                                                                                                                                                                                                                                           |
|-----------------------|--------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Caesalpinia coriaria                             | Foliage | Acetone-water,<br>Methanol-water,<br>Acetone-water-<br>dichloromethane<br>and methanol-<br>water-<br>dichloromethane | Eggs and<br>Larva in<br>sheep | In vitro<br>EHT,<br>LEIT | For MWD, MW, AW, and<br>AWD, the in vitro EC50 for<br>EHT were 2947.0, 3347.0,<br>3959.6, and 4538.7 g/ml,<br>respectively. For AWD, AW,<br>MWD, and MW, the EC50<br>for LEIT were 2883.4,<br>5927.4, 9876.3, and 9955.4<br>g/ml, respectively. |
|                       | Caesalpinia<br>pyramidalis                       | Leaves  | Distilled water                                                                                                      | Adults of<br>either sex       | In vivo                  | All groups treated with this<br>extract had a positive FECR<br>of 54.61% for G3 (2.5 mg/kg<br>body weight) and 71.21% for<br>G4 (5.0 mg/kg body weight).                                                                                        |
| Haemonchus<br>placei  | Ocimum gratissimum<br>and Cymbopogon<br>citratus | Leaves  | Acetone                                                                                                              | Adult in<br>cattle            | In vivo<br>AMIA          | For <i>C. citratus</i> and <i>O.</i><br><i>gratissimum</i> , the best-fit $LC_{50}$ values were<br>substantially different (alpha 0.0001), coming in at 17.70 mg/ml and 56.04 mg/ml, respectively.                                              |
| Toxocara canis        | Balanites aegyptiaca                             | Fruit   | Methanol                                                                                                             | Adult in dog                  | In vitro                 | The most effective treatment<br>used BAE methanolic extract<br>at 120 g/ml.                                                                                                                                                                     |
| Toxocara<br>vitulorum | Balanites aegyptiaca                             | Fruit   | Methanol                                                                                                             | Eggs and<br>Adult in          | In vitro                 | The highest value, which was 240 g/ml in conc.,                                                                                                                                                                                                 |

|                                                        |                                                                                                        |                 |                      | ruminant                                                                |                                        | achieved 100%.                                                                                                                                                                                                                                                        |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|----------------------|-------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trichinella spiralis                                   | Lasia spinosa                                                                                          | Leaves          | Crude                | Adult,<br>Migrating<br>larva and<br>Encysted<br>muscle<br>larvae in rat | In vivo                                | 800 mg/kg of plant extract<br>administered orally resulted<br>in a 75.30% decrease in adult<br>worms.                                                                                                                                                                 |
| Trichostrongylus<br>sp. and<br>Haemonchus<br>contortus | Cymbopogon citratus                                                                                    | Leaves          | Aqueous,<br>Methanol | Eggs and<br>Infective<br>larva (L3) in<br>sheep                         | In vitro                               | At 1000 g/ml, six fractions of<br><i>C. citratus</i> exhibited high<br>ovicidal activity, and two<br>fractions exhibited high<br>activity at all tested conc.                                                                                                         |
| Strongyloides sp.                                      | Piper tuberculatum,<br>Lippia sidoides,<br>Mentha piperita, Hura<br>crepitans and Carapa<br>guianensis | Leaves          | Crude aqueous        | Eggs and<br>Adult in<br>sheep                                           | In vitro and<br>in vivo<br>EHT,<br>LDH | For EHT, the LC <sub>50</sub> and LC <sub>90</sub><br>of the extracts were 0.031<br>and 0.09 mg/ml for <i>P</i> .<br><i>tuberculatum</i> . For LDT, the<br>LC <sub>50</sub> and LC <sub>90</sub> were 0.02 and<br>0.031 mg/ml for <i>P</i> .<br><i>tuberculatum</i> . |
|                                                        | Mangifera indica L.                                                                                    | Unripe<br>fruit | Aqueous              | Larva and<br>Adult in<br>sheep                                          | In vitro<br>LMIA                       | 100 mg/ml of immature fruit<br>aqueous extract completely<br>inhibited the growth of<br>larvae.                                                                                                                                                                       |
| Ascaridia galli                                        | Areca catechu L.                                                                                       | Leaves          | Crude aqueous        | Eggs in<br>fowl                                                         | In vitro and<br>in vivo<br>EPG         | In vitro, the <i>Areca catechu</i> L.<br>aqueous extract (AAE)<br>damaged the morphology.<br>The average EPG in vivo<br>reduced from 1485386.62 to<br>00.00 over the course of 14                                                                                     |

|  | Tagetes erecta Linn.                        | Leaves         | Ethanolic and aqueous                              | Adult in fowl                | In vitro                | days of 79 mg/ml AAE<br>treatment.<br>When compared to the<br>aqueous extract, the ethanol<br>extract at 100 mg/mL conc.<br>had more significant activity. |
|--|---------------------------------------------|----------------|----------------------------------------------------|------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Schleichera olesa                           | Leaves         | Ether<br>Water<br>Ethanol<br>Chloroform<br>Acetone | Adult in<br>fowl             | In vitro                | Alpha-amylase was<br>significantly inhibited by<br>ethanolic and aqueous<br>extracts, with IC50 values of<br>36.63 and 73.94 g/ml,<br>respectively.        |
|  | Ocimum sanctum L.                           | Ethanol        | Ethanol                                            | Adult in<br>fowl             | In vitro                | O. sanctum Linn. leaf<br>ethanol extract had $LC_{50}$<br>values of 14.8% at 6 hrs.,<br>4.8% at 12 hrs., 3.0% at 24<br>hrs., and 9.1% at 24 hrs.           |
|  | Maytenus emarginata                         | Stem,<br>Bark  | Methanol,<br>Aqueous and<br>Hydroalcohol           | Adult in<br>fowl             | In vitro                | At a conc. of 50 mg/ml,<br>methanolic, aqueous, and<br>hydroalcoholic extracts all<br>displayed significant<br>anthelmintic efficacy.                      |
|  | Acmella oleracea                            | Whole<br>plant | Methanol                                           | Adult in fowl                | In vitro                | At the conc. of 20 mg/ml plant extract killed all worms at $112.17 \pm 0.88$ hrs.                                                                          |
|  | <i>Curcuma longa</i><br>Zingiber officinale | Methanol       | Crude<br>aqueous                                   | Eggs and<br>Adult in<br>fowl | In vitro and<br>in vivo | The effectiveness of the<br>extracts was demonstrated in<br>vitro in a consistent time-<br>dependent way. Compared to                                      |

|                                                                                  |                           |            |                                                                                                  |                               |                                | the in vitro study, the in vivo<br>investigation with ginger and<br>curcumin showed lower<br>fatality rates.                                                                                                                         |
|----------------------------------------------------------------------------------|---------------------------|------------|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oesophagostomum<br>columbianum,<br>Haemonchus<br>contortus and<br>Bunostomum spp | Cucurbita pepo            | seeds      | Aqueous<br>Ethanol                                                                               | Eggs,<br>larva in<br>ruminant | In vitro<br>EHA,<br>LMIA       | ED <sub>50</sub> value of EHA was 3.5 mg/ml. Larval migration was inhibited by aqueous and ethanolic extracts, and the LM <sub>50</sub> values were 1.75 and 0.32 mg/ml, respectively.                                               |
| Syphacia obvelata                                                                | Caesalpinia<br>bonducella | Leaves     | Methanol                                                                                         | Adult in<br>mice              | In vitro and<br>in vivo<br>EPG | In vitro, 30 mg/ml conc. of<br>methanolic extract caused<br>mortality in $3.57 \pm 0.16$ hrs.<br>800  mg/kg dosage in mice<br>showed a 93% reduction in<br>worm load in vivo.                                                        |
| Ascaris suum and<br>Ascaridia sp.                                                | Punica gramatum           | Bark       | water with<br>previous soak in<br>CH3COOH 5 %,<br>(2) water with<br>previous soak in<br>NaOH 5 % | Adult in pig<br>and fowl      | In vitro                       | Ascaris summ, 50 % died at<br>20% cone, of extract (Acid-<br>DW solvent) after 1.30±2.3<br>mins of exposure while in<br>Ascaridia sp. 50 % died at<br>20% cone, of extract (Acid-<br>DW solvent) after 1.20±5.1<br>mins of exposure. |
| Ascaris suum                                                                     | Rhoicissus<br>tridentata  | Root-Tuber | Ethanol<br>Water                                                                                 | Adult in<br>fowl              | In vitro                       | Median effective doses of<br>ethanol and water extract<br>were 12.3 and 23.5 mg/ml<br>respectively.                                                                                                                                  |

|                         | Euphorbia<br>heterophylla                                                                            | Aerial<br>whole<br>plant parts                | Ethanol<br>water                                                           | Adult in pig                              | In Vitro                 | In a dose-dependent manner,<br>both crude extracts reduced<br>worm motility by 100% in<br>the 48 hrs. following<br>treatment, with the median<br>effective doses being 26.85<br>mg/ml, 4.60 mg/ml, and<br>mg/ml, respectively. |
|-------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Pinus sylvestris,<br>Onobrychis viciifolia,<br>Ribes nigrum, Ribes<br>rubrum and Trifolium<br>repens | Bark,<br>Whole<br>parts,<br>Bushes,<br>Flower | Condense tannin                                                            | Eggs, L3,<br>L4 larva and<br>Adult in pig | In vitro<br>EHA,<br>LMIA | All larvae subjected to 1 mg/ml of tannins died, and against the L3 and L4 stage, motility was seen at the lowest conc. of 111 g/ml.                                                                                           |
| Ascaris<br>lumbricoides | Gongronema<br>latifalium, Piper<br>guineense, and<br>Ocimum gratissimum                              | Leaves                                        | Ethanol                                                                    | Eggs in<br>faeces                         | In vitro                 | 100% mortality at 75% conc.<br>of <i>P. guineese</i> after 4 hrs. of<br>exposure and 50% mortality<br>at 25% cone. of <i>O.</i><br><i>gratissimum</i> after 8 hrs. of<br>exposure.                                             |
| Cooperia<br>punctata    | Leucaena<br>leucocephala,<br>Gliricidia sepium,<br>Guazuma ulmifolia<br>and Craty lia argentea       | Leaves                                        | Aqueous,<br>Acetone water,<br>Acetonic and<br>polyethylene<br>glycol (PEG) | Eggs in<br>faces of<br>cattle             | In vitro                 | The best-fit $LC_{50}$ values for<br>G. sepium-AC and L.<br>leucocephala-AQ were 1.03<br>0.17 and 7.90 1.19 mg/ml,<br>respectively.                                                                                            |
| Trichuris muris         | Corydalis crispa and<br>Pleurospermum<br>amabile                                                     | Whole<br>plant                                | Methanol                                                                   | Eggs and<br>Adult in<br>mice.             | In vitro and<br>in vivo  | The IC <sub>50</sub> range in vitro is<br>9.7–20.4 g/ml. One oral dose<br>of 100 mg/kg was<br>considerably (27.6%) better<br>in vivo than the control<br>group.                                                                |

| Heterakis<br>gallinarum            | Cassia alata<br>Cassia angustifolia<br>and<br>Cassia occidentalis                                 | Leaves                        | Crude and<br>Ethanol      | Adult in<br>fowl                                          | In vitro         | With <i>C. angustifolia</i> , <i>C. alata</i> , and <i>C. occidentalis</i> , respectively, at a conc. of 40 mg/ml, the animals lost their motility at 5.71, 6.60, and 13.95 hrs.                                                                                                                                                                                |
|------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ascaridia<br>perspicillum          | Acmella oleracea                                                                                  | Aerial<br>parts               | Hexane                    | Adult in<br>fowl                                          | In vitro         | The lethal conc. $(LC_{50})$ of the plant extract was 8921.50 ppm.                                                                                                                                                                                                                                                                                              |
| Mixed species of gastro-intestinal | Cratylia mollis                                                                                   | Leaves                        | Leaf decoction<br>extract | Eggs in sheep                                             | In vivo<br>FECRT | Significant faecal egg<br>reduction (FEC) 61.1%.                                                                                                                                                                                                                                                                                                                |
| nematode                           | Ananas comosus,<br>Allium sativum, Aloe<br>ferox, Warburgia<br>salutaris and<br>Lespedeza cuneata | Leaves                        | Ethanol                   | Eggs in<br>Sheep                                          | In vivo<br>EPG   | <i>A. comosus</i> and <i>L. cuneata</i> treatments had the highest efficacies of 58% and 61%.                                                                                                                                                                                                                                                                   |
|                                    | Prunella vulgaris                                                                                 | Leaves,<br>Stem and<br>Flower | Aqueous,<br>Methanol      | Eggs and<br>Adult in<br>sheep<br>EHA,<br>AMA and<br>FECRT | In vitro         | The highest value for AMA<br>caused 75% mortality after 8<br>hrs. of exposure at 50 mg/ml.<br>Crude methanolic extract<br>shows stronger inhibitory<br>effects on EHA ( $LC_{50} = 2.48$<br>mg/ml). Methanolic extract<br>produced FECRTs of<br>81.47% and 92.86% in vivo<br>at dosage levels of 1 g/kg<br>body weight and 2 g/kg body<br>weight, respectively. |
| Strongylus spp.                    | Ferula asafoetida                                                                                 | Leaves                        | Hydro-alcohol             | Larva in                                                  | In vitro         | Hydroalcoholic extract of A.                                                                                                                                                                                                                                                                                                                                    |

| Destaural                                      | and<br>Allium sativum L.                                                                                                                      | Dest   | 700/ Ethered                                                  | horse                                                                                                                                      | Lu cuidance             | Sativum<br>extract at the conc. of 50 and<br>100 mg/ml killed over 95%<br>of larvae (p<0.05).                                                                                                                           |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protoscoleces of<br>Echinococcus<br>granulosus | Salvadora parsica                                                                                                                             | Root   | 70% Ethanol                                                   | Larva in sheep                                                                                                                             | In vitro                | <i>S. persica</i> extract at a conc.<br>of 50 mg/ml, killed 100% of<br>protoscolices after 30 mins.                                                                                                                     |
|                                                | Nigella sativa and<br>punica granatumEssential<br>oil and<br>PeelCold-macerated<br>petroleum ether<br>(40-60) %<br>AqueousLarva in<br>camelIn |        | In vitro                                                      | After 120 minutes of<br>exposure, <i>N. sativa</i> oil at 100<br>mg/ml conc. showed a 100%<br>maximum mortality rate for<br>protoscolices. |                         |                                                                                                                                                                                                                         |
| Setaria cervi                                  | Terminalia bellerica,<br>Terminalia chebula<br>and<br>Terminalia catappa                                                                      | Leaves | Hexane<br>Chloroform<br>Methanol<br>Acetone                   | Microfilari                                                                                                                                | In vitro                | After 4 hrs. of incubation,<br>larger doses (at higher doses<br>of 5 and 10 mg/m)l after of<br><i>T. Bellerica, T. Chebula,</i> and<br><i>T. Catappa</i> demonstrated a<br>decrease in the worms'<br>motility in vitro. |
| Heligmosomoides<br>bakeri                      | Saba Senegalensis                                                                                                                             | Leaves | Aqueous<br>decoction (AD)<br>hydroethanolic<br>macerate (HEM) | Eggs                                                                                                                                       | In vitro                | Emax = 100% and an $LC_{50}$ = 900 $\mu$ g/ml.                                                                                                                                                                          |
|                                                | <i>Cucurbita pepo</i> L.                                                                                                                      | Seed   | Hot and cold<br>aqueous extract,<br>Ethanol                   | Adult and<br>Eggs                                                                                                                          | In vitro and<br>In vivo | In vitro, all seed extracts<br>exhibited a nematicidal<br>activity. The dose of 8 g/kg<br>that produced the maximum<br>FECR was measured (IC <sub>50</sub><br>against H. bakeri = 2.43;                                 |

|                         |                                                                  |                             |                                                          |                                     |                                           | 95% Cl = 2.01-2.94).                                                                                                                                                                                                                               |
|-------------------------|------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|-------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setaria digitata        | Azadirachta indica                                               | Leaves                      | Diethyl ether,<br>Chloroform,<br>Ethanol and<br>Methanol | Eggs,<br>Third stage<br>larvae      | In vitro<br>LMA,<br>LDA,<br>LMIA          | After 135 minutes of<br>incubation, the methanol and<br>ethanol extracts showed the<br>maximum mortality rate of<br>microfilariae at a conc. of<br>200 g/ml.                                                                                       |
| Haemonchus<br>contortus | Curcuma longa                                                    | Curcuma longa Rhizome Ethan |                                                          | Infective<br>larva (L3) in<br>sheep | In vitro                                  | Within 24 hrs. of exposure,<br>the highest dose rate of 200<br>mg/ml resulted in a 78%<br>worm mortality rate.                                                                                                                                     |
|                         | Iris kashmiriana                                                 | Rhizome                     | Aqueous and<br>Methanol                                  | Eggs and<br>Adult in<br>sheep       | In vitro and<br>in vivo<br>AMIA,<br>FECRT | In vitro, LC <sub>50</sub> values of<br>methanolic extracts<br>of rhizome on adult worms<br>was 16.66 mg/ml. In vivo,<br>ECR in sheep treated with<br>methanolic extracts at<br>1 g kg–1 body weight on day<br>15 after treatment (33.17%<br>ECR). |
|                         | Rhus glutinous,<br>Syzygium guineensa<br>and<br>Albizia gumifera | Leaves                      | Condense tannin<br>extract                               | Eggs and<br>Larva in<br>sheep       | In vitro<br>EHA, LDA                      | According to $IC_{50}$ and $IC_{90}$<br>values, the condensed tannin-<br>enriched extracts are the<br>most effective at inhibiting<br>EHA and LHA for R.<br>glutinosa in in vitro tests.                                                           |
|                         | Saba senegalensis                                                | Leaves                      | Aqueous                                                  | Eggs and<br>Adult                   | In vitro,<br>AMA,                         | $LC_{50}$ on adult worms was 6.79 mg/ml for the leaves.                                                                                                                                                                                            |

| Indigofera tinctoria L.                                         | Leaves | Aqueous | Eggs and<br>Adult | EHA<br>In Vitro and<br>in vivo<br>AMA,<br>FECRT | Inhibition of EHA showed a<br>conc. dependent inhibition of<br>93.63% at the conc. of<br>15.00 mg/ml.<br>Adults were dead at a dose of<br>220 mg/ml (93.33%<br>mortality) after 8 hrs. of<br>treatment in vitro, whereas in<br>vivo, the treatment group's<br>maximum FECRT value<br>occurred at a dose of 62<br>mg/ml on the 14th day |
|-----------------------------------------------------------------|--------|---------|-------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Camellia sinensis</i> L.<br>and<br><i>Albizia lebbeck</i> L. | Leaves | Ethanol | Adult             | In vitro<br>AMA                                 | following treatment.<br>Following an 8 hrs. of<br>treatment period, both<br>ethanolic extracts showed<br>88% and 95% mortality at 6<br>and 8 mg/ml of doses.                                                                                                                                                                           |

| Helminth<br>species | Plant part used | Plant name        | Stages           | Size & shape of<br>nanoparticle | Test Conducted | Results            |
|---------------------|-----------------|-------------------|------------------|---------------------------------|----------------|--------------------|
| Haemonchus          | Leaf            | Azadirecta indica | Egg and Adult in | Silver                          | In vitro EHIA  | For AgNps the      |
| contortus           | Aqueous extract | (Neem tree)       | small ruminant   | nanoparticles                   | and AMIA       | IC50 value for EHI |
| (Nematoda)          |                 | Meliaceae family  |                  | (AgNps) 15-25nm                 |                | was at 0.001       |
|                     |                 |                   |                  | and Spherical shape             |                | μg/ml, and AMI     |
|                     |                 |                   |                  |                                 |                | was produced at    |
|                     |                 |                   |                  |                                 |                | 7.89 μg/ml         |
|                     |                 |                   |                  |                                 |                | (LC50).            |

| Leaves<br>Aqueous extract   | Ziziphus jujuba<br>(Common Jujube)<br>Jujube family  | Egg and Adult in<br>small ruminant                        | Silver<br>nanoparticles<br>(AgNps)<br>28-44 nm and<br>Spherical shape   | In Vitro<br>EHA and<br>Adulticidal | The greatest conc.<br>of AgNPs inhibited<br>egg<br>hatching by 91<br>1.76%. EHA had<br>IC50 and IC90<br>Values of 0.007<br>Ppm and 7.71<br>ppm, respectively.                                                                                                                       |
|-----------------------------|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fruit<br>Aqueous<br>extract | Lansium<br>parasiticum<br>(Schisandraceae<br>family) | Eggs, Adult and<br>L3 stage of larva<br>in small ruminant | Silver<br>nanoparticles<br>(AgNps)<br>~16 ± 5 nm and<br>Spherical shape | In vitro                           | Silver<br>nanoparticles<br>(AgNPs) showed<br>LD50 values of<br>$65.6 \pm 32.8 \text{ nM}$<br>(12 hrs.), 139.6 ±<br>39.9 nM (12 hrs.)<br>Against adult<br>male, female, and<br>L3 larvae,<br>respectively. EHA<br>with an IC50 value<br>of 144.4 ± 3.1 nM at<br>48 hrs. of exposure. |

| <i>Gigantocotyle</i><br><i>explanatum</i><br>(Trematode) | Seed<br>Ethanolic extract                                           | Tribulus terrestris<br>caltrop family<br>(Zygophyllaceae)  | Adult in water<br>buffaloes                                                   | Silver nanoparticles<br>(AgNps)<br>~8 nm and Qausi-<br>spherical shape | In Vitro<br>Adulticidal                                                                                                        | AgNPs resulted in<br>pronounced<br>tegumental<br>damages, complete<br>deformities with<br>deep lesions.                        |
|----------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <i>Raillietiina sp.</i> (Cestode)                        | Mycelia-free culture<br>filtrate                                    | <i>Nigrospora oryzae</i><br>(Trichosphaeriaceae<br>family) | Adult in fowl                                                                 | Gold nanoparticles<br>(AuNps)<br>~6 nm to -18 nm<br>and Cubic shape    | In vitro<br>Adulticidal                                                                                                        | Paralysis time of<br>1.47 hrs. and death<br>time of 2.55 hrs., for<br>dose of<br>1.0 mg/ml.                                    |
| Ancylostoma<br>caninum<br>(Nematode)                     | <i>Duddingtonia</i><br><i>flagrans</i> Fungus<br>Orbiliaceae family | Larva L3 stage in<br>dog                                   | Silver<br>nanoparticles<br>(AgNps)<br>14.51±3.25 nm<br>And Spherical<br>shape | In vitro Larvicidal                                                    | Penetrates the<br>larvae's<br>cuticle,<br>Altering the<br>tegument and<br>ultimately<br>leading to the<br>nematode's<br>death. |                                                                                                                                |
| <i>Strongylus sp.</i><br>(Nematode)                      | Seed<br>Aqueous extract                                             | <i>Moringa oleifera</i><br>(Moringa)<br>Moringaceae family | Eggs in small<br>ruminant                                                     | Silver nanoparticles<br>(AgNps) 10-30 nm<br>and Cubic shape            | In vitro EHA                                                                                                                   | At 8 mg/ml conc.,<br>AgNPs from M.<br>oleifera seeds<br>generated a<br>maximum 80.59 ±<br>5.65% inhibition of<br>egg hatching. |

# **V. DISCUSSION**

Infections with helminth parasites are regarded as neglected tropical diseases. Helminths are parasitic worms with elongated, rounded, or flat bodies that are an invertebrate (Hotez et al., 2008; Headly et al., 2017). The most common helminths include intestinal nematodes, schistosomes, and filarial worms. In the past, it was calculated that the sheep, goat, and cow industries suffered a significant loss of Rs. 31.43 million annually (Iqbal et al., 2014). Along with livestock, it primarily affects kids and can weaken nutritional status, leading to stunted growth and memory impairment. Helminth infections are treated with enhanced hygiene, a combination of medications, and health education. Anthelmintic medications are used to treat helminthic disorders, however some of these infections are drug-resistant and have serious side effects. Nearly 80% of the global population uses traditional medicines made from plant extracts for primary healthcare and health benefits (WHO, 2008). In developing nations like India, China, and Bangladesh, helminthiasis is historically treated with a variety of folklore medicinal herbs. In order to effectively cure parasite illness, plant-derived medications are therefore receiving a lot of research (Neogi et al., 1964; Dehuri et al., 2021). There are several medicinal plants and their different crude products, solvent extracts and active components have been reported, which are analyzed for helminthic infection control (Kozan et al., 2006). Plants have been widely used to treat gastrointestinal helminths of medical and veterinary value since ancient times and in folklore in order to test and validate their anthelmintic properties. Researcher's use the whole/parts of plant extract (aqueous/ethanol/methanol/acetone/ethyl acetate) to conduct various tests which has been described underneath (Tandon et al., 1997; Dehuri et al., 2021).Condensed tannins, alkaloids, saponins, phenol, and flavonoids are a few of the secondary metabolites found in plants that are typically linked to their anthelmintic effects (Rawani and Gope, 2021). The development of efficient anthelmintic drugs with minimal side effects and non-resistance to parasitic helminths is expected to be possible using these plant-based herbal remedies. The better anthelmintic action and new herbal anthelmintic medicine are partly explained by the screening for phytogenic chemical components like tannins, alkaloids, phenol, saponin, flavonoids, etc. Silver, gold, and metal-based oxide nanoparticles including zinc oxide and iron oxide have all been investigated for their potential to treat a variety of diseases. Recent research state that they work as very effective larvicides and adulticides against many helminth species that are significant in medical science and veterinary medicine (Zhang et al., 2020).

# **VI. CONCLUSION**

According to the study, medicinal plants have been employed as a part of traditional medicine from the beginning of time. The study reported that, whole plants or plant parts in crude form, solvent extract, and artificial green nanoparticles all have the potential to be effective against parasitic helminth. Although some metal nanoparticles shown lesser biological activity due to their design, metal composition, and lack of selectivity for the target cells, it has been demonstrated that metal nanoparticles have the potential to be therapeutically useful. When the metal compounds were included into particular drug delivery methods, these restrictions were overcome in those instances. There is an urgent need for developing metal-based nanoparticles that are affordably priced and have outstanding therapeutic outcomes because there are few publications on the use of metal-

based nanoparticles for the treatment of parasite infections in comparison to other infectious diseases. Research is also needed on the pharmacokinetics and toxicological properties of medications based on different metals nanoparticles. Metal-based nanoparticles may be able to circumvent drug resistance, which is characteristic for most organic molecules. Metal-based nanoparticles are without a doubt promising future treatments for the management of various infectious illnesses. However, it is important to understand the detailed mode of action of herbal products through in vivo studies as they will be used for further commercial purpose.

# REFERENCE

- Akhtar M S, Iqbal Z, Khan M N and Lateef M. Anthelmintic activity of medicinal plants with particular reference to their use in animals in Indo- Pakistan Subcontinent. Small Ruminant Research 2000; 38: 99-107. Doi: 10.1016/S0921-4488(00)00163-2.
- [2] Bachaya H A, Iqbal Z, Khan M N, Sindhu Z U and Jabbar A. Anthelmintic activity of *Ziziphus nummularia* (bark) and *Acacia nilotica* (fruit) against *Trichostrongylid* nematodes of sheep. J Ethnopharmacol. 2009 Jun 22;123(2):325-9. Doi: 10.1016/j.jep.2009.02.043. Epub 2009 Mar 9. PMID: 19429379.
- [3] Becheri A, Du"rr M, Pierandrea L N and Baglioni P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res (2008) 10:679–689. Doi: 10.1007/s11051-007-9318-3.
- [4] Choudhary M, Kumar V, Malhotra H and Singh S. Medicinal plants with potential anti-arthritic activity. Journal of Intercultural Ethnopharmacology. 2015 Apr-Jun;4(2):147-179. Doi: 10.5455/jice.20150313021918. PMID: 26401403; PMCID: PMC4566784.
- [5] Cruz ASP. Anthelmintic effect of *Solanum lycocarpum* in mice infected with *Aspiculuris tetraptera*. The journal of American science 2008; 4(3): 75-79.
- [6] Dehuri M, Palai S, Mohanty B and Malangmei L. Anti-helminthic Activity of Plant Extracts against Gastrointestinal Nematodes in Small Ruminants - A Review, Pharmacognosy Reviews 2021;15(30):117-127, Doi: 10.5530/phrev.2021.15.14.
- [7] Devi K, Indumathy S, Rathinambal V, Uma S, Kavimani S and Balu V. Anthelminthic Activity of *Asta Churna*, International Journal of Health Research, March 2009; 2 (1): 101-103 (e217p65-68). Doi:10.4314/ijhr. v2i1.55399.
- [8] Dorostkar R, Ghalavand M, Nazarizadeh A, Tat M and Hashemzadeh M S. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against *Toxocara vitulorum*. Int Nano Lett 7, 157–164 (2017). Doi.org/10.1007/s40089-016-0198-3.
- [9] Getachew T, Dorchies P and Jacquiet P (2007). Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite.;14(1):3-14. Doi: 10.1051 /parasite/2007141003. PMID: 17432053.
- [10] Githiori J B, Athanasiadou S and Thamsborg S M. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet Parasitol. 2006 Jul 31;139(4):308-20. Doi: 10.1016/j.vetpar.2006.04.021. Epub 2006 May 24. PMID: 16725262.
- [11] Haldar K M, Haldar B and Chandra G. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, *Drypetes roxburghii* (Wall.). Parasitol Res. 2013 Apr;112(4):1451-9. Doi: 10.1007/s00436-013-3288-4. Epub 2013 Jan 22. PMID: 23338978.
- [12] Hammond L E, Rudner D Z, Kanaar R and Rio D C (1997). Mutations in the hrp48 gene, which encodesa Drosophila heterogeneous nuclear ribonucleoprotein particle protein, cause lethality and developmental defects and affect P-element third-intron splicing in vivo. Mol. Cell. Biol. 17(12): 7260--7267.
- [13] Hedley, Lucy, and Roberty L. Serafino Wani. "Helminth infections: diagnosis and treatment." *The Pharmaceutical Journal* 295.7882 (2015).
- [14] Helminth control in school-age children, A guide for managers of control programs; Second edition. World Health Organization, 2010. ISBN 978 92 4 154826 7.
- [15] Horikoshi S and Serpone N (2013). Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. Wiley-VCH Verlag GmbH, Baden. https://doi.org/10.1002/9783527648122.

GREEN METAL NANOPARTICLES AGAINST GUT HELMINTHS OF RUMINANTS

- [16] Hotez P J, Molyneux D H, Fenwick A, Kumaresan J, Sachs S E, Sachs J D and Savioli L. Control of neglected tropical diseases. 2007; N. Engl. J. Med. 357:1018-1027.
- [17] Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest. 2008 Apr;118(4):1311-21. Doi: 10.1172/JCI34261. PMID: 18382743; PMCID: PMC2276811.
- [18] https://www.frontiersin.org/articles/10.3389/fchem.2020.00799/full.
- [19] https://www.verywellhealth.com/helminths-5207511.
- [20] Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J and Chen C. Biosynthesis of silver and gold nanoparticles by novel sundried *Cinnamonum camphora* leaf. Nanotechnology 18 (2007) 105104 (11pp). 2 Doi:10.1088/0957-4484/18/10/105104.
- [21] Iqbal Z, Akhtar M, Khan MN and Riaz M. 1993. Prevalence and economic significance of haemonchosis in sheep and goat slautghtered at Faisalbad abbatoir. *Pak. J. Agri. Sci*, 30: 52-54.
- [22] Kabore A. Anthelmintic activity of two tropical plants tested in vitro and in vivo in gastro-intestinal strongly in sheep race Mossi of Burkina Faso. Dissertation submitted to University Polytechnique of Bobo-dioulasso, Bobo-dioulasso, France. 2009.
- [23] Kalia A N (2005). Textbook of Industrial Pharmacognocy, CBS publisher and distributor, New Delhi, pp 204–208.
- [24] Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic Efficacy of Gold Nanoparticles Derived from a Phytopathogenic Fungus, *Nigrospora oryzae*. PLoS ONE 9(1): e84693. https://doi.org/10.1371/journal.pone.0084693
- [25] Khan Y A, Singh B R, Ullah R, Shoeb M, Naqvi A H and Abidi S M. Anthelmintic Effect of Biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on *Gigantocotyle explanatum*, a Neglected Parasite of Indian Water Buffalo. PLoS One. 2015 Jul 15;10(7): e0133086. Doi: 10.1371/journal.pone.0133086. PMID: 26177503; PMCID: PMC4503779.
- [26] Kozan E, Küpeli E, Yesilada E. Evaluation of some plants used in Turkish folk medicine against parasitic infections for their in vivo anthelmintic activity. J Ethnopharmacol. 2006 Nov 24;108(2):211-6. Doi: 10.1016/j.jep.2006.05.003. Epub 2006 May 16. PMID: 16790330.
- [27] Kumar B, Kalyani D, Machawal L and Singh S. In-vitro Anthelmintic Activity of ethanolic and aqueous fruit Extract of *Terminalia belerica*. Journal of Pharmacy Research 2010; 3(5): 1061-1062.
- [28] Kumar B, Kaur S, Puri S, Tiwari P and Divakar K. Comparative study of anthelmintic activity of aqueous and ethanolic extract of bark of *Holoptelea integrifolia*. International Journal of Drug Development & Research. October-December 2010, 2(4):758-763; ISSN 0975-9344.
- [29] Kumari S C, Dhand V and Padma P N. Green synthesis of metallic nanoparticles: a review. Nanomaterials, 2021: 259-281. https://doi.org/10.1016/B978-0-12-822401-4.00022-2.
- [30] Kundu S, Roy S, Nandi S and Ukil B (2015). In vitro anthelmintic effects of *Senna occidentalis (L.)*.link (Leguminosae) on rat tapeworm *Hymenolepis diminuta*. Int J Pharm Pharm Sci 7(6): 268-271.
- [31] Laverack MS. The physiology of earthworms. Pergamon. New york. 1963; p 179.
- [32] Mali R G, Mahajan S G and Mehta A A. In-vitro anthelmintic activity of stem bark of *Mimusops elengi* Linn. Pharmacognosy Magazine 2007; 3(10): 73-76.
- [33] Mehlhorn H, Abdel-Ghaffar F, Al-Rasheid KA, Schmidt J and Semmler M. Ovicidal effects of a neem seed extract preparation on eggs of body and head lice. Parasitol Res. 2011 Nov;109(5):1299-302. Doi: 10.1007/s00436-011-2374-8. Epub 2011 Apr 12. PMID: 21484346.
- [34] Mehlhorn H, Quraishy S A, Rasheid K A S A, Jatzlau A and Ghaffar F A (2011). Addition of a combination of onion (*Allium cepa*) and coconut (*Cocos nucifera*) to food of sheep stops gastrointestinal helminthic infections. Parasitol Res 108:1041–1046. Doi:10.1007/s00436-010-2169-3.
- [35] Molefe N I, Tsotetsi A M, Ashafa A O T and Thekisoe O M M. In vitro anthelmintic activity of *Cotyledon orbiculata*, *Hermannia depressa* and *Nicotiana glauca* extracts against parasitic gastrointestinal nematodes of livestock. J Med Plants Res 2013; 7(9): 536-542.
- [36] Nawaz M, Sajid S M, Zubair M, Hussain J, Abbasi Z, Mohi-uddin A and Waqas M. In vitro and in vivo anthelmintic activity of leaves of *Azadirachta indica*, *Dalbergia sisso and Morus alba* against *Haemonchus contortus*. Global Vet. 2014;1 3:996-1001.
- [37] Neogi N C, Baliga P A C and Srivastava R K (1964). Anthelmintic activity of some indigenous drugs. Indian J. Pharma. 26, 37.
- [38] Newman D J and Cragg G M. Natural Products as Sources of New Drugs from 1981 to 2014. J Nat Prod. 2016 Mar 25;79(3):629-61. Doi: 10.1021/acs.jnatprod.5b01055. Epub 2016 Feb 7. PMID: 26852623.
- [39] O'Craven K M, Downing P E and Kanwisher N (1999). fMRI Evidences for Objects as the Units of

Attentional Selection. Nature, 401, 584-587. Doi.org/10.1038/44134.

- [40] Olajide M C, Izuogu N B, Apalowo R A and Baba H S (2018). Evaluation of the Nematicidal and Antifungal Activity of Aqueous Extracts of *Moringa oleifera* Leaves and Seed in Cucumber Field. Agro Res Moldav51(4):47-59.
- [41] Rashid M M O, Akhter K N, Chowdhury J A, Hossen F, Hussain M S and Hossain M T. Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from *Momordica charantia* fruit extract. BMC Complement Altern Med 17, 336 (2017). https://Doi.org/10.1186/s12906-017-1843-8.
- [42] Rashid M M O, Ferdous J, Banik S, Islam M R, Uddin A H M M and Robel F N. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and *M. charantia* fruit extract. *BMC Complement Altern Med* 16, 242 (2016). Doi.org/10.1186/s12906-016-1219-5.
- [43] Rawani A and Gope A. A review on Anthelmintic properties of plants. Zeichen journal, 2021 September, 7(9) PP 272-291.
- [44] Rawani A, Ghosh A and Chandra G. Mosquito larvicidal activities of *Solanum nigrum* L. leaf extract against *Culex quinquefasciatus* Say. Parasitology Research 2010; 107:1235–1240.
- [45] Rawani A, Ghosh A and Chandra G. Mosquito larvicidal and antimicrobial activity of synthesized nanocrystalline silver particles using leaves and green berry extract of *Solanum nigrum* L.(Solanaceae: Solanales)Acta Trop; 2013 Dec;128(3)PP:613-22.
- [46] Rehman A, Ullah R, Uddin I, Zia I, Rehman L and Abidi S M A. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, *Gigantocotyle explanatum*. Exp Parasitol. 2019 Mar; 198:95-104. Doi: 10.1016/j.exppara.2019.02.005. Epub 2019 Feb 12. PMID: 30769019.
- [47] Ronaldo G C, S, Schur N, Bavia M E, Carvalho E M, Chammartin F, Utzinger J and Vounatsou P. Spatial analysis and risk mapping of soil-transmitted helminth infections in Brazil, using Bayesian geostatistical models, Geospatial Health 8(1), 2013, pp. 97-110
- [48] Roy H. Preliminary phytochemical investigation and anthelmintic activity of *Acanthospermum hispidum* DC. Journal of Pharmaceutical Science and Technology 2010; 2 (5): 217-221.
- [49] Santos F O, Cerqueira A P M, Branco A, Batatinha M J M and Botura M B. Anthelmintic activity of plants against gastrointestinal nematodes of goats: a review. Parasitology. 2019 Sep;146(10):1233-1246. Doi: 10.1017/S0031182019000672. Epub 2019 Jun 14. PMID: 31104640.
- [50] Satyavati GV. Use of plant drugs in Indian traditional systems of medicine and their relevance to primary health care. New Delhi, India: Indian Council of Medical Research; 1985.
- [51] Schoenian S (2010). Integrated Parasite Management (IPM) in Small Ruminants. Sheep & Goat Specialist University of Maryland Extension Western Maryland Research & Education Center sschoen@umd.edu sheepandgoat.com - wormx.info.
- [52] Soni N and Prakash S. Microbial Synthesis of Nano silver and Nanogold for Mosquito Control. Annals Of Microbiology. 2014 Aug; 64: 1099 1111. https://Doi.org/10.1007/s13213-013-0749-z.
- [53] Suarez V.H., Cristel S.L. And Busetti M.R. (2009) Epidemiology and effects of gastrointestinal nematode infection on milk productions of dairy ewes, Parasite, 2009, 16, 141-147, http://www.parasite-journal.org. Doi: 10.1051/parasite/2009162141.
- [54] Sutar N, Garai R, Sharma U S and Sharma U K. Anthelmintic activity of *Platycladus orientalis* leaves extract. International Journal of Parasitology Research 2010; 2(2): 1-3.
- [55] Tandon V, Pal P, Roy B, Rao H S and Reddy K S. In vitro anthelmintic activity of root-tuber extract of *Flemingia vestita*, an indigenous plant in Shillong, India. Parasitol Res 83, 492–498 (1997). https://Doi.org/10.1007/s004360050286.
- [56] Tariq K A, Chishti M Z, Ahmad F and Shawl A S. Anthelmintic activity of extracts of *Artemisia absinthium* against ovine nematodes. Vet Parasitol. 2009 Mar 9;160(1-2):83-8. Doi: 10.1016/j.vetpar.2008.10.084. Epub 2008 Oct 28. PMID: 19070963.
- [57] Temjenmongla T and Yadav A K. Anticestodal Efficacy of Folklore Medicinal Plants of Naga Tribes in North-east India, Vol. 2 No. 2 (2005), Afr. J. Trad. CAM (2005) 2 (2): 129-133. Doi: 10.4314/ajtcam. v2i2.31111. ISSN 0189-6016©2005.
- [58] Tiwari P, Kumar B, Kaur M, Kaur G and Kaur H. Phytochemical screening and extraction: a review. Int Pharm Sci 2011; 1(1): 98-106.
- [59] Tiwari P, Kumar B, Kumar M, Kaur M, Debnath J and Sharma P. Comparative study of Anthelmintic activity of Aqueous and Ethanolic Stem extract of *Tinospora Cordifoliaî*, Int. J. Drug Dev. &Res., Jan-March 2011, 3(1): 70-83.

# GREEN METAL NANOPARTICLES AGAINST GUT HELMINTHS OF RUMINANTS

- [60] Vidyadhar S, Saidulu M, Gopal T K, Chamundeeswari D, Rao U and Banji D. In vitro anthelmintic activity of the whole plant of *Enicostemma littorale* by using various extracts. International journal of applied biology and pharmaceutical technology 2010; 1(3): 1119-1125.
- [61] Wakayo B U and Pewo T F (2015) Anthelmintic resistance of gastrointestine parasites in small ruminants are view of the case of Ethiopia. J Veterinar Sci Tecnol, S:10. Doi: 10.4172/2157-7579.SI 0-001
- [62] Wang G X. In vivo anthelmintic activity of five alkaloids from *Macleaya microcarpa* (Maxim) Fedde against *Dactylogyrus intermedius* in *Carassius auratus*. Veterinary Parasitology 2010; 171: 305 313.
- [63] WHO Library Cataloguing-in-Publication Data; World Health Organization 2017. Preventive chemotherapy to control soil-transmitted helminth infections in at-risk population groups. ISBN 978-92-4-155011-6.
- [64] World Health Organization. Report of the WHO informal consultation on the evaluation on the testing of insecticides, CTD/WHOPES/IC/96.1. Geneva: WHO; 1996. p. 69.
- [65] World Health Organization. (2002). The World health report: 2002: Reducing the risks, promoting healthy life. World Health Organization. https://apps.who.int/iris/handle/10665/42510. Reducing risks, promoting healthy life, Page no. 248; ISBN: 9241562072.
- [66] World Health Organization. (2008). World health statistics 2008. World HealthOrganization. https://apps.who.int/iris/handle/10665/43890. Page no. 110; ISBN 978 92 4 156359 8 (NLM classification: WA 900.1).
- [67] World Health Organization. (2010). World health statistics 2010. World HealthOrganization. https://apps.who.int/iris/handle/10665/44292. Page no. 106; ISBN: 978 92 4 156402 1.
- [68] World Health Organization. (2017). World health statistics 2017: monitoring health for the SDGs, sustainable development goals. World Health Organization. https://apps.who.int/iris/handle/10665/255336. License: CC BY-NC-SA 3.0 IGO. Page no. 116; ISBN: 9789241565486.
- [69] Zhang D, Ma X-l, Gu Y, Huang H and Zhang G-w (2020) Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front. Chem. 8:799. Doi: 10.3389/fchem.2020.00799.