# H<sub>k</sub> CORDIAL LABELING OF PATH, STAR AND CYCLE GRAPHS

# Abstract

In this paper we investigate  $H_k$  cordial labeling of star, path, cycle and use operation such as subdivision, super subdivision and H- super subdivision on it, i.e. S(Pn), SS(Pn), HSS(Pn), S(K1,n), SS(K1,n), HSS(K1,n), S(Cn), SS(Cn), HSS(Cn).

**Keywords:** H cordial labeling, H<sub>k</sub> cordial labeling, Subdivision, Super subdivision, H-Super subdivision of graphs..

# Authors

Jayshree R. Joshi

Research Scholar Assistant Professor in Mathematics C.U. Shah University H. & H. B. Kotak Institute of Science Rajkot, India. jrjoshi15@gmail.com

# **Dharamvirsinh Parmar**

Assistant Professor in Mathematics Bhavan's Sheth R. A. College of Science Gujarat University Ahmedabad, India dharamvir\_21@yahoo.co.in

## I. INTRODUCTION

In the present work we contemplate a finite graph which is connected and undirected. We refer to a dynamic survey of graph labeling by Gallian (2020) for detailed survey on graph labeling. For all other standard terminology and notations we refer to Gross and Yellen [4]. A labeling of a graph G = (V, E) is a mapping that carries vertices, edges or both to the set of labels (usually to the positive or non-negative integers).

A graph G = (V, E) is said to beHcordial graph if there exists a mappingf from edge set to  $\{-1, 1\}$  such that induced mappingf\*from vertex set to  $\{-k, k\}$  defined by  $f^*(v) = \sum_{e \in I(v)} f(e)$ , where I(v) is the set of all edges incident to vertex v, satisfies the cordiality conditions  $|e_f(1) - e_f(-1)| \le 1$  and  $|v_{f^*}(k) - v_{f^*}(-k)| \le 1$ . Map f is called Hcordial labeling of G. By extending the concept a graphis  $H_k$  cordial graph if there exists a mappingf from edge set to  $\{\pm 1, \pm 2, ..., \pm k\}$  such that the induced mapping f\* from vertex set to  $\{\pm 1, \pm 2, ..., \pm k\}$  defined by  $f^*(v) = \sum_{e \in I(v)} f(e)$ , where I(v) is the set of all edges incident to vertex v, satisfies the cordiality conditions  $|e_f(i) - e_f(-i)| \le 1$  and  $|v_{f^*}(i) - vf^*(-i) \le 1$  for  $1 \le i \le k$ . Map f is called Hkcordial labeling of G and graph G is called H<sub>k</sub> cordial graph[5].

Barycentric subdivision of graph G is denoted asS(G), obtained by subdividing every edge of graph G. [10]. The super subdivision of any graph G denoted by SS(G) is obtained fromgraph by replacing every edge of graph by complete bipartite graph  $K_{2,m}$  (where m is positive integer)[8].

## **II. MAIN RESULT**

**Theorem 2.1** The star graph  $K_{1,n}$  ( $n \ge 2$ ) is  $H_2$  cordial if n is even.

**Proof:** Let  $V(K_{1,n}) = \{u_0, u_i : 1 \le i \le n\}$  and  $E(K_{1,n}) = \{u_0u_i : 1 \le i \le n\}$ , where  $u_0$  is apex vertex. Consider a function f:  $E(K_{1,n}) \rightarrow \{-2, -1, 1, 2\}$  defined as

$$f(u_0u_1) = -2$$

 $f(u_0 u_i) = (-1)^i$ ;  $2 \le i \le n$ .

| $n \ge 2$ | Edge Conditions                                 | Vertex Conditions                        |
|-----------|-------------------------------------------------|------------------------------------------|
| n is even | $e_f(1) = \frac{n}{2}, e_f(-1) = \frac{n-2}{2}$ | $v_{f^*}(1) = \frac{n}{2} = v_{f^*}(-1)$ |
|           | $e_f(2) = 0, e_f(-2) = 1$                       | $v_{f^*}(2) = 0, v_{f^*}(-2) = 1$        |

For i = 1,2. The  $K_{1,n}$  satisfies the condition  $|e_f(i) - e_f(-i)| \le 1$  and  $|v_f(i) - v_f(-i)| \le 1$ . Hence,  $K_{1,n}$  is  $H_2$  cordial. Illustration 2.2 Figure shows that K<sub>1,6</sub> is H<sub>2</sub>cordial graph.



**Theorem 2.3** Star graph  $K_{1,n}$  ( $n \ge 2$ ) is  $H_3$  cordial.

**Proof:** Let  $V(K_{1,n}) = \{u_0, u_i : 1 \le i \le n\}$  and  $E(K_{1,n}) = \{u_0u_i : 1 \le i \le n\}$ , where  $u_0$  is apex vertex.

**Type1:** n is even,  $K_{1,n}$  is  $H_2$  cordial from Theorem 2.1. Hence it is also admits  $H_3$  cordial labeling.

Type2:n is odd.

Consider a function f: E(  $K_{1,n}$ )  $\rightarrow$  {-3, -2, -1, 1, 2, 3} defined as

$$f(u_0 u_1) = -2$$
  
 $f(u_0 u_1) = -2$   
 $f(u_0 u_2) = 3$ 

 $f(u_0 u_i) = (-1)^{i+1}; \ 3 \le i \le n$ 

| Table | 2 |
|-------|---|
|-------|---|

| $n \ge 2$ | Edge Conditions                                   | Vertex Conditions                                         |
|-----------|---------------------------------------------------|-----------------------------------------------------------|
| n is odd  | $e_f(1) = \frac{n-1}{2}, e_f(-1) = \frac{n-3}{2}$ | $v_{f^*}(1) = \frac{n-1}{2}, v_{f^*}(-1) = \frac{n-3}{2}$ |
|           | $e_f(2) = 0, e_f(-2) = 1$                         | $v_{f^*}(2) = 1 = v_{f^*}(-2)$                            |
|           | $e_f(3) = 1, e_f(-3) = 0$                         | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$                         |

For i = 1,2,3, the graph satisfies the condition  $|e_f(i) - e_f(-i)| \le 1$  and  $|v_f(i) - v_f(-i)| \le 1$ . 1. Hence,  $K_{1,n}$  is  $H_3$ - cordial. **Illustration 2.4** $K_{1,5}$  is  $H_3$  cordialas shown in Figure.



**Theorem 2.5** The barycentric subdivision graph of a star  $(S(K_{1,n}) \ (n \ge 2))$  is  $H_2$  cordial if n is odd.

**Proof:** Let  $V(S(K_{1,n})) = \{u_i, u'_i, u_0; 1 \le i \le n\}$  and  $E(S(K_{1,n})) = \{u_0 u'_i, u_i u'_i; 1 \le i \le n\}$ .

Consider a function  $f: E(S(K_{1,n})) \rightarrow \{-2, -1, 1, 2\}$  defined as  $f(u_0u'_1) = -2$ 

 $f(u_0 u'_i) = (-1)^{i+1}; \ 2 \le i \le n$  $f(u_i u'_i) = (-1)^{i+1}; \ 1 \le i \le n$ 

Table 3

| $n \ge 2$ | Edge Conditions                                            | Vertex Conditions                                         |
|-----------|------------------------------------------------------------|-----------------------------------------------------------|
| n is odd  | $e_f(1) = n, e_f(-1) = n + 1$<br>$e_f(2) = 0, e_f(-2) = 1$ | $v_{f^*}(1) = \frac{n+1}{2} = v_{f^*}(-1)$                |
|           |                                                            | $v_{f^*}(2) = \frac{n-1}{2}, v_{f^*}(-2) = \frac{n+1}{2}$ |

Hence,  $S(K_{1,n})$  is  $H_2$  cordial.

**Illustration 2.6** $S(K_{1,5})$  is  $H_2$  cordialas shown in Figure.



**Theorem 2.7**The barycentric subdivision graph of a star  $S(K_{1,n})$   $(n \ge 2)$  is  $H_3$  cordial.

**Proof:** Let  $V(S(K_{1,n})) = \{u_i, u'_i, u_0; 1 \le i \le n\}$  and  $E(S(K_{1,n})) = \{u_0 u'_i, u_i u'_i; 1 \le i \le n\}$ .

**Type 1:***n* is odd.  $S(K_{1,n})$  is  $H_2$  cordial from Theorem 2.5, it is also admits  $H_3$  cordial.

**Type 2:***n* is even. Consider a function  $f: E(S(K_{1,n})) \rightarrow \{-2, -1, 1, 2\}$  defined as  $f(u_0u'_1) = 2$ 

 $f(u_0 u'_i) = (-1)^i; \ 2 \le i \le n$ 

 $f(u_i u'_i) = (-1)^i; \ 1 \le i \le n$ 

## Table 4

| $n \ge 2$        | Edge Conditions               | Vertex Conditions                                       |
|------------------|-------------------------------|---------------------------------------------------------|
| <i>n</i> is even | $e_f(1) = n, e_f(-1) = n - 1$ | $v_{f^*}(1) = \frac{n+2}{2}, v_{f^*}(-1) = \frac{n}{2}$ |
|                  | $e_f(2) = 1, e_f(-2) = 0$     | $v_{f^*}(2) = \frac{n}{2}, v_{f^*}(-2) = \frac{n-2}{2}$ |
|                  |                               | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$                       |

Hence,  $S(K_{1,n})$  is  $H_3$  cordial.

**Illustration2.8** $H_3$  cordial labeling of  $S(K_{1,6})$  is demonstrated in Figure.



**Theorem 2.9**Super subdivision of star graph  $SS(K_{1,n})$  ( $n \ge 2$ ) is  $H_3$  cordial.

**Proof:** Let  $V(SS(K_{1,n})) = \{u_i, u_{ij}, u_0; 1 \le i \le n, 1 \le j \le m\}$  and  $E(SS(K_{1,n})) = \{u_0 u_{ij}, u_{ij}, u_i; 1 \le i \le n, 1 \le j \le m\}$ , where  $u_0$  is apex vertex.

Consider a function  $f: E(SS(K_{1,n})) \rightarrow \{-2, -1, 1, 2\}$  defined as

**Type 1:** *m* is evenand *n* is odd

$$f(u_0 u_{11}) = -2$$

$$f(u_0 u_{12}) = 1$$

$$f(u_{11} u_1) = -1$$

$$f(u_{12} u_1) = 2$$

$$f(u_0 u_{ij}) = f(u_{ij} u_i) = (-1)^i ; 2 \le i \le n, j = 1, 2$$

$$f(u_0 u_{ij}) = f(u_{ij} u_i) = (-1)^j ; 3 \le j \le m, 1 \le i \le 2$$

#### Table 5

n.

| $n \ge 2$     | Edge Conditions        | Vertex Conditions                |
|---------------|------------------------|----------------------------------|
| <i>m</i> even | $e_f(1) = mn - 1$      | $v_{f^*}(1) = 1 = v_{f^*}(-1)$   |
| <i>n</i> odd  | $= e_f(-1)$            |                                  |
|               |                        | $n_{cr}(2) = \frac{(m+1)n-3}{2}$ |
|               | $e_f(2) = 1 = e_f(-2)$ | $v_{f^*}(2) = 2$                 |
|               |                        | $= v_{f^*}(-2)$                  |
|               |                        | $n_{c*}(3) = 1 = n_{c*}(-3)$     |
|               |                        | $v_{f^*}(3) = 1 - v_{f^*}(3)$    |

**Type 2:** *m* and *n* both are even

$$f(u_0 u_{11}) = -2$$

$$f(u_0 u_{12}) = f(u_{11} u_1) = f(u_{12} u_1) = -1$$

$$f(u_0 u_{ij}) = f(u_{ij} u_i) = (-1)^i; 2 \le i \le n, j = 1, 2$$

$$f(u_0 u_{ij}) = f(u_{ij} u_i) = (-1)^j; 3 \le j \le m, 1 \le i \le n$$

Table 6

| Edge Conditions                 | Vertex Conditions                                                               |
|---------------------------------|---------------------------------------------------------------------------------|
| $e_f(1) = mn, e_f(-1) = mn - 1$ | $v_{f^*}(1) = 1, v_{f^*}(-1) = 0$                                               |
| , ,                             | , ,                                                                             |
| $e_f(2) = 1, e_f(-2) = 0$       | $n_{m}(2) = \frac{n(m+1)}{m}$                                                   |
|                                 | $v_{f^*}(2) = \frac{2}{2}$                                                      |
|                                 | $v_{f^*}(-2) = \frac{n(m+1)-2}{2}$                                              |
|                                 | $y_{c*}(3) = 1 \ v_{c*}(-3) = 0$                                                |
|                                 | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$                                               |
|                                 | Edge Conditions<br>$e_f(1) = mn, e_f(-1) = mn - 1$<br>$e_f(2) = 1, e_f(-2) = 0$ |

**Type 3:** m and n both are odd

$$f(u_0 u_{11}) = -2$$
  

$$f(u_{11} u_1) = 1$$
  

$$f(u_0 u_{i1}) = f(u_{i1} u_i) = (-1)^{i+1}; 2 \le i \le n$$
  

$$f(u_0 u_{ij}) = f(u_{ij} u_i) = (-1)^j; 2 \le j \le m, 1 \le i \le n$$

| Table | 7 |
|-------|---|
|-------|---|

| $n \ge 2$                        | Edge Conditions                   | Vertex Conditions                                           |
|----------------------------------|-----------------------------------|-------------------------------------------------------------|
| $m 	ext{ odd}$<br>$n 	ext{ odd}$ | $e_f(1) = mn, e_f(-1)$ $= mn - 1$ | $v_{f^*}(1) = \frac{n+1}{2} = v_{f^*}(-1)$                  |
|                                  | $e_f(2) = 0, e_f(-2) = 1$         | $v_{f^*}(2) = \frac{mn-1}{2}, v_{f^*}(-2) = \frac{mn-1}{2}$ |

**Type 4:** *m* is odd and *n* is even

$$f(u_0 u_{11}) = 2$$
  

$$f(u_{11} u_1) = -1$$
  

$$f(u_0 u_{i1}) = f(u_{i1} u_i) = (-1)^i ; 2 \le i \le n$$
  

$$f(u_0 u_{ij}) = f(u_{ij} u_i) = (-1)^j ; 2 \le j \le m, 1 \le i \le n$$

| <b>Table</b> | 8 |
|--------------|---|
|--------------|---|

| $n \ge 2$                     | Edge Conditions                                              | Vertex Conditions                                                                                                                                   |
|-------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>m</i> odd<br><i>n</i> even | $e_f(1) = mn, e_f(-1) = mn - 1$<br>$e_f(2) = 1, e_f(-2) = 0$ | $v_{f^*}(1) = \frac{n+2}{2}, v_{f^*}(-1) = \frac{n}{2}$ $v_{f^*}(2) = \frac{mn}{2}, v_{f^*}(-2) = \frac{mn-2}{2}$ $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$ |

Hence,  $SS(K_{1,n})$  is  $H_3$  cordial.

**Illustration 2.10**  $SS(K_{1,4})$  with m = 3 is  $H_3$  cordial shown in Figure.



**Theorem 2.11** The *H* -super subdivision of path  $HSS(K_{1,n})$   $(n \ge 2)H_3$  cordial.

**Proof:** Let  $V(HSS(K_{1,n})) = \{u_i, u_{ij}, u_0; 1 \le i \le n, 1 \le j \le 4\}$  and  $E(HSS(K_{1,n})) = \{u_0u_{i1}, u_iu_{i3}, u_{i1}u_{i3}, u_{i1}u_{i2}, u_{i3}u_{i4}; 1 \le i \le n\}$ , where  $u_0$  is apex vertex.

**Type 1:***n* is odd, consider a function  $f: E(HSS(K_{1,n})) \rightarrow \{-1,1\}$  defined as

$$f(u_0u_{11}) = f(u_{11}u_{12}) = 1$$
$$f(u_1u_{13}) = f(u_{13}u_{14}) = -1$$
$$f(u_{i1}u_{i3}) = (-1)^i; 1 \le i \le n$$

 $f(u_0 u_{i1}) = f(u_{i1} u_{i2}) = f(u_i u_{i3}) = f(u_{i3} u_{i4}) = (-1)^{i+1}; 2 \le i \le n.$ 

| Table | 9 |
|-------|---|
|-------|---|

| $n \ge 2$ | Edge Conditions                                     | Vertex Conditions                                                                               |
|-----------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| n is odd  | $e_f(1) = \frac{5n-1}{2}, e_f(-1) = \frac{5n+1}{2}$ | $v_{f^*}(1) = \frac{5n+1}{2}, v_{f^*}(-1)$ $= \frac{5n-1}{2}$ $v_{f^*}(3) = 0, v_{f^*}(-3) = 1$ |

Hence f satisfies the conditions of  $H_3$  cordial labeling in this Type and hence the graph under consideration is  $H_3$  cordial graph, when n is odd.

**Type 2:** *n* is even, consider a function  $f: E \rightarrow \{-2, -1, 1, 2\}$  defined as

 $f(u_0 u_{11}) = 2$   $f(u_0 u_{21}) = -1$  $f(u_i u_{i3}) = (-1)^{i+1}; i = 1, 2$ 

$$f(u_{i1}u_{i2}) = f(u_{i3}u_{i4}) = (-1)^{i}; i = 1,2$$
$$f(u_{i1}u_{i3}) = (-1)^{i+1}; 1 \le i \le n$$
$$f(u_{0}u_{i1}) = f(u_{i1}u_{i2}) = f(u_{i}u_{i3}) = f(u_{i3}u_{i4})$$

$$f(u_0u_{i1}) = f(u_{i1}u_{i2}) = f(u_iu_{i3}) = f(u_{i3}u_{i4}) = (-1)^i; 3 \le i \le n.$$

Table 10

| $n \ge 2$        | Edge Conditions                                   | Vertex Conditions                         |
|------------------|---------------------------------------------------|-------------------------------------------|
| <i>n</i> is even | $e_f(1) = \frac{5n-2}{2}, e_f(-1) = \frac{5n}{2}$ | $v_{f^*}(1) = \frac{5n}{2} = v_{f^*}(-1)$ |
|                  | $e_f(2) = 1, e_f(-2) = 0$                         | $v_{f^*}(2) = 1, v_{f^*}(-2) = 0$         |

In this Type f satisfies the conditions of  $H_2$  cordiallabeling and hence the graph under consideration is  $H_2$  cordial graph, when n is even.

Hence,  $HSS(K_{1,n})$  is  $H_3$  cordial as per above Types.

**Illustration2.12**  $HSS(K_{1,4})$  is  $H_2$  cordial shown in Figure.



**Theorem 2.13**Path  $P_n (n \ge 3)$  is  $H_3$  cordial.

**Proof:** Let  $P_n$  be the path  $u_1, u_2, \ldots, u_n$ .

Consider a function  $f: E(P_n) \rightarrow \{-2, -1, 1, 2\}$  defined as

$$f(u_{i}u_{i+1}) = \begin{cases} 1 & ; 1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil - 1 \\ 2 & ; i = \left\lceil \frac{n}{2} \right\rceil \\ -1 & ; Otherwise \end{cases}$$

| $n \ge 3$ | Edge Conditions                    | Vertex Conditions                                         |
|-----------|------------------------------------|-----------------------------------------------------------|
| n is even | $e_f(1) = \frac{n-2}{2} = e_f(-1)$ | $v_{f^*}(1) = 2, v_{f^*}(-1) = 1$                         |
|           | $e_f(2) = 1, e_f(-2) = 0$          | $v_{f^*}(2) = \frac{n-4}{2} = v_{f^*}(-2)$                |
|           |                                    | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$                         |
| n is odd  | $e_f(1) = \frac{n-1}{2}, e_f(-1)$  | $v_{f^*}(1) = 2, v_{f^*}(-1) = 1$                         |
|           | $=\frac{n-3}{2}$                   | $v_{f^*}(2) = \frac{n-4}{2}, v_{f^*}(-2) = \frac{n-6}{2}$ |
|           | $e_f(2) = 1, e_f(-2) = 0$          | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$                         |

#### Table 11

Hence,  $P_n$  is  $H_3$  cordial.

**Illustration2.14** $H_3$  cordial labeling of  $P_6$  is as shown in below Figure.



#### Remarks 2.15

Consider path  $P_n$ . As per barycentric subdivision of  $P_n (n \ge 2)$  is again a path  $P_{2n-1}$  which is also is  $H_3$  cordial as per Theorem 2.13. Hence we have the following.

**Theorem 2.16**Thebarycentricsubdivision of path  $S(P_n)$  ( $n \ge 2$ ) is  $H_3$  cordial.

**Theorem 2.17**The super subdivision of path  $SS(P_n)$  ( $n \ge 3$ ) is  $H_3$  cordial.

**Proof:** Let  $V(SS(P_n)) = \{u_i, u_{ij}, u_n; 1 \le i \le n-1, 1 \le j \le m\}$  and  $E(SS(P_n)) = \{u_i u_{ij}, u_{ij}, u_{ij}, u_{i+1}; 1 \le i \le n-1, 1 \le j \le m\}$ .

Consider a function  $f: E \rightarrow \{-2, -1, 1, 2\}$  defined as

Type 1: m is even and n is odd.

$$f(u_{i}u_{i1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-3}{2} \\ 2 & ; i = \frac{n-1}{2} \\ -1 & ; 0 therwise \end{cases}$$

$$f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-3}{2} \\ -1 & ; 0 therwise \end{cases}$$

$$f(u_i u_{i2}) = f(u_{i2} u_{i+1}) = (-1)^{i+1}; 1 \le i \le n-1$$

$$f(u_i u_{ij}) = f(u_{ij} u_{i+1}) = (-1)^j ; 3 \le j \le m.$$

| Table 1 |
|---------|
|---------|

| $n \ge 3$                           | Edge Conditions           | Vertex Conditions                   |
|-------------------------------------|---------------------------|-------------------------------------|
| <i>m</i> is even<br><i>n</i> is odd | $e_f(1)=m(n-1),$          | $v_{f^*}(1) = 1, v_{f^*}(-1) = 0$   |
|                                     | $e_f(-1) = m(n-1) - 1$    | $v_{f^*}(2) = \frac{(m+1)(n-1)}{2}$ |
|                                     | $e_f(2) = 1, e_f(-2) = 0$ | (m+1)(n-1) - 2                      |
|                                     |                           | $v_{f^*}(-2) =2$                    |
|                                     |                           | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$   |

**Type 2:** m and n bothareeven

$$f(u_{i}u_{i1}) = f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 2 \le i \le \frac{n}{2} \\ -1 & ; 0 \text{ therwise} \end{cases}$$

$$f(u_{i}u_{ij}) = f(u_{ij}u_{i+1}) = \begin{cases} 1 & ; j = 1,2 ; i = 1 \\ -1 & ; j = 1,2 ; i = n-1 \end{cases}$$

$$f(u_{i}u_{i2}) = \begin{cases} -2 & ; 2 \le i \le \frac{n}{2} \\ 2 & ; 0 \text{ therwise} \end{cases}$$

$$f(u_{i2}u_{i+1}) = \begin{cases} -1 & ; 2 \le i \le \frac{n}{2} \\ 1 & ; 0 \text{ therwise} \end{cases}$$

$$f(u_{i}u_{ij}) = f(u_{ij}u_{i+1}) = (-1)^{j} ; 3 \le j \le m.$$

Table 13

| $n \ge 3$        | Edge Conditions                                   | Vertex Conditions                                         |
|------------------|---------------------------------------------------|-----------------------------------------------------------|
| <i>m</i> is even | $e_f(1) = \frac{(2m-1)(n-1) + 3}{2}$              | $v_{f^*}(1) = \frac{n-2}{2}, v_{f^*}(-1) = \frac{n-4}{2}$ |
| n is even        | $e_f(-1) = \frac{(2m-1)(n-1) + 1}{2}$             | $v_{f^*}(2) = \frac{(m-1)(n-1) + 5}{2}$                   |
|                  | $e_f(2) = \frac{n-4}{2}, e_f(-2) = \frac{n-2}{2}$ | $v_{f^*}(3) = \frac{n-4}{2}, v_{f^*}(-3) = \frac{n-2}{2}$ |

**Type 3:***m* is odd and  $n \ge 3$ 

$$f(u_{i}u_{i1}) = \begin{cases} 1 & ; 1 \le i \le \left[\frac{n}{2}\right] - 1 \\ 2 & ; i = \left[\frac{n}{2}\right] \\ -1 & ; 0 therwise \end{cases}$$

$$f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 1 \le i \le \left|\frac{n}{2}\right| - 1 \\ -1 & ; 0 therwise \end{cases}$$

$$f(u_i u_{ij}) = f(u_{ij} u_{i+1}) = (-1)^j ; 2 \le j \le m.$$

## Table 14

| $n \ge 3, m$ odd | Edge Conditions           | Vertex Conditions                        |
|------------------|---------------------------|------------------------------------------|
|                  | $e_f(1) = m(n-1) - 1,$    | $v_{f^*}(1) = 2, v_{f^*}(-1) = 1$        |
| n is even        | $e_f(-1) = m(n-1)$        | $v_{f^*}(2) = \frac{(m+1)(n-1) - 4}{2}$  |
|                  | $e_f(2) = 1, e_f(-2) = 0$ | $v_{f^*}(-2) = \frac{(m+1)(n-1) - 2}{2}$ |
|                  |                           | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$        |
|                  | $e_f(1)=m(n-1),$          | $v_{f^*}(1) = 2, v_{f^*}(-1) = 1$        |
| n is odd         | $e_f(-1) = m(n-1) - 1$    | $v_{f^*}(2) = \frac{(m+1)(n-1) - 2}{2}$  |
|                  | $e_f(2) = 1, e_f(-2) = 0$ | $v_{f^*}(-2) = \frac{(m+1)(n-1) - 4}{2}$ |
|                  |                           | $v_{f^*}(3) = 1, v_{f^*}(-3) = 0$        |

Hence,  $SS(P_n)$  is  $H_3$  cordial.

**Illustration 2.18**  $SS(P_4)$  with m = 5 is  $H_3$  cordial shown in Figure.



**Theorem 2.19** The *H* -super subdivision of path  $HSS(P_n)$   $(n \ge 2)$  is  $H_3$  cordial.

**Proof:** Let  $V(HSS(P_n)) = \{u_i, u_{ij}; 1 \le i \le n, 1 \le j \le 4\}$ and  $E(HSS(P_n)) = \{u_i u_{i1}, u_{i3} u_{i+1}, u_{i1} u_{i3}, u_{i1} u_{i2}, u_{i3} u_{i4}; 1 \le i \le n-1\}$ . Consider a function  $f: E(HSS(P_n)) \to \{-2, -1, 1, 2\}$  defined as

**Type 1:** *n* is odd.

$$f(u_{i}u_{i1}) = f(u_{i1}u_{i3}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-1}{2} \\ -1 & ; Otherwise \end{cases}$$

$$f(u_{i+1}u_{i3}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-3}{2} \\ 2 & ; i = \frac{n-1}{2} \\ -1 & ; Otherwise \end{cases}$$

$$f(u_{i1}u_{i2}) = f(u_{i3}u_{i4}) = \begin{cases} -1 & ; 1 \le i \le \frac{n-1}{2} \\ 1 & ; Otherwise \end{cases}$$

Table 15

|          | Edge Conditions                                          | Vertex Conditions                                                                       |
|----------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|
| n is odd | $e_f(1) = \frac{5n-7}{2}, e_f(-1)$<br>$= \frac{5n-5}{2}$ | $v_{f^*}(1) = 2n - 1 = v_{f^*}(-1)$<br>$v_{f^*}(2) = \frac{n-1}{2}, v_{f^*}(-2)$<br>n-3 |
|          | $e_f(2) = 1, e_f(-2) = 0$                                | = $-2$                                                                                  |

Hence f satisfies the conditions  $H_2$  cordiallabeling in this Type.

**Type 2:** *n* is even.

 $f(u_{i}u_{i1}) = f(u_{i+1}u_{i3}) = (-1)^{i}; 2 \le i \le n-1$   $f(u_{1}u_{11}) = 1$   $f(u_{n}u_{(n-1)3}) = -1$   $f(u_{i1}u_{i3}) = f(u_{i3}u_{i4}) = (-1)^{i}; 1 \le i \le n-1$  $f(u_{i1}u_{i2}) = (-1)^{i+1}; 1 \le i \le n-1.$ 

## Table 16

|                  | Edge Conditions                                          | Vertex Conditions                                                                                                                   |
|------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <i>n</i> is even | $e_f(1) = \frac{5n-6}{2}, e_f(-1)$<br>$= \frac{5n-4}{2}$ | $v_{f^*}(1) = 2n - 1, v_{f^*}(-1)$<br>= 2n - 2<br>$v_{f^*}(2) = \frac{n - 2}{2} = v_{f^*}(-2)$<br>$v_{f^*}(3) = 0, v_{f^*}(-3) = 1$ |

Hence f satisfies the conditions  $H_3$  cordiallabeling in this Type.

Hence,  $HSS(P_n)$  is  $H_3$  cordialgraph.

**Illustration 2.20** $H_3$  cordial labeling of  $HSS(P_5)$  as shown in below Figure.



**Theorem 2.21**Cycle  $C_n (n \ge 4)$  is  $H_3$  cordial.

**Proof:** Let  $V(C_n) = \{u_i; 1 \le i \le n\}$  and  $E(C_n) = \{u_i u_{i+1}, u_1 u_n; 1 \le i \le n-1\}$ .

Consider a function  $f: E(C_n) \to \{-2, -1, 1, 2\}$  defined as

$$f(u_i u_{i+1}) = \begin{cases} 1 & ; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil - 1 \\ 2 & ; i = \left\lceil \frac{n}{2} \right\rceil \\ -1 & ; \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n - 1 \end{cases}$$

$$f(u_n u_1) = -2.$$

| Table | 17 |
|-------|----|
|-------|----|

| $n \ge 4$        | Edge Conditions                    | Vertex Conditions                          |
|------------------|------------------------------------|--------------------------------------------|
| <i>n</i> is even | $e_f(1) = \frac{n-2}{2} = e_f(-1)$ | $v_{f^*}(1) = 1 = v_{f^*}(-1)$             |
|                  | $e_f(2) = 1 = e_f(-2)$             | $v_{f^*}(2) = \frac{n-4}{2} = v_{f^*}(-2)$ |
|                  |                                    | $v_{f^*}(3) = 1 = v_{f^*}(-3)$             |
| n is odd         | $e_f(1) = \frac{n-1}{2}, e_f(-1)$  | $v_{f^*}(1) = 1 = v_{f^*}(-1)$             |
|                  | $=\frac{n-3}{2}$                   | $v_{f^*}(2) = \frac{n-3}{2}, v_{f^*}(-2)$  |
|                  | $e_f(2) = 1 = e_f(-2)$             | $=\frac{n-5}{2}$                           |
|                  |                                    | $v_{f^*}(3) = 1 = v_{f^*}(-3)$             |

Hence,  $C_n$  is  $H_3$  cordial.

**Illustration 2.22** $H_3$ -cordial labeling of cycle  $C_8$  is shown in below Figure.



**Remarks 2.23** Consider cycle  $C_n$ . As per barycentric subdivision of  $C_n$  ( $n \ge 3$ ) is again a path  $C_{2n}$  which is also is  $H_3$  cordial as per Theorem 2.19. Hence we have the following.

**Theorem 2.24**Thebarycentricsubdivision of cycle  $S(C_n)$  ( $n \ge 2$ ) is  $H_3$  cordial.

**Theorem 2.25**The super subdivision of cycle  $SS(C_n)$  ( $n \ge 4$ ) is  $H_3$  cordial.

**Proof:** Let  $V(SS(C_n)) = \{u_i, u_{ij}; 1 \le i \le n, 1 \le j \le m\}$  and  $E(SS(C_n)) = \{u_i u_{ij}, u_{ij} u_{i+1}, u_1 u_{nj}; 1 \le i \le n, 1 \le j \le m\}.$ 

Consider a function  $f: E(SS(C_n)) \rightarrow \{-2, -1, 1, 2\}$  defined as

**Type 1:** *m* is even and *n* is odd.

$$f(u_{i}u_{i1}) = \begin{cases} 1 & ; 1 \leq i \leq \frac{n-1}{2} \\ 2 & ; i = \frac{n+1}{2} \\ -1 & ; 0 \text{therwise} \end{cases}$$

$$f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 1 \leq i \leq \frac{n-1}{2} \\ -1 & ; \frac{n+1}{2} \leq i \leq n-1 \end{cases}$$

$$f(u_{1}u_{n1}) = -2$$

$$f(u_{1}u_{n2}) = 2$$

$$f(u_{n}u_{n2}) = 1$$

$$f(u_{i}u_{i2}) = f(u_{i2}u_{i+1}) = (-1)^{i+1}; 1 \leq i \leq n-1$$

$$f(u_{i}u_{ij}) = f(u_{ij}u_{i+1}) = (-1)^{j}; 3 \leq j \leq m.$$

| Table | 18 |
|-------|----|
|-------|----|

|                      | Edge Conditions            | Vertex Conditions                    |
|----------------------|----------------------------|--------------------------------------|
| <i>m</i> is even and | $e_f(1) = mn - 1, e_f(-1)$ | $v_{f^*}(1) = 1, v_{f^*}(-1) = 0$    |
| n is odd             | =mn-2                      |                                      |
|                      | $e_f(2) = 2, e_f(-2) = 1$  | $v_{f^*}(2) = \frac{n(m+1) - 3}{2}$  |
|                      |                            | $v_{f^*}(-2) = \frac{n(m+1) - 5}{2}$ |
|                      |                            | $v_{f^*}(3) = 2, v_{f^*}(-3) = 1$    |

**Type 2:**m and n both are even.

$$f(u_1u_{n1}) = -2$$

$$f(u_iu_{i1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n}{2} \\ -1 & ; 0 \text{ therwise} \end{cases}$$

$$f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-2}{2} \\ 2 & ; i = \frac{n}{2} \\ -1 & ; \frac{n+2}{2} \le i \le n-1 \end{cases}$$

$$f(u_i u_{i2}) = f(u_{i2} u_{i+1}) = (-1)^{i+1}; 1 \le i \le n$$

$$f(u_i u_{ij}) = f(u_{ij} u_{i+1}) = (-1)^j; 3 \le j \le m, 1 \le i \le n.$$

# Table 19

|                                     | Edge Conditions             | Vertex Conditions                                 |
|-------------------------------------|-----------------------------|---------------------------------------------------|
| <i>m</i> and <i>n</i> both are even | $e_f(1) = nm - 1 = e_f(-1)$ | $v_{f^*}(1) = 1 = v_{f^*}(-1)$                    |
|                                     | $e_f(2) = 1 = e_f(-2)$      | $v_{f^*}(2) = \frac{n(m+1) - 4}{2} = v_{f^*}(-2)$ |
|                                     |                             | $v_{f^*}(3) = 1 = v_{f^*}(-3)$                    |

**Type 3:** m and n both are odd.

$$f(u_{1}u_{n1}) = -2$$

$$f(u_{i}u_{i1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-1}{2} \\ 2 & ; i = \frac{n+1}{2} \\ -1 & ; Otherwise \end{cases}$$

$$f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-1}{2} \\ -1 & ; \frac{n+1}{2} \le i \le n-1 \end{cases}$$

 $f(u_i u_{ij}) = f(u_{ij} u_{i+1}) = (-1)^j$ ;  $2 \le j \le m$ ,  $1 \le i \le n$ .

Type 4: *m* is odd and*n* is even.

$$f(u_{i}u_{i1}) = \begin{cases} 1 & ; 1 \leq i \leq \frac{n}{2} \\ -1 & ; 0 therwise \end{cases}$$

$$f(u_{i1}u_{i+1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-2}{2} \\ 2 & ; i = \frac{n}{2} \\ -1 & ; \frac{n+2}{2} \le i \le n-1 \end{cases}$$

 $f(u_1 u_{n1}) = -2$  $f(u_i u_{ij}) = f(u_{ij} u_{i+1}) = (-1)^j ; 2 \le j \le m, 1 \le i \le n.$ 

## Table 20

| $n \ge 4$ | Edge Conditions                       | Vertex Conditions                                 |
|-----------|---------------------------------------|---------------------------------------------------|
| m is odd  | $e_f(1) = nm - 1$                     | $v_{f^*}(1) = 1 = v_{f^*}(-1)$                    |
|           | $= e_f(-1)$<br>$e_f(2) = 1 = e_f(-2)$ | $v_{f^*}(2) = \frac{n(m+1) - 4}{2} = v_{f^*}(-2)$ |
|           |                                       | $v_{f^*}(3) = 1 = v_{f^*}(-3)$                    |

Hence,  $SS(C_n)$  is  $H_3$ cordial.

**Illustration 2.26**  $SS(C_5)$  with m = 3 is  $H_3$  cordial shown in Figure.



**Theorem 2.27**The *H*-super subdivision of cycle  $HSS(C_n)$  ( $n \ge 3$ ) is  $H_2$  cordial.

**Proof:** Let  $V(HSS(C_n)) = \{u_i, u_{ij}; 1 \le i \le n, 1 \le j \le 4\}$  and  $E(HSS(C_n)) = \{u_i u_{i1}, u_{i3} u_{i+1}, u_{i1} u_{i3}, u_{i1} u_{i2}, u_{i3} u_{i4}, u_1 u_{n3}; 1 \le i \le n-1\}.$ 

Consider a function  $f: E(HSS(C_n)) \to \{-1,1\}$  defined as

**Type 1:** *n* is odd.

$$f(u_{i}u_{i1}) = \begin{cases} 1 & ; 1 \le i \le \frac{n+1}{2} \\ -1 & ; 0 \text{ therwise} \end{cases}$$
$$f(u_{i+1}u_{i3}) = f(u_{i1}u_{i3}) = \begin{cases} 1 & ; 1 \le i \le \frac{n-1}{2} \\ -1 & ; 0 \text{ therwise} \end{cases}$$

 $f(u_1u_{n3})=1$ 

$$f(u_{i1}u_{i2}) = \begin{cases} -1 & ; 1 \le i \le \frac{n+1}{2} \\ 1 & ; Otherwise \end{cases}$$

$$f(u_{i3}u_{i4}) = \begin{cases} -1 & ; 1 \le i \le \frac{n-1}{2} \\ 1 & ; Otherwise \end{cases}$$

Table 21

|          | Edge Conditions                    | Vertex Conditions                                              |
|----------|------------------------------------|----------------------------------------------------------------|
| n is odd | $e_f(1) = \frac{5n+1}{2}, e_f(-1)$ | $v_{f^*}(1) = 2n = v_{f^*}(-1)$                                |
|          | $=\frac{5n-1}{2}$                  | $v_{f^*}(2) = \frac{n+1}{2}, v_{f^*}(-2)$<br>= $\frac{n-1}{2}$ |
|          |                                    | 2                                                              |

Type 2: n is even.

$$f(u_{i}u_{i1}) = f(u_{i1}u_{i3}) = f(u_{i+1}u_{i3}) = \begin{cases} 1 & ; 1 \le i \le \frac{n}{2} \\ -1 & ; 0 \text{therwise} \end{cases}$$

 $f(u_1u_{n3}) = 1$ 

$$f(u_{i1}u_{i2}) = f(u_{i3}u_{i4}) = \begin{cases} -1 & ; 1 \le i \le \frac{n}{2} \\ 1 & ; \text{Otherwise} \end{cases}$$

Table 22

|           | Edge Conditions                   | Vertex Conditions                                                           |
|-----------|-----------------------------------|-----------------------------------------------------------------------------|
| n is even | $e_f(1) = \frac{5n}{2} = e_f(-1)$ | $v_{f^*}(1) = 2n = v_{f^*}(-1)$<br>$v_{f^*}(2) = \frac{n}{2} = v_{f^*}(-2)$ |

Hence,  $HSS(C_n)$  is  $H_2$ cordial.

**Illustration 2.28** H<sub>2</sub>cordial labeling of HSS(C<sub>5</sub>) asshown in Figure.



## **III. CONCLUSION**

Path, star and cycle graph are basic graphs which we have proved to be  $H_k$  –cordial graphs. We have derived the results on these graphs by considering operations such as barycentric subdividion, super subdivision and H- super subdivision.

## REFERENCES

- D. Parmar and J. Joshi, "H<sub>k</sub>cordial Labeling of Triangular Snake Graph", Journal of Applied Science and Computations, vol. 6,2019, pp. 2118-2123.
- [2] I. Cahit, "H-Cordial Graphs", Bull. Inst. Combin. Appl, vol. 18, 1996, pp. 87-101.
- [3] J.A.Gallian, "A Dynamic Survey of Graph Labeling", The Electronics Journal of Combinatorics, 2019 #DS6.
- [4] J.Gross and J.Yellen, "Graph Theory and its applications", CRC Press
- [5] J.R.Joshi and D. Parmar, "H<sub>k</sub>- Cordial Labeling of m-Polygonal Snake Graphs", Alochana Chakra Journal, vol. 9, no. 4, pp.1924 - 1938, April 2020.
- [6] J.R.Joshi and D.Parmar, "H<sub>k</sub>cordial Labeling of Some Graph and its Corona Graphs", International Journal of Aquatic Science, vol. 12, no. 2, 2021, pp.1519 -1534.
- [7] M. Ghebleh and R. Khoeilar, "A note on: "Hcordial graphs", Bull. Inst. Combin. Appl, vol. 31,2001, pp. 60-68.
- [8] P.Jeyanthi and R.Gomathi, "Analytic Odd Mean Labeling of Super Subdivision and H -Super Subdivision of Graphs", Journal of Emerging Technologies and Innovatives Research, vol. 6, 2019, pp. 541-551.
- [9] S. Abhirami, R. Vikramaprasad, R. Dhavaseelan, "Even Sum Cordial Labeling for some new Graphs", International Journal of Mechanical Engineering and Technology, vol. 9, no. 2, pp. 214-220, February 2018.
- [10] S. K. Vaidya, K. K. Kanani, P. L. Vihol and N. A. Dani, "Some Cordial Graphs in the Context of Barycentric Subdivision", International Journal of Contemporary Mathematical Sciences, vol. 4, no. 30,2009, pp. 1479-1492.