ON CONVERGENCE OF 2 – DIMENSIONAL q **– ANALOGUESOF JAFARI'S INTEGRAL TRANSFORMATION**

Abstract

 In this paper, we have extended the newly defined q – analogues of the Jafari's integral transformation towards its 2 – dimensional integral transformation. The q – analogues of the Jafari's integral transformation has simple relationship with other two dimensional q – integral transformations. As an application we have found the conditions under which 2 – dimensional q – analogues of Jafari's integral transformation were convergent.

Keywords: Integral Transform, q – Calculus, Convergence

Authors

S. D. Manjarekar

Department of Mathematics LVH ASC College Nashik, Maharashtra, India. shrimathematics@gmail.com

S. S. Manjarekar

Department of Mathematics LVH ASC College Nashik, Maharashtra, India. snehalmanjarekar23@gmail.com

V. R. Nikam

Department of Mathematics LVH ASC College Nashik, Maharashtra, India. vasantnikam.1151@gmail.com

I. INTRODUCTION

The theory of quantum calculus i.e. q – calculus [6] which also be defined ascalculus without limits now becoming the important topic in the field of Mathematics and Physicsmainly dealing with the field of Number theory especially in Cryptography, Combinatory,Mechanics , Theory of Relativity and other sciences quantum theory.

In this paper, we have extend the definition of $1 -$ dimensional $q -$ analoguesJafari's integral transformation towards 2 – dimensional q – analogues and find out its relationshipwith other 2 - dimensional Laplace type q – analogues integral transformations [11,12]. The paperwere arranged as follows.

 The paper mainly divided into three parts, in the first part the generalized definition of one dimensional q – analoguesof Jafari's Integral Transformation and some other basic integral transformation definition given, in the second part the generalized definition of 2 – dimensional q – analoguesof Jafari's Integral Transformation and its relationship with some basic integral transformation were explained. In the last part we have proved the conditions for convergence and uniform convergence of $2 -$ dimensional $q -$ analoguesof Jafari's Integral Transformation.

 In the following, we present some basic definitions needed in proving the main results.

II. BASIC DEFINITIONS

1. Jafari's Integral Transformation: If a function $f(t)$ which is to be integrable and defined for $t \ge 0$ and $p(s) \ne 0$ and $q(s)$ are positive real valued function then its Jafari's integral transformation [5] is given by

$$
J\{f(t);s\} = \mathcal{F}(s) = p(s)\int_0^\infty f(t)e^{-q(s)t}dt
$$
\n(1)

Provided that the integral exist for $q(s)$

2. q – analogues of Exponential function: The q – analogues of exponential function e^t is denoted by $\hat{e}_a(t)$ and $e_a(t)$ and is given by [6]

$$
\hat{e}_q(t) = \prod_{i=1}^{\infty} \left(1 + (1-q)q^{i-1}t \right) = \sum_{k=0}^{\infty} q^{\left(\frac{k}{2}\right)} \frac{t^k}{[k]_q!}
$$
 (2)

$$
e_q(t) = \prod_{i=1}^{\infty} \left(1 - (1 - q)q^{i-1}t\right)^{-1} = \sum_{k=0}^{\infty} \frac{t^k}{[k]_q!}
$$
 (3)

3. q – **Derivative:** The q – derivative of a function $f(t)$ is denoted by $D_q f(t)$ and is given by [6],

$$
D_q f(t) = \frac{d_q f}{d_q t} = \frac{f(qt) - f(t)}{(q - 1)t}
$$
\n(4)

4. Laplace type Integral Transformation: If function $f(t)$ is continuous piecewise and is of exponential order then its Laplace – type integral transformation [14, 15] is given by:

$$
\mathcal{L}_{\varepsilon}\{f(t);s\} = \int_0^\infty \varepsilon'(t)e^{-\Phi(s)\varepsilon(t)}f(t)dt
$$
\n(5)

In the above definition, $\Phi(s)$ is a function which is invertible such that $\varepsilon(t) =$ $\int e^{-a(t)}dt$ is exponential function and $a(t)$ is a function which also invertible.

III.TWO – DIMENSIONAL q **– ANALOGUES OF JAFARI'S INTEGRAL TRANSFORMATION**

In this section, we introduce the extension of q – analogues of Jafari's integral transformation [13] towards 2 – dimensional q – analogues of Javari's integral transformation of along with some properties;

1. Definition: We consider the definition of 2 – dimensional q – analogues of Jafari's integral transformation using the definition [13] as;

$$
\widehat{\boldsymbol{J}}_q[f(x,t)](u,v) = P(u,v) \int_0^\infty \int_0^\infty e_q[-\varepsilon(u,v,x,t)] f(x,t) d_q x d_q t \qquad \qquad \text{[A]}
$$

Where, $\varepsilon(u, v, x, t) = O(u)x + O(v)$ tare invertible functions with the property that $f(x, t) \in S = \left\{ f(x, t) : \exists k_1, k_2 > 0, |f(x, t)| < Me \right\}$ $|x|$ $\overline{k_j}$, $x \in (-1)^j \times [0, \infty)$, a. e. *'t'*, $M >$ 0) and $P(u, v) = P(u)P(v)$

2. Relationship with Some q **– Analogues of Some Integral Transformations**

• **2 – dimensional q – analogues of Laplace transformation:** The two dimensional q – analogues of Laplace transformation [13] of a function $f(x, t)$ can be obtained by taking $Q(u) = u$ and $Q(v) = v$, $P(u, v) = 1$ in equation [A] gives;

$$
\widehat{\mathbf{L}}_q[f(x,t)](u,v) = \int\limits_0^{\infty} \int\limits_0^{\infty} e_q[-(ux+vt)]f(x,t)d_qxd_qt
$$

• **2 – dimensional q – analogues of Elzaki transformation:** The two dimensional q – analogues of Elzaki transformation [13] of a function $f(x, t)$ can be obtained by taking $Q(u) = \frac{1}{u}$ $\frac{1}{u}$ and $Q(v) = \frac{1}{v}$ $\frac{1}{v}$, $P(u, v) = uv$ in equation [A] gives;

$$
\widehat{\mathbf{TT}}_q[f(x,t)](u,v) = uv \int_0^{\infty} \int_0^{\infty} e_q \left[-\left(\frac{x}{u} + \frac{t}{v}\right) \right] f(x,t) d_q x d_q t
$$

Futuristic Trends in Contemporary Mathematics e-ISBN: 978-93-6252-623-6 IIP Series, Volume 3, Book 1, Part 2, Chapter 1 ON CONVERGENCE OF 2 – DIMENSIONAL q – ANALOGUES OF JAFARI'S INTEGRAL TRANSFORMATION

• **2 – dimensional q – analogues of Sumudu transformation:** The two dimensional q – analogues of Sumudu transformation [13] of a function $f(x, t)$ can be obtained by taking $Q(u) = \frac{1}{u}$ $\frac{1}{u}$ and $Q(v) = \frac{1}{v}$ $\frac{1}{v}$, $P(u, v) = \frac{1}{u}$ $\frac{1}{uv}$ in equation [A] gives;

$$
\widehat{\mathbf{SUSu}}_{q}[f(x,t)](u,v) = \frac{1}{uv} \int_{0}^{\infty} \int_{0}^{\infty} e_q \left[-(\frac{x}{u} + \frac{t}{v}) \right] f(x,t) d_q x d_q t
$$

• **2 – dimensional q – analogues of Aboodh transformation:** The two dimensional q – analogues of Aboodh transformation of a function $f(x, t)$ can be obtained by taking $Q(u) = u$ and $Q(v) = v$, $P(u, v) = \frac{1}{m}$ $\frac{1}{uv}$ in equation [A] gives;

$$
\widehat{A}A_q[f(x,t)](u,v) = \frac{1}{uv} \int_{0}^{\infty} \int_{0}^{\infty} e_q[-(ux+vt)] f(x,t) d_qx d_qt
$$

• 2 – dimensional q – analogues of **Pourreza transformation:** The two dimensional q – analogues of Pourreza transformation of a function $f(x, t)$ can be obtained by taking $Q(u) = u^2$ and $Q(v) = v^2$, $P(u, v) = uv$ in equation [A] gives;

$$
\widehat{PP}_q[f(x,t)](u,v) = uv \int\limits_0^{\infty} \int\limits_0^{\infty} e_q[-(xu^2 + tv^2)] f(x,t) d_qx d_qt
$$

• **2** – **dimensional q** – **analogues of Mohand transformation:** The two dimensional q – analogues of Mohand transformation of a function $f(x, t)$ can be obtained by taking $Q(u) = u$ and $Q(v) = v$, $P(u, v) = u^2v^2$ in equation [A] gives;

$$
\widehat{MM}_q[f(x,t)](u,v) = u^2v^2 \int\limits_0^{\infty} \int\limits_0^{\infty} e_q[-(xu+tv)]f(x,t)d_qxd_qt
$$

• **2** – **dimensional q** – **analogues of Sawi transformation:** The two dimensional q – analogues of Sawi transformation of a function $f(x, t)$ can be obtained by taking $Q(u) = \frac{1}{u}$ $\frac{1}{u}$ and $Q(v) = \frac{1}{v}$ $\frac{1}{v}$, $P(u, v) = \frac{1}{u^2v}$ $\frac{1}{u^2v^2}$ in equation [A] gives;

$$
\widehat{SS}_q[f(x,t)](u,v) = \frac{1}{u^2v^2} \int_{0}^{\infty} \int_{0}^{\infty} e_q \left[-(\frac{x}{u} + \frac{t}{v}) \right] f(x,t) d_qx d_qt
$$

In the similar manner, by substitution of various values of $Q(u)$, $Q(v)$ and $P(u, v)$ one can obtain the relationship with q – analogues of Natural Transformation, and q – analogues of G_Transformation of order α .

IV.CONVERGENCE OF TWO – DIMENSIONAL q **– ANALOGUES OF JAFARI'S INTEGRAL TRANSFORMATION**

Theorem 1:

If $f(x, t)$ is continuous on $[0, \infty) \times [0, \infty)$ and integral converges at $Q(u_0)$ and $Q(v_0)$. Then the two – dimensional q – analogues of Jafari's Integral transform of $f(x, t)$ converges on for $Q(u) > Q(u_0)$ and $Q(v) > Q(v_0)$ where $\varepsilon(u, v, x, t) \ge 0$ in the positive quadrant.

To prove the proof we will use the following lemmas.

Lemma: If $\hat{\mathbf{J}}_q[f(x,t)]; (u_0) = \int_0^t P(u_0, v)$ $\int_{0}^{t} P(u_0, v) f(x, t) e_q[-Q(u_0)\varepsilon(x, t)]d_qx$ is bounded on [0, *∞*) then the two – dimensional q – analogues of Jafari's Integral transform w.r.t u converges for $Q(u) > Q(u_o)$ and $\varepsilon(x,t) = x \ge 0$ in the positive quadrant such that $\varepsilon(x, t) = x$ bounded in first variable.

Proof:Consider the set

 $S_1 = \{(x, t): g(x, t) = P(u_0, v) \int_0^t f(x, t) e_q[-Q(u_0)\varepsilon(x, t)]d_qx$ $\int_0^t f(x, t) e_q[-\mathbb{Q}(u_0)\varepsilon(x, t)] d_q x < \infty \}$ for $0 < t < \infty$. Then by property of S_1 we have,

 $g(x, 0) = 0$ and $\lim_{t\to\infty} g(x, t)$ will exist and bounded this is because integral is bounded on $[0, \infty)$

Then by fundamental theorem of calculus, we get

$$
g_t(x,t) = P(u_o, v) f(x,t) e_q[-Q(u_o) \varepsilon(x,t)]
$$

Where $P(u_0, v) \neq 0$

Now, weChoose δ_1 and R_1 with $0 < \delta_1 < R_1$, Then the integral

$$
I = \int_{\delta_1}^{R_1} P(u_o, v) f(x, t) e_q[-Q(u)\varepsilon(x, t)] d_q x
$$

=
$$
\int_{\delta_1}^{R_1} g_t(x, t) e_q[-[Q(u) - Q(u_o)]\varepsilon(x, t)] d_q x \text{ with } P(u_o, v) \neq 0
$$

Applying integration by parts then the integral turns out to be $I = \left[\left[e_q \left[-[Q(u) - Q(u_o)] \varepsilon(x, t) \right] g(x, t) \right] \right]_{\delta_1}^{R_1}$

$$
+ \int_{\delta_1}^{R_1} [Q(u) - Q(u_0)]e_q[-[Q(u) - Q(u_0)]\varepsilon(x,t)]g_t(x,t)]
$$

Now let, $\delta_1 \rightarrow 0$

$$
\Rightarrow I = \left[e_q[-[Q(u) - Q(u_o)]\varepsilon(x, R_1)]g(x, R_1) + \int_{0}^{R_1} [Q(u) - Q(u_o)]e_q[-[Q(u) - Q(u_o)]\varepsilon(x, R_1)]g(x, t)d_qx \right]
$$

Now let $R_1 \to \infty$ then $e_q[-[Q(u) - Q(u_o)]\varepsilon(x, R_1)] \to 0$ as $Q(u) > Q(u_o)$ and $\varepsilon(x, t) \ge 0$ in the positive quadrant and bounded in first variable. Which exist as the integral is bounded $Q(u) > Q(u_o)$.

In the similar manner we can prove that if the integral $I_1 = \int_0^{\infty} P(u, v_0) f(x, t) e_q[-Q(v) \varepsilon(x, t)] d_q t$ $\int_{0}^{\infty} P(u, v_0) f(x, t) e_q[-Q(v)\varepsilon(x, t)] d_q t$ Converges at Q(v_0) then the integral converges for $Q(v) > Q(v_0), \varepsilon(x, t) = t \ge 0$ and $0 < x < \infty$. Hence the theorem hold.

Theorem 2:

If $f(x, t)$ is continuous and bounded on $[0, \infty) \times [0, \infty)$ and integral converges at $Q(u_o)$ and $Q(v_o)$. Then the 2 – dimensional q – analogues of Jafari's Integral transform of $f(x, t)$ converges uniformly on $[u, \infty) \times [v, \infty)$ if $Q(u) > Q(u_0)$ and $Q(v) > Q(v_0)$ where $\varepsilon(x, t) \geq 0$ in the positive quadrant.

To prove the proof we will use the following lemmas.

Lemma:If $\hat{\mathbf{J}}_q[f(x,t)]; (u_0) = \int_0^t P(u_0, v)$ $\int_0^t P(u_0, v) f(x, t) e_q[-Q(u_0) \varepsilon(x, t)] d_q x$ is bounded on [0, *∞*) then the 2 – dimensional q – analogues of Jafari's Integral transformconverges uniformly on $[u, \infty)$. If $Q(u) > Q(u_0)$ and $\varepsilon(x, t) \ge 0$ in the positive quadrant and bounded in first variable.

$$
S_1 = \left\{ (x, t) : g(x, t) = P(u_0, v) \int_0^t f(x, t) e_q[-Q(u_0)\varepsilon(x, t)] d_q x < \infty \right\}
$$
 for $0 < t < \infty$. Then by property of S_1 we have,

 $g(x, 0) = 0$ and $\lim_{t\to\infty} g(x, t)$ will exist and bounded this is because integral is bounded on $[0, \infty)$

So by fundamental theorem of calculus, we get $g_t(x,t) = P(u_0, v) f(x,t) e_q[-Q(u_0) \varepsilon(x,t)]$, where $P(u_0, v) \neq 0$ ----- I

Now, we choose δ_1 and δ such that $0 < \delta < \delta_1$, then the integral

$$
I = \int_{\delta}^{\delta_1} P(u_o, v) f(x, t) e_q[-Q(u)\varepsilon(x, t)] d_q x
$$

$$
= \int_{\delta_1}^{\delta_1} e_q [-[Q(u) - Q(u_o)]\varepsilon(x, t)] g_t(x, t) d_q x \qquad \text{with } P(u_o, v) \neq 0
$$

Applying integration by parts then the integral turns out to be

Applying integration by p

$$
I = \left[\left[e_q \left[-[Q(u) - Q(u_o)] \varepsilon(x, t) \right] g(x, t) \right]_{\delta_1}^{R_1} + \int_{\delta_1}^{R_1} [Q(u) - Q(u_o)] e_q \left[-[Q(u) - Q(u_o)] \varepsilon(x, t) \right] g(x, t) d_q x \right]
$$

$$
= [e_q[-[Q(u) - Q(u_0)]\varepsilon(R_1, t)]g(R_1, t) - e_q[-[Q(u) - Q(u_0)]\varepsilon(\delta_1, t)]g(\delta_1, t) + \int_{\delta_1} [Q(u) - Q(u_0)]e_q[-[Q(u) - Q(u_0)]\varepsilon(x, t)]g(x, t)d_qx]
$$

By property of bounded ness $\exists M > 0$ such that

 $|g(x, t)| \leq M$ it gives us;

 \mathbf{r}

$$
|I| \leq \{Me_q[-[Q(u) - Q(u_o)]\varepsilon(R_1, t)] + Me_q[-[Q(u) - Q(u_o)]\varepsilon(\delta_1, t)] + M[Q(u) - Q(u_o)]e_q[-[Q(u) - Q(u_o)]\varepsilon(R_1, t)] + M[Q(u) - Q(u_o)]e_q[-[Q(u) - Q(u_o)]\varepsilon(\delta_1, t)]\}
$$

 Hence by Cauchy's criteria for uniform convergence for the given integral converges uniformly on $[u, \infty)$ under the condition that ; $Q(u) > Q(u_0)$.

In the similar manner we can prove that if the integral

 $I_1 = \int_0^{\infty} P(u, v_0) f(x, t) e_q[-Q(v) \varepsilon(x, t)] d_q t$ *∞* $\int_0^\infty P(u, v_0) f(x, t) e_q[-\mathbb{Q}(v)\varepsilon(x, t)] d_q t$ Converges at $\mathbb{Q}(v_0)$ then the integral converges uniformly for $Q(v) > Q(v_0)$, $\varepsilon(x, t) = t \ge 0$ and $0 < x < \infty$. Hence the theorem hold.

V. CONCLUSION

 The paper gives the conditions about convergence and uniform convergence of the 2 – D q – analogues of Jafari's Integral Transformation along with its relationship with some other q – Integral transformation.

REFERENCES

- [1] Aghlli A., A. Ansari, "A new approach to solving SIEs and system of PFDEs using \mathcal{L}_2 Transform", J. Diff. Eq. Cont. Proc. (3), (2010)
- [2] Ansari A., "The generalized Laplace Transform and fractional differential equations of distributed orders", Differential Equations and Control Processes, (3), (2012).
- [3] Belgacem FBM, "Introducing and analyzing deeper Sumudu Properties", Nonlinear Studies, 13(1): pp. 23 $-41, (2015)$

ON CONVERGENCE OF 2 – DIMENSIONAL

q – ANALOGUES OF JAFARI'S INTEGRAL TRANSFORMATION

- [4] Idrees M., Z. Ahmed, M. Awais, Z. Perveen, "On the convergence of double Elzaki Transform", International Journal of Advanced and Applied Sciences, 5(6) 2018, pp. 19 – 24, (2018)
- [5] JafariH., "A new general integral transform for solving fractional integral equation", Journal of Advanced Research, vol.32, pp. 133 – 138, (2021).
- [6] KacV., P. Cheung, "Quantum Calculus", Springer, NY, (2002).
- [7] Oldham and Spainer, "The fractional calculus, Theory and Applications of differentiation and integration to arbitrary order", Dover Publication, (2006)
- [8] Shrinath M., A. P. Bhadane,"On two dimensional new integral transformation and its applications", Malaya Journal of Matematik, vol. S(1),pp. 638 – 643,(2019).
- [9] Shrinath M., A. P. Bhadane, "Generalized Elzaki Tarig Transformation and its applications to new fractional derivative with non – singular kernel ", PFDA 3, No. 3, pp. $227 - 232$, (2017)
- [10] Shrinath M., A. P. Bhadane, "Applications of Tarig Transformation to new fractional derivative with non singular kernel", JFCA, vol. 9(1), pp.160 – 166, (2018)
- [11] Shrinath M., A. P. Bhadane, "On Convergence of 2 Dimensional fractional Elzaki Transformation", The Aligarh Bulletin of Mathematics, vol. 39(2), pp. 17 – 26, (2020)
- [12] Shrinath M., A. P. Bhadane, "On two –dimensional Generalized fractional ElzakiTarigTransformations Relation and Convergence", Global Journal of Pure and Applied Mathematics, vol. 17(2), pp. 287 – 294, (2021)
- [13] S. S. Manjarekar, V. R. Nikam, S. D. Manjarekar, "q Analogues of Jafari's Integral Transformation and its Applications", ICGAMS – 2K22, (2022)
- [14] Tarig M. Elzaki, The new integral transform "Elzaki Transform", Global journal of Pure and Applied Mathematics, 1, pp. 57 – 64, (2011)
- [15] Tarig M. Elzaki, Saleh M. Elzaki, "On connections between Laplace and Elzaki Tarig Transform", Advances in Theoretical and Applied Mathematics, (6) , p. $1 - 11$, (2011)
- [16] Uzoamaka A. Ezeafulukwe and MaslinaDarus, "A note on q Calculus", De Gruyter, (2015)
- [17] Varsha G., "Fractional Calculus: Theory and Applications", Narosa publication, (2014).