SEISMIC STRENGTHENING ANALYSIS & DESIGN (RETROFITTING) OF EDUCATIONAL BUILDING AT NEPAL

Abstract

Although the timing of a seismic event can be anticipated, it is a given that the damage it causes will be severe. The danger of earthquakes is substantially higher in Nepal than in many other metropolitan centres in developing nations. Uncontrolled development, subpar design, and poor building techniques have all contributed to the seismic risk. In the event of a significant earthquake, there will be significant property damage and loss of life. In order to minimise structural damage and lower mortality in the event of a major earthquake, it is strongly advised that buildings in cities like Kathmandu be designed and built with adequate care for the seismic load. Due to this, the design and construction of the structure have been prone to seismic zone.

Keywords: Retrofiting, Strengthening, SAP, Seismic

Authors

Pramod K R

Assistant Professor Civil Engineering Sapthagiri College of Engineering, Bangalore, Karnataka, India.

N Lakshminarasimaiah

Professor & Head of the Civil Engineering APS College of engineering, Bangalore, Karnataka, India.

M. B. Ananthayya

Professor & Head of the Civil Engineering SVIT College of engineering, Bangalore, Karnataka, India.

Latha M S

Professor & Head of the Civil Engineering SVCE College of engineering, Bangalore, Karnataka, India.

I. INTRODUCTION

One of the most feared natural calamities is an earthquake. earthquakes are waves that vibrate the earth's surface as a result of disturbances deep within the planet. It is a natural occurrence that depends on a number of variables. When it impacts an ever-increasing concentration of material goods and people, it becomes extremely destructive. Nepal experiences earthquakes frequently. This is so because Nepal is located in the Himalayan range, where tectonic plate collisions force the Indian and Eurasian plates to subduct. As a result, there has been an enormous buildup of strain energy, which has led to rapid breakdown of rock masses along the faults, which in turn leads to earthquakes. There have already been significant earthquakes in Nepal that have left a huge human and material toll.

II. RETROFITING DESIGN – BACKGROUND

The result of an earth shake manisfests incredible pulverization because of unpredicted seismic movement striking broad harm to incalculable structures of changing degree i.e either full or halfway or sligth. This harm to Designs in its turn cause a hopeless loss of the existence with countless setbacks. Subsequently scared tenants might decline to enter the structures except if guaranteed of the security of the structures. from future seismic tremors. It has been seen that greater part of such tremor harmed structures might be securely reused, on the off chance that they are changed over into seismically safe designs by utilizing a couple retrofitting measures. This ends up being a superior choice taking care of the financial contemplations and quick haven issues as opposed to substitutions of structures. Additionally it has frequently been seen that retrofitting of structures is by and large more practical when contrasted with destruction and reproduction even on account of serious underlying harm. Accordingly, seismic retrofitting of building structures is one of the main viewpoint for alleviating seismic risk particularly in quake inclined nations. The need of seismic retrofitting of structures that poor person yet experience extreme tremors.

Retrofitting Strategies

Various method used for retrofitting of reinforced concrete buildings are:

- **1. Structural level (or Global) Retrofit Methods:** Two approaches are used for structure-level Retrofitting.
 - Conventional method: This methods of retrofitting are used to enhance the seismic resistance of existing structure by elimination or reducing the adverse effect of design. It includes
 Adding Shear walls
 Adding Infill walls
 Adding steel bracings
 - Non-Conventional Methods: This methods of retrofitting are used to reduce the horizontal seismic forces. It includes Seismic base isolation supplemental damping device

2. Member Level (or Local) Retrofit Methods

Approaches Used for member level retrofit methods are:

- Jacketing/confinements
- Jacketing of columns
- Reinforced concrete jacketing
- Steel jacketing
- FRP jacketing
- Beam jacketing
- Beam-column jacketing
- **3.** Adopted Retrofiting Strategy Reinforced Concrete Jacketing: Reinforced concrete jacketing can be used as a strengthening or repair method. Prior to its jacketing, damaged areas of the existing members should be rectified. In order to achieve a strong columnweak beam design, jacketing columns serves two main purposes: (i) increasing the shear capacity of the columns; and (ii) enhancing the column's flexural strength through the use of longitudinal steel of the jacket that is continuous through the slab system and anchored to the foundation. It is accomplished by inserting fresh concrete into the joints between the beam and column and passing new longitudinal reinforcement through holes drilled in the slab.

4. Details for Reinforced Concrete Jacketing

Properties of Jackets:

- Match with the concrete of the existing structure
- Compressive strength greater than that of existing structure by 5 N/mm^2 (50 Kg/cm^2), or at least equal to that of the existing structure.

5. Minimum width of Jacket:

- 10 cm for concrete cast in place and 4 cm for shotcrete
- If possible, four-sided jacket should be used
- Narrow gap should be provided to prevent any possible increase in flexular capacity

6. Minimum area of longitudinal reinforcement:

- Spacing should not exceed six times of width of the new elements (the jacket in the case) up to limit of 60 cm.
- Percentage of steel in the jacket with respect to jacket area should be limited between 0.015 and 0.04
- At least, a 12 mm bar should be used at every corner for a four-sided jacket.
- **7.** Shear stress in the Interfere: Chipping the concrete cover of the original member and roughening its surface may improve the bond between the old and new concrete.

8. Connector

- Connectors should be anchored in both the concrete such that it may develop at least 80% of the yeilding stress.
- It is better to use reinforced bars anchored with epoxy resigns of grouts .

Spacing of ties:	S=	(Fy*d ²)/(sqrtFck*tj)				
	Fy=	500				
	d=	10				
	Fck=	25				
	tj=	125				
	S=	80				
Provide spacing of ties 10mm dia @ 75 mm c/c.						

1	Building Type	:	Education	onal Building		
2	Type of structure	:	Frame Structure (Rigid joined Frame structure)			
3	No. of Storey	:	4			
4	Concrete Grade	:	M 25			
5	Reinforcement Used	:	Fe 415 For Existing column			
6	Cement Used	:	Fe 500 Retrofit Column			
7	Load Taken	•	Educational Building			
	Class		3	kN/sqm		
	Kitchen, Laundaries & Laboratories		2.5	kN/sqm		
	Toilets & Bathrooms		2	kN/sqm		
	Corridore, Passage & Lobby		4	kN/sqm		
	Finishing Load		1.5	kN/sqm		
-						
8	Design Philosophy - Limit Sta	te Design Confi	rming IS	: 456-2000		
9	Analysis Software Used –	SAP 2000	VER 16			
/		5/11 2000	VER 10			
10	Earthquake Load Consideration =	IS 1893-2002				
11	Retrofitting Guidelines Consideration=	IS 15988- 2013				

DESIGN DATA

Load Combination			
Combination	1	=	(DL+LL)x1.5
Combination	2	=	(DLx1.2 + LLx1.2 + EQ1x1.2)
Combination	3	=	(DLx1.2 + LLx1.2 + EQ2x1.2)
Combination	4	=	(DLx1.2 + LLx1.2 + EQ1x-1.2)
Combination	5	=	(DLx1.2 + LLx1.2 + EQ2x-1.2)
Combination	6	=	(.9 X DL+1.5X EQ1)
Combination	7	=	(.9 X DL-1.5X EQ1)
Combination	8	=	(.9 X DL+1.5X EQ2)
Combination	9	=	(.9 X DL-1.5X EQ2)
Combination	10	=	(1.5 XDL +1.5 X EQ1)
Combination	11	=	(1.5 XDL -1.5 X EQ1)
Combination	12	=	(1.5 XDL +1.5 X EQ2)
Combination	13	=	(1.5 XDL -1.5 X EQ2)

Load Calculation

A. Slab Load

Slab Thickness	0.1	25	2.5
Floor finish			1
		Total	3.5

B. Beam Load

L	В	Density		WEIGHT/M	
0.45	0.25	25		2.81	
0.35	0.25	25		2.19	
			Total	5.00	kN/m

C. Column Load

	L	В	Density	Н	WEIGHT
Column C1	0.3	0.3	25	3	6.75
Rc 500*500	0.5	0.5	25	3	18.75
				Total	25.50 kN/m

D. Wall Load

Description	L	В	Density	Н	Weight	% of wall	Adopt
4" wall	1	0.138	19	2.655	6.96	4.87	5.00
9" wall	1	0.23	19	2.655	11.60	8.12	10.00

III. SEISMIC WEIGHT OF THE BUILDING

As per IS 1893(part I): 2002 Seismic weight of the building = dead load + percentage of imposed load

As per IS 1893(part I): 2002 clause 7.3.1 percentage of imposed load = 25

Joint OutputCase		CaseType	F3
Text	Text	Text	KN
262	COMB15	Combination	150.857
263	COMB15	Combination	173.731
264	COMB15	Combination	151.955
265	COMB15	Combination	152.032
266	COMB15	Combination	152.929
267	COMB15	Combination	152.459
268	COMB15	Combination	162.617
269	COMB15	Combination	132.027
270	COMB15	Combination	423.084
271	COMB15	Combination	503.824
273	COMB15	Combination	370.319
274	COMB15	Combination	370.391
275	COMB15	Combination	428.055
277	COMB15	Combination	370.214
278	COMB15	Combination	376.429
279	COMB15	Combination	346.72
280	COMB15	Combination	372.901
281	COMB15	Combination	449.389
282	COMB15	Combination	372.133
283	COMB15	Combination	371.788
284	COMB15	Combination	429.969
285	COMB15	Combination	371.399
286	COMB15	Combination	376.105
287	COMB15	Combination	347.977
			7509.304

Table 1: Joint Reactions

IV. EARTHQUAKE LOAD CALCULATION

Lateral load distribution										
Type of soil =		medium								
Height of build	ling(H) =	12.000	m							
base dimenstio	n of buildi	ng at the pli	nth level (d)) in X-direc	tion =	20.60	m			
base dimenstion	n of buildi	ng at the pli	nth level (d)) in Y-direc	tion =	6.60	m			
Time Period in	X-directio	n =	0.075H ^{0.75}	5 =	0.484	clause IS	1893:2002;	7.6.1		
Time Period in	Y-directio	n =	0.075H ^{0.75}	5 =	0.484	clause IS	1893:2002;	7.6.1		
Sa/g (X-dir) =		2.500	Check			clause IS	1893:2002;	6.4.5		
Sa/g(Y-dir) =		2.500				clause IS	1893:2002;	6.4.5		
Zone factor (Z)) =	0.360	for Zone	V		clause IS	1893:2002;	Table 2		
Importance fac	tor (I)=	1.500								
Response reduc	ction factor	r (R)=	5	for special	RCC building	clause IS	1893:2002;	Table 7		
Seismic coeffic	cient (Ah)	= (Z/2)*(I/I)	R)*(Sa/g) =		0.135	clause IS	1893:2002	; 6.4.2		
Seismic Weigh	nt (W)=	7509.304								
Base Shear	(vb)=	Ah*W	1013.756							
U=	$(T_{rem}/$	$(T_{use})^{0.5}$								
	0.987									
Hence	e Taking U	=	1							
Final Base	Shear	(fvb)=	vb*U=	1013.756						
								7509.306	1013.756	
Program Generated Base Shear along X direction			1					7509.306	1013.756	
Base shear Vb x = Ah X W = 1013.756 KN			KN							
Program Gener	ated Base	Shear along	Y directior	1						
Base shear Vb	$\mathbf{y} = Ah X$	W =	1013.756	KN						

TABLE: Joint	Reactions		
Joint	OutputCase	CaseType	F3
Text	Text	Text	KN
262	COMB14	Combination	532.936
263	COMB14	Combination	556.27
264	COMB14	Combination	529.728
265	COMB14	Combination	528.937
266	COMB14	Combination	529.466
267	COMB14	Combination	532.053
268	COMB14	Combination	720.727
269	COMB14	Combination	502.435
270	COMB14	Combination	775.607
271	COMB14	Combination	877.348
273	COMB14	Combination	693.883
274	COMB14	Combination	694.938
275	COMB14	Combination	780.461
277	COMB14	Combination	696.961
278	COMB14	Combination	850.406
279	COMB14	Combination	677.006
280	COMB14	Combination	702.167
281	COMB14	Combination	809.119
282	COMB14	Combination	667.406
283	COMB14	Combination	669.071
284	COMB14	Combination	756.248
285	COMB14	Combination	667.698
286	COMB14	Combination	695.685
287	COMB14	Combination	704.81
		Total	16151.37

Table 2: Foundation Load

column 300*300

Futuristic Trends in Chemical, Material Sciences & Nano Technology e-ISBN: 978-93-5747-532-7 IIP Series, Volume 3, Book 23, Part 2, Chapter 2 SEISMIC STRENGTHENING ANALYSIS & DESIGN (RETROFITTING) OF EDUCATIONAL BUILDING AT NEPAL

						Units KN, n, C 💌
Indian IS 456-2000 C	DLUMN SECTION	DESIGN Type:	Ductile F	rame Units:	KN, n, C (Sunnary)	
L=3.000						
Element : 308		B=0.300	D=8.388) dc=6	. 857	2
Station Loc : 3.000		E=22360680.0	fc=2000	00.000 Lt.V	t. Fac.=1.000	
Section ID : C1		fy=415000.000	fys=415	600.000		
Combo ID : COHB11		RLLF=1.000				
Ganna(Concrete): 1.5	80					34 • • •
Ganna(Steel) : 1.19	50					
AXIAL FORCE & BIAXIA	L MOMENT CHECK	FOR Pu, Hu2,	Mu3			
Capacity	Design	Design	Design	Factored	Factored	
Ratio	Pu	Hu2	Mu3	Hu2	Hu3	
0.681	58.117	9.978	39.944	9.978	39.944	
AVIAT FORCE & RIAVIA	L MUMENT FACTO	RS	Tellblah	044242-007	Water -	
	Factor	Lanath	Initial	Hugitional	Hannah	
Nation Reading(M2)	Factur 1 BBB	Length	45,070	nunent	nunenit.	
Hippy Dending(H3)	1.000	3.000	2 000	0.000	1.102	
ntilor bellutily(nz)	1.000	3.000	3.760	8.666	1.102	
SHEAR DESTGN FOR UU2	.003					
	Rebar	Shear	Shear	Shear	Shear	
	Asv/s	Vu	UC	Us	Up	
Major Shear(U2)	3.325E-04	55.924	55.872	29.160	55.924	
Minor Shear(U3)	3.325E-04	80.097	55.872	29.160	88.897	
JOINT SHEAR DESIGN (1	INFORMATIVE ON	LY)				
	Joint Shear	Shear	Shear	Shear	Joint	
	Ratio	VTop	VuTot	Vc	Area	
Major Shear(U2)	0.401	0.000	241.935	683.738	0.090	
Minor Shear(V3)	8.435	0.000	262.495	683.738	0.090	

Beam design bm 250*450

Indian	IS 456-2000 B	EAH SECTION D	ESICH Type	: Ductile Fra	e Units: KH, m, C (Summary)	Star Private a
L-4.588						
Element	: 63	D=8.	450	8=0.258	bF=0.258	
Station	Loc : 4.500	ds=0	. 880	dct-0.025	dcb=0.025	(1510)
Section	10 : 8250+4	58 E=22	368680.0	FC=28008.008	Lt.Vt. Fac.=1.000	
Conto II	D : CONB8	Ey-4	15088.008	Fys-415000.0		
Ganna (C	oncrete): 1.5	88				
Gapma(S	teel) : 1.1	50				
1						
Factore	d Forces and	Honents	100000	1		
	Factored	Factored	Factored	Factored		
	Hu3	Tu	002	Pu		
	-114.483	0.380	71.372	0.785		
Design	Noments, Mu3		and the second			
	Factored	Torsion	Positive	Negative		
	Homent	Ht	Homent	Honent		
	-114.483	0.625	0.002	-115.029		
Longitu	dinal Heinfor	cement for Ho	ment and To	ersion (Mu3, T	0	
1000		Required	+Homent	-Monent	Hininun	
125	20-20-228	Rebar	Rebar	Rebar	* Rebar	
Top	(*2 Axis)	9.164E-84	0.000	9.164E-84	2.910E-84	
Bott	on (-2 Axis)	4.5828-84	8.000	0.000	4.582E-04	
Shear B	einforcement	For Shear and	Tersion /	u2. Tu)		
harbart	Rebar	Shear	Shear	Shear	Shear	
	Asu/s	Ue	Uc	US	Up	
	2.771E-84	98.116	62,434	42.508	68,132	
					555.VX5	

bm 250*350

Futuristic Trends in Chemical, Material Sciences & Nano Technology e-ISBN: 978-93-5747-532-7 IIP Series, Volume 3, Book 23, Part 2, Chapter 2 SEISMIC STRENGTHENING ANALYSIS & DESIGN (RETROFITTING) OF EDUCATIONAL BUILDING AT NEPAL

					Units KN, m, C 💌
Indian IS 456-2000 B	EAH SECTION D	ESIGN Type	: Ductile Fra	ne Units: KN, n, C (Sunnary)	
L=2.800					
Element : 70	D=8.	358	B=0.250	bf=0.250	
Station Loc : 0.000	ds=0	.000	dct=0.025	dcb=0.025	
Section ID : Bean 2	58+358 E=22	368688.8	fc=20000.000) Lt.Wt. Fac.=1.000	
Conho TD : COMB7	fu=4	15888,888	fus=415888.0		
			.,		
Ganna(Concrete): 1.5	88				
Canna(Steel) • 1.1	58				
aunalacces) . 1.1	~				
Eastaned Ferrar and	Hopento				
ractored rortes allo	Fortered	Fastered	Frankrund		
Factoreu	Factoreu	Factored	Factoreu		
103	IU	002	PU		
-//.002	1.351	/0.305	0.513		
Design Moments, Mu3					
Factored	Torsion	Positive	Negative		
Honent	Ht	Honent	Nonent		
-77.682	1.907	0.000	-79.509		
Longitudinal Reinfor	cement for No	ment and To	rsion (Hu3, T	(u)	
	Required	+Honent	-Nonent	Hininun	
	Rebar	Rebar	Rebar	Rebar	
Top (+2 Axis)	8.398E-84	0.000	8.390E-04	2.263E-84	
Botton (-2 Axis)	4.195E-04	0.000	6.354E-85	4.195E-84	
Shear Reinforcement	for Shear and	Torsion (V	u2, Tu)		
Rebar	Shear	Shear	Shear	Shear	
Asv/s	Ve	Vc	Vs	Up	
5.873E-84	101.805	58,951	59.499	69,863	
5.0/JL-04	101.800	50.951	59.479	07.803	

Futuristic Trends in Chemical, Material Sciences & Nano Technology e-ISBN: 978-93-5747-532-7 IIP Series, Volume 3, Book 23, Part 2, Chapter 2 SEISMIC STRENGTHENING ANALYSIS & DESIGN (RETROFITTING) OF EDUCATIONAL BUILDING AT NEPAL

	TABLE: Joint	Reactions						
Joint	OutputCase	CaseType	F3	Design Load	Bearing Load	Area required	Area Provided	Remarks
Text	Text	Text	KN	KN	KN/m^2	m^2	m^2	
262	COMB14	Combination	532.936	390.82	100	3.91	1.21	micropiling Required
263	COMB14	Combination	556.27	407.93	100	4.08	1.21	micropiling Required
264	COMB14	Combination	529.728	388.47	100	3.88	1.21	micropiling Required
265	COMB14	Combination	528.937	387.89	100	3.88	1.21	micropiling Required
266	COMB14	Combination	529.466	388.28	100	3.88	1.21	micropiling Required
267	COMB14	Combination	532.053	390.17	100	3.90	1.21	micropiling Required
268	COMB14	Combination	720.727	528.53	100	5.29	1.21	micropiling Required
269	COMB14	Combination	502.435	368.45	100	3.68	1.21	micropiling Required
270	COMB14	Combination	775.607	568.78	100	5.69	1.69	micropiling Required
271	COMB14	Combination	877.348	643.39	100	6.43	1.69	micropiling Required
273	COMB14	Combination	693.883	508.85	100	5.09	1.69	micropiling Required
274	COMB14	Combination	694.938	509.62	100	5.10	1.69	micropiling Required
275	COMB14	Combination	780.461	572.34	100	5.72	1.69	micropiling Required
277	COMB14	Combination	696.961	511.10	100	5.11	1.96	micropiling Required
278	COMB14	Combination	850.406	623.63	100	6.24	1.69	micropiling Required
279	COMB14	Combination	677.006	496.47	100	4.96	1.69	micropiling Required
280	COMB14	Combination	702.167	514.92	100	5.15	1.69	micropiling Required
281	COMB14	Combination	809.119	593.35	100	5.93	1.69	micropiling Required
282	COMB14	Combination	667.406	489.43	100	4.89	1.69	micropiling Required
283	COMB14	Combination	669.071	490.65	100	4.91	1.69	micropiling Required
284	COMB14	Combination	756.248	554.58	100	5.55	1.69	micropiling Required
285	COMB14	Combination	667.698	489.65	100	4.90	1.69	micropiling Required
286	COMB14	Combination	695.685	510.17	100	5.10	1.96	micropiling Required
287	COMB14	Combination	704.81	516.86	100	5.17	1.69	micropiling Required

Table 3: Joint Reactions

Table 3: Top Storey Deflection

TABLE: Joint Displacements Joint	OutputCase	СаѕеТуре	U1	Allowable deflection
Text	Text	Text	mm	mm
204	EQX	LinStatic	15.10	48

Table 4: Time Period

TABLE: Modal Periods			
And Frequencies			
OutputCase	StepType	StepNum	Period
Text	Text	Unitless	Sec
MODAL	Mode	1	0.466
MODAL	Mode	2	0.446
MODAL	Mode	3	0.405
MODAL	Mode	4	0.158
MODAL	Mode	5	0.156
MODAL	Mode	6	0.139
MODAL	Mode	7	0.085
MODAL	Mode	8	0.084
MODAL	Mode	9	0.076
MODAL	Mode	10	0.061
MODAL	Mode	11	0.057
MODAL	Mode	12	0.055

Table 5: Drift

According to IS 1893:2002 Clause 7.11.1

TABLE: Joint Displacements				Inter Storey Drift	Height	Drift Limitation	Check
Joint	OutputCase	CaseType	U1			0.004 x H	0.004
							x H >
Text	Text	Text	mm	mm	H (m)	mm	ID
287	EQx	LinStatic	0.00	0	0	0	PASS
35	EQx	LinStatic	2.56	2.56	3	12	PASS
63	EQx	LinStatic	6.96	4.41	3	12	PASS
87	EQx	LinStatic	11.09	4.12	3	12	PASS
215	EQx	LinStatic	15.10	4.01	3	12	PASS

Table 6: Joint Displacements

TABLE: Joint				Inter	Height	Drift	Check
Displacements				Storey Drift		Limitation	
Joint	OutputCase	CaseType	U2			0.004 x H	0.004 x
							H >
Text	Text	Text	mm	mm	H (m)	mm	ID
287	EQy	LinStatic	0.00	0.00	3	12	PASS
35	EQy	LinStatic	2.40	2.40	3	12	PASS
63	EQy	LinStatic	6.35	3.95	3	12	PASS
87	EQy	LinStatic	10.07	3.72	3	12	PASS
215	EQy	LinStatic	13.86	3.79	3	12	PASS

3d model in SAP

Two Way Slab Design

Shorter S	Scan (Lx) =	6.18	m	1	Le	ad det	ail			low	er	upp	м	exc	act
Longer S	Span (Ly) =	5.18	m	1	dead Load=	3.75	kn / m2		now.	Ly/Lx=	1	Ly/Lx=	1.1	Ly/Lx=	
Now,	Ly/Lx=	1	ok		live load=	3	kn / m2		coff.	30	¢	ax	20100	ax	ay
				1 //	other¤	1	kn / m2		edge	0.0	47	0.05	3	0.047	0.047
Type of Pan	el (case No.) =	4		1 /1		7.75			mid	0.0	35	0.0	4	0.035	0.035
Suggested Sp	an / depth (L/d)	23		1	Load	I Calcula	ition						÷		
1	hen, depth (d) =	225.276	mm		Wxe	11.625	kn / m2		moment	about)	axis .	about X	axis	-	
				1/	Shear force	(Vx) =	20.0777202	kn	Edge	-14.668	17901	-14.6681	17901		
depth T	aken (d)=	130	mm	1/		(Vy)=	15.0582902	kn	mid	10.923	11203	10.9231	1203		(
	(D)=	150	mm	VΓ	Venfication of depth	d min=	72.9010124	mm	fy=	415	n/mm2				
		_			check "dadop!	>dmin"	OKEY		fck=	20	n/mm2				

Reinforcement Design a) Along X-Direction

End Rein	forceme	ent		Mid Reinf	orcemen	t		
Adopt d =	dopt d = 130 mm			Adopt d =	130	mm		
Vo Deflection contri	1	20010		finding area	of steel (Ast)	according	to deflection conti	rol criteria
needed at end porti	on Hence,			moment (M)=	10.923112	kn-m		
mo	ment (M)=	14.6682	kn-m	Ast =	242:074534	mm2		
A	st =	329,881	mm2	Reg. Ast =	242.074534	mm2		
Reg. A	st =	329.881	mm2	actual L/d =	39.8565165			
and the second second second	1 1	2 - 16		Provided L/d=	23	* modificat	ion factor	
provide the steel as	=			Hence needed M.F.*	1,73289202	0.020.000	110.0000.000	
10	mm dia	150	mm cic distance					
then provided s	steel =	523.599	Okou	provide the steel as	10	mm dia	150 mm	c/c distance
% of tension steel=		0.40277	Ukey	then provided steel =	523.598776	Okey	% of tension st	eel= 0.40277
	10000 VT			fs=	111.282423		Ok and F	inichad
				Rental and Marshan for	A COLORADO AND A		OK anu r	inistieu

b) Along Y-Direction

End Reinforcem	ent		Mid Reinf	orcemen	t			
Adopt d = 121	Adopt d = 121 mm		Adopt d =	121	mm			
lo Deflection contri			finding area	of steel (Ast)	according	to deflection	control crit	teria
eeded at end portion Hence.			moment (M)=	10.923112	km-m			
moment (M)=	-14.6682	kn-m	Ast =	261.782994	mm2			
Ast =	-318.373	mm2	Reg. Ast =	261.782994	mm2			
Reg. Ast =	-318.373	mm2	actual L/d =	42.8210508				
		C 10 10 10 10 10 10 10 10 10 10 10 10 10	Provided L/d=	23	* modifical	tion factor		
rovide the steel as =			Hence needed M.F.=	1.86178482				
10 mm dia	150	mm o/c distance	in the second second	S		26.05		
then provided steel =	523.599	Okou	provide the steel as	10	mm dia	150	mm c/c d	listance
% of tension steel=	0.43273	Uney	then provided steel =	523 598776	Okey	% of tens	ion steel=	0 43273
		M	fs=	120.342464	11-10 gr	Oka	nd Einie	had
			honce modification for	stor =	2	UK a	iu rims	sneu

V. CONCLUSION

The design and detailing of the mentioned building has been conducted using SAP consideration of the earthquake load in strengthening of the building and durability of the structure which is safe against the seismic effect.

REFERENCE

- Raza, S.; Khan, M.K.I.; Menegon, S.J.; Tsang, H.-H.; Wilson, J.L. Strengthening and Repair of Reinforced Concrete Columns by Jacketing: State-of-the-ArtReview. Sustain. 2019, Vol. 11, Page 3208 2019, 11, 3208, doi:10.3390/SU11113208.
- [2] M. Emara, M. Rizk, H. Mohamed, M. Zaghlal, Enhancement of circular RC columns using steel mesh as internal or external confinement under the influence ofaxial compression loading, Frat. Ed. Integrita Strutt. 15 (2021) 86–104.
- [3] A. Doğangün, Performance of reinforced concrete buildings during the May 1, 2003 bingol " earthquake in Turkey, Eng. Struct. 26 (2004) 841–856.
- [4] S.S.E. Lam, B. Wu, Y.L. Wong, Z.Y. Wang, Z.Q. Liu, C.S. Li, Drift capacity of rectangular reinforced concrete columns with low lateral confinement and high-axialload, J. Struct. Eng. 129 (2003) 733–742.
- [5] Z.W. Shan, D.T.W. Looi, R.K.L. Su, A novel seismic strengthening method of rc columns confined by direct fastening steel plates, Eng. Struct. 218 (2020),110838.
- [6] K.G. Vandoros, S.E. Dritsos, Concrete jacket construction detail effectiveness when strengthening RC columns, Constr. Build. Mater. 22 (2008) 264–276.
- [7] S.-Y. Chang, T.-W. Chen, N.-C. Tran, W.-I. Liao, Seismic retroftting of RC columns with RC jackets and wing walls with different structural details, Earthq. Eng. Eng. Vib. 2014 132 13 (2014) 279–292.
- [8] M. Deng, Y. Zhang, Cyclic loading tests of RC columns strengthened with high ductile fiber reinforced concrete jacket, Constr. Build. Mater. 153 (2017) 986–995.
- [9] Y. Zhang, M. Deng, T. Li, Z. Dong, Strengthening of flexure-dominate RC Columns with ECC jackets: experiment and analysis, Eng. Struct. 231 (2021), 111809.
- [10] K.M. Mahmoud, E.A. Sallam, H.M.H. Ibrahim, Behavior of partially strengthened reinforced concrete columns from two or three sides of the perimeter, Case Stud. Constr. Mater. 17 (2022), e01180