RADIAL RADIO NUMBER AND SOME OTHER LABELING PARAMETERS

Abstract

Let G(V, E) be a simple, connected, and undirected graph. A radial radio labeling ψ of G is an assignment of positive integers to the vertices, such that for any two distinct vertices w, $z \in V$, the inequality $d(w, z) + |\psi|$ (w)- ψ (z)| \geq 1 + r holds, where d(w, z) represents the distance between vertices w and z, and r is the radius of the graph G. The span of a radial radio labeling ψ is defined as the highest integer value in the range of ψ and is denoted as span ψ . In this paper, we establish the relationships among the radial radio number, the radio number, and the L(2,1)-labeling number. Furthermore, we construct specific graphs where the radio number equals the algebraic sum of the radial radio number and a given nonnegative integer. Similarly, we provide a proof of the existence of graphs for which the L(2,1)labeling number is the algebraic sum of the radial radio number and a given nonnegative integer.

Keywords: radial radio number, radio number, L(2,1) – labeling number.

Authors

S. Vimalajenifer

Department of Mathematics Ayya Nadar Janaki Ammal College (Autonomous, Affiliated to Madurai Kamaraj University, Madurai) Sivakasi, India. vimalajenima430@gmail.com

Selvam Avadayappan

Research Department of Mathematics VHN Senthikumara Nadar College (Autonomous) Virudhunagar, India. selvam_avadayappan@yahoo.co.in

M. Bhuvaneshwari

Research Department of Mathematics VHN Senthikumara Nadar College (Autonomous) Virudhunagar, India. bhuvaneshwari@vhnsnc.edu.in

I. INTRODUCTION

In this paper, we only consider a simple, connected, finite and undirected graph. The radius of G is denoted by r or rad(G) and the diameter of G is denoted by d or diam(G). For further details, one can refer [3].

Graph labeling is an assignment of nonnegative integers, sometimes called colors, to the vertices or edges or both. Motivated by the Frequency Assignment Problem[7], numerous mathematicians introduced various graph labeling concepts. Some of them are discussed in this paper, namely, L(2,1) – labeling[6], radio labeling[4] and radial radio labeling[8].

The concept of L(2,1)-labeling was introduced by Griggs and Yeh[6]. It is defined as a function $\varphi: V \rightarrow \{1, 2, 3, ...\}$ that adheres to the following conditions for any two distinct vertices w and z in graph G:

i. $|\varphi(w) - \varphi(z)| \ge 2$ if d(w, z) = 1

ii. $|\varphi(w) - \varphi(z)| \ge 1$ if d(w, z) equals 2.

An L(2,1)-labeling with the additional constraint that no label exceeds the value of k is called as the **k-L(2,1) labeling**. The **L(2,1)-labeling number** of G is denoted by $\lambda(G)$ and represents the smallest integer value k for which G possesses a k-L(2,1) labeling.

The notion of radio labeling was originally introduced by Chartrand et al[4]. A function $\xi: V \rightarrow N$ is considered a **radio labeling** if it adheres to the condition:

$$d(w, z) + |\xi(w) - \xi(z)| \ge 1 + d \tag{1}$$

for any distinct vertices w and z in graph G. This condition is referred to as the radio condition. The span of a radio labeling is the largest integer in the range of ξ and is denoted as span(ξ). The **radio number**, denoted as rn(G), is defined as the minimum span taken over all possible radio labelings of G.

Motivated by the frequency assignment problem[7] and the concept of radio labeling[4], KM. Kathiresan and S. Vimalajenifer introduced a novel graph labeling known as radial radio labeling. A **radial radio labeling**, ψ , is an assignment of positive integers to all vertices in such a way that it satisfies the condition:

$$d(w, z) + |\psi(w) - \psi(z)| \ge 1 + r$$
(2)

for any distinct vertices w and z in G. The span of a radial radio labeling, ψ , is the largest integer in the range of ψ and is denoted as span ψ . The **radial radio number**, rr(G), is defined as the minimum span taken over all possible radial radio labelings of G. Mathematically, this can be expressed as: $rr(G) = \min_{\psi} span \psi$.

Below are listed a few fundamental outcomes that aid in the subsequent advancement of this paper:

Theorem A: $rn(K_n) = n, n \ge 1.[4]$ **Theorem B:** $\lambda(K_n) = 2n - 1, n \ge 1.[6]$ **Theorem C:** For any self – centered graph G, $rr(G) \ge |V(G)|.[1]$ **Theorem D:** If rad(G) = diam(G), then rr(G) = rn(G).[1] **Theorem E:** For any simple connected graph G, $rr(G) \ge \omega(G)$, where $\omega(G)$ is the clique number.[1] **Theorem F:** For any simple connected graph G, $rn(G) \ge \Delta(d - 1) + 2$ and $rr(G) \ge \Delta(r - 1) + 2$, where Δ is the maximum degree in G.[1]

This paper focuses on establishing the correlations among the radial radio number, radio number, and the L(2,1) – labeling number. Moreover, we substantiate the existence of graphs where the radio number is the algebraic sum of its radial radio number and any non-negative integer. Furthermore, we construct graphs wherein the L(2,1) – labeling number is the algebraic sum of its radial radio number and any non-negative integer.

II. RELATIONS CONNECTING RADIAL RADIO NUMBER, RADIO NUMBER AND L (2,1) – LABELING NUMBER

Throughout this section, we solely contemplate simple connected graphs, denoted as G. The first two theorems provide the relationship between rr(G) and $\lambda(G)$. Also, assume that w and z are two distinct vertices of graph G.

Theorem 2.1: If radius of G is 1, then $rr(G) < \lambda(G)$.

Proof: Assume that r = 1 and ψ is one of the radial radio labelings of G such that $span \psi = rr(G)$. Then by definition, ψ satisfies:

$$d(w,z) + |\psi(w) - \psi(z)| \ge 1 + r = 2 \tag{3}$$

Inequality (3) implies that,

- i. if d(w, z) = 1, then $|\psi(w) \psi(z)| \ge 1$
- ii. if d(w, z) = 2, then $|\psi(w) \psi(z)| \ge 0$

From i) and ii), we observe that ψ does not satisfy the L(2,1) – labeling condition so that the set {1,2,3 ..., rr(G)} of positive integers is not sufficient to label the vertices of G under L(2,1) – labeling condition. This forces that, $rr(G) < \lambda(G)$.

Theorem 2.2: If $r \ge 3$, then $rr(G) > \lambda(G)$.

Proof: Let ψ be a radial radio labeling of G such that $span \psi = rr(G)$. By (**) ψ satisfies $|\psi(w) - \psi(z)| \ge 4 - d(w, z)$. If w and z are adjacent, then $|\psi(w) - \psi(z)| \ge 3$ and if w and z are non adjacent, then $|\psi(w) - \psi(z)| \ge 2$. This implies that, $rr(G) = \min_{\psi} \max\{\psi(w): w \in V\} > \lambda(G)$.

Theorem 2.3: If diameter of G is 1, then $rn(G) < \lambda(G)$ **.**

Proof: If d=1, then G must be isomorphic to the complete graph K_n . By Theorems A and B, we obtain that, $rn(G) < \lambda(G)$.

From this theorem, we deduce that:

Corollary 2.4: If diameter of G is 1, then $rr(G) = rn(G) < \lambda(G)$.

Proof: If d=1, then G is self – centered with radius 1 and so rr(G) = rn(G)[D]. By Theorem 2.1, we get $rr(G) = rn(G) < \lambda(G)$.

Theorem 2.5: If $d \ge 2$, then $rn(G) \ge \lambda(G)$.

Proof: Assume that, φ and ξ are L(2,1) and radio labeling of G, respectively, such that $\max\{\varphi(w): w \in V\} = \lambda(G)$ and $\operatorname{span}(\xi) = \operatorname{rn}(G)$. Let $w, z \in V$. Then ξ satisfies the radio condition

 $d(w, z) + |\xi(w) - \xi(z)| \ge 1 + d$

Case 1: when d=2

i. if d(w, z) = 1, then (4) becomes $|\xi(w) - \xi(z)| \ge 2$ and

ii. if d(w, z) = 2, then (4) becomes $|\xi(w) - \xi(z)| \ge 1$

Here the statements in i) and ii) are as same as the L(2,1) – labeling conditions and hence $\varphi = \xi$. Thus, in this case, $rn(G) = \lambda(G)$.

Case 2: when d>2

iii. If d(w, z) = 1, then (4) becomes $|\xi(w) - \xi(z)| > 2$ and iv. if d(w, z) = 2, then (4) becomes $|\xi(w) - \xi(z)| > 1$

In this case also, ξ satisfies the L(2,1) – labeling conditions. But the strict inequalities in iii) and iv) forces that, max{ $\xi(w): w \in V$ } > max{ $\varphi(w): w \in V$ }. Thus $rn(G) > \lambda(G)$. This completes the proof.

Corollary 2.6: If G is self – centered with $d \ge 2$, then $rr(G) = rn(G) \ge \lambda(G)$. Overall, from this section, we can assert that:

Theorem 2.7: For any simple connected graph G,

i. if r = 1 and d = 1, then $rr(G) = rn(G) < \lambda(G)$.

ii. if r = 1 and d = 2, then $rr(G) < rn(G) = \lambda(G)$.

iii. if G is self – centered with d = 2, then $rr(G) = rn(G) = \lambda(G)$.

iv. if G is not self – centered and $r \ge 3$, then $\lambda(G) < rr(G) < rn(G)$.

III. RADIO NUMBER AND RADIAL RADIO NUMBER

Within this section, we demonstrate the existence of graphs in which the radio number equals the algebraic sum of the radial radio number and a specified nonnegative integer.

(4)

Theorem 3.1: There is a graph satisfying the condition that rn(G) = rr(G) + n, where n=0.

Proof: Let us take $G = K_m$, $m \ge 2$. Since r = d = 1, rn(G) = rr(G).

Theorem 3.2: There is no graph *G* exists, for which rn(G) = rr(G) + 1.

Proof: Since for each self – centered graph G, rr(G) = rn(G).[1] Assume that, G is not self – centered. That is, d > r, which implies that, $d \ge r + 1$. As per Theorem F, we have $rn(G) \ge \Delta(d-1) + 2$ and so

 $rn(G) \ge \Delta r + 2$

Also, by Theorem F, we have

$$rr(G) \geq \Delta(r-1) + 2$$

(5) - (6) implies that, $rn(G) - rr(G) \ge \Delta$, and so $rn(G) \ge rr(G) + \Delta \ge rr(G) + 2$, since G is connected. Thus, there exists no graph such that, rn(G) = rr(G) + 1.

Theorem 3.3: There exists a graph G, for which rn(G) = rr(G) + n, where $n \ge 2$.

Proof: Assume that G is constructed by using two copies of K_n , $n \ge 2$. Let $V = \{x\} \cup \{w_s, z_t; 1 \le s, t \le n-1\}$ and let $E = \{xw_s, xz_t; 1 \le s, t \le n-1\} \cup \{w_sw_j; 1 \le s \ne j \le n-1\} \cup \{z_tz_j; 1 \le t \ne j \le n-1\}$.

Then r = 1 and d = 2. We now find the radial radio number for G.

Define $\psi: V \to \mathbb{N}$ such that $\psi(x) = 1; \psi(w_s) = \psi(z_s) = s + 1$, where $1 \le s \le n - 1$. We have to prove that, for every pair of vertices w and z of G, ψ satisfies,

$$d(w,z) + |\psi(w) - \psi(z)| \ge 2.$$

Case 1a: Consider the pair $(x, z_t), 1 \le t \le n - 1$.

Here, $d(x, z_t) = 1$, for all $t, 1 \le t \le n - 1$. Since $d(x, z_t) + |\psi(x) - \psi(z_t)| \ge 1 + t \ge 2$, the pair $(x, z_t), 1 \le t \le n - 1$ satisfies (7). In a similar manner, we can show that the pair (x, w_t) also satisfies (7), for all $t, 1 \le t \le n - 1$.

Case 2a: Consider the pair $(w_s, w_t), 1 \le s \ne t \le n - 1$.

Since $d(w_s, w_t) = 1$ and $d(w_s, w_t) + |\psi(w_s) - \psi(w_t)| \ge 2$, the pair (w_s, w_t) satisfies (7) for all $s, t, 1 \le s \ne t \le n - 1$. Similarly, we can prove that the pair (z_s, z_t) satisfies (3) for all $s, t, 1 \le s \ne t \le n - 1$.

(5)

(6)

(7)

Case 3a: Consider the pair $(w_s, z_t), 1 \le s, t \le n - 1$.

In this case, $d(w_s, z_t) = 2$. We have, $d(w_s, z_t) + |\psi(w_s) - \psi(z_t)| \ge 2$. Thus pair $(w_s, z_t), 1 \le s, t \le n - 1$ also satisfies (7).

From the three cases, we can say that, ψ is a radial radio labeling of G and span $\psi = \max_i \{i + 1; 1 \le i \le n - 1\} = n$, which implies that $rr(G) \le n$. Also, $\omega(G) = n$, by Theorem E, $rr(G) \ge n$. Thus rr(G) = n.

Next, we determine the radio number for G. Define $\xi: V \to \mathbb{N}$ such that $\xi(x) = 1$; $\xi(z_t) = 2t + 2$, $1 \le t \le n - 1$; $\xi(w_s) = 2s + 1$, $1 \le s \le n - 1$. We have to prove that, for every pair of vertices w and z of G, ξ satisfies,

 $d(w, z) + |\xi(w) - \xi(z)| \ge 3.$

Case 1b: Consider the pair $(x, z_t), 1 \le t \le n - 1$.

Since $d(x, z_t) = 1$, for all i, $d(x, z_t) + |\xi(x) - \xi(z_t)| = 1 + |1 - (2t + 2)| \ge 3$, and hence the pair (x, z_t) , satisfies (8), for all $t, 1 \le t \le n - 1$. Proceeding like this, we can show that the pair (x, w_s) , satisfies (8), for all $s, 1 \le s \le n - 1$.

Case 2b: Consider the pair (w_s, w_t) , $1 \le s \ne t \le n - 1$.

Here $d(w_s, w_t) = 1$. Also, $d(w_s, w_t) + |\xi(w_s) - \xi(w_t)| = |1 - (2s + 1 - (2t - 1))| \ge 3$, the pair (w_s, w_t) satisfies (4) for all $s, t, 1 \le s \ne t \le n - 1$. Similarly, we can prove that the pair (z_s, z_t) satisfies (8) for all $s, t, 1 \le s \ne t \le n - 1$.

Case 3b: Consider the pair $(z_s, w_t), 1 \le s, t \le n - 1$.

We have, $d(z_s, w_t) = 2$ and $d(z_s, w_t) + |\xi(z_s) - \xi(w_t)| \ge 3$ and so $(z_s, w_t), 1 \le s, t \le n-1$ satisfies (8).

From cases 1b, 2b, 3b, we arrive at a conclusion that, ξ is a radio labeling for *G*. Also, we have $span(\xi) = 2n$, which forces that, $rn(G) \le 2n$. Since $\Delta(G) = 2n - 1$, by Theorem E, $rn(G) \ge (2n - 1)(2 - 1) + 2 = 2n$. Thus rn(G) = 2n. Finally, for this graph rn(G) = 2n and rr(G) = n, which implies that, rn(G) = rr(G) + n. For m=5 the graph G is illustrated in Figure 1. The corresponding radio labeling and radial radio labeling are illustrated in Figure 2 and Figure 3, respectively.

Figure 1

(8)

Futuristic Trends in Contemporary Mathematics e-ISBN: 978-93-6252-646-5 IIP Series, Volume 3, Book 3, Part 9, Chapter 4 RADIAL RADIO NUMBER AND SOME OTHER LABELING PARAMETERS

From Theorems 3.1, 3.2 and 3.3, we note that:

Theorem 3.4: For any given non negative integer n, there is a graph G such that rn(G) = rr(G) + n, where n = 0, $n \ge 2$ and there is no graph G such that rn(G) = rr(G) + 1.

IV. L(2,1) – LABELING NUMBER AND RADIAL RADIO NUMBER

In this section, we show the existence of graphs for which the L(2,1) – labeling number is the algebraic sum of the radial radio number and any given non negative integer.

Theorem 4.1: For $0 \le n \le 2$, there exists graph G such that $\lambda(G) = rr(G) + n$.

Proof

Case 1: n=0 Take $G = K_{m,m}$, where $m \ge 2$. We have $\lambda(K_{m,m}) = rr(K_{m,m}) = 2m + 1$. In this case, $K_{m,m}$ is the required graph.

Case 2: n=1 Consider G as K_2 . We know that, $\lambda(K_2) = 3$ and $rr(K_2) = 2$.

Case 3: n=2 In this case, $K_{1,2}$ is the desired graph, since $\lambda(K_{1,2}) = 4$ and $rr(K_{1,2}) = 2$.

Theorem 4.2: For $n \ge 3$, there exists graph G such that $\lambda(G) = rr(G) + n$.

Proof: Let $V = \{z_1, z_2, z_3, z_4\} \cup \{w_1, w_2, ..., w_{n-1}\}$ and $E = \{z_s z_t : 1 \le s \ne t \le 4\} \cup \{z_1 w_s : 1 \le s \le n-1\}$. Then r=1 and d=2.

Define $\varphi: V \to \{1,2,3,...\}$ such that $\varphi(z_s) = 2s - 1$, $1 \le s \le 4$; $\varphi(w_1) = 4$; $\varphi(w_2) = 6$; $\varphi(w_3) = 8$; $\varphi(w_s) = 5 + s$, $4 \le s \le n - 1$. We now show that, φ is an L(2,1) – labeling of G.

- i. for the pair (z_s, z_t) , $1 \le s \ne t \le 4$, $|\varphi(z_s) \varphi(z_t)| \ge 2$
- ii. for the pair (z_1, w_s) , $1 \le s \le n 1$, $|\varphi(z_1) \varphi(w_s)| > 2$
- iii. for the pair (w_s, w_t) , $1 \le s \ne t \le n 1$, $|\varphi(w_s) \varphi(w_t)| > 2$
- iv. for the pair (z_s, w_t) , $2 \le s \le 4$, $1 \le t \le n 1$, $|\varphi(z_s) \varphi(w_t)| \ge 1$

Form this discussion, if two vertices of G are adjacent, then the label difference between them is atleast 2 and if two vertices in G are non adjacent, then the label difference between them is atleast 1 and so φ is an L(2,1) – labeling. Also, $\lambda(G) \leq \max_{z \in V} \varphi(z) = n +$ 4. We know that, $\lambda(G) \geq \Delta + 2$. Since $\Delta = n + 2$, $\lambda(G) \geq n + 4$. Thus, we conclude that, $\lambda(G) = n + 4$.

We now, determine the radial radio number of G. Define $\psi: V \to \mathbb{N}$ such that $\psi(z_s) = s, 1 \le s \le 4$ and $\psi(w_t) = 2, 1 \le t \le n - 1$. Here, we note the following:

 $\begin{aligned} |\psi(z_s) - \psi(z_t)| &\geq 1, \ 1 \leq s \neq t \leq 4; \\ |\psi(z_s) - \psi(w_t)| &\geq 0, \ 2 \leq s \leq 4 \ \text{and} \ 1 \leq t \leq n-1; \\ |\psi(w_s) - \psi(w_t)| &\geq 0, \ 1 \leq s \neq t \leq n-1; \\ |\psi(z_1) - \psi(w_t)| &\geq 1, \ 1 \leq t \leq n-1. \end{aligned}$

This implies that, every pair of vertices of G satisfies (**) and hence ψ is a radial radio labeling of G and $span \psi = 4$ and hence $rr(G) \le 4$. Since $\omega = 4$, by Theorem E, $rr(G) \ge 4$. This gives that, rr(G) = 4. Hence G is the required graph.

For m=7, the constructed graph is drawn in Figure 4. The corresponding L(2,1) – labeling and radial radio labeling are shown in Figure 5 and Figure 6, respectively.

Figure 4

V. CONCLUSION

In this paper, we compared three labeling parameters, which are based on the distance between two vertices of a graph G. Also, we prove the existence of graphs whose radio number and L(2, 1) – labeling number as the algebraic sum of radial radio number and any given non negative integer. In a similar manner, we may compare other graph labeling parameters.

REFERENCES

- [1] Selvam Avadayappan, M. Bhuvaneshwari, S. Vimalajenifer, *Radial Radio Number of a graph*, Global Journal of Pure and Applied mathematics, 2017, vol 13., no. 5, pp 347-357, 2017.
- [2] Selvam Avadayappan, M. Bhuvaneshwari, S. Vimalajenifer, *The Radial Radio Number and the Clique Number of a Graph*, International Journal of Engineering and Advanced Technology, ISSN: 2249 8958, vol. 9, Issue IS4, 1002 1006, December 2019.
- [3] R. Balakrishnan and K. Ranganathan, <u>A Text Book of Graph Theory</u>, Springer-Verlag, New York, Inc 1999.
- [4] G. Chartrand, D. Erwin, F. Harary and P. Zhang, *Radio labeling of Graphs*, Bulletin of the Institute of Combinatorics and its Applications, vol. 33, pp. 77-85, 2001.
- [5] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 2021.
- [6] J. R. Griggs, R. K. Yeh. "Labelling Graphs with a condition at Distance 2", SIAM J. Disc. Math, vol. 5, no. 4, 586 595, November 1992.
- [7] W. K. Hale, *Frequence Assignment: Theory and Applications*, proceeding of the IEEE, vol. 68, no.12, pp 1497-1514,1980.
- [8] KM. Kathiresan and S. Vimalajenifer, Radial Radio Number of graphs(preprint).
- [9] A. Rosa, *On certain valuations of the vertices of a graph*, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Brach, N. Y. and Dunod Paris, 349-355, 1967.