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I. INTRODUCTION 

 
L.A. Zadeh [9]was the first to explain fuzzy sets and fuzzy set operations. Fuzzy topological 

spaces were first introduced and developed by Chang [4]. The earliest publication of the 

"Intuitionistic fuzzy set" notion was made by Atanassov [1].Fuzzy sets and neurothosophic 

sets, an expansion of intuitionistic fuzzy sets, were first described by Smarandache[6]. 

Neutosophic set theory addresses the problem of uncertainty. As an extension of intuitionistic 

fuzzy sets, fuzzy sets, and the classical set, Wang [7] proposed single-valued neutrosphic 

sets.Four membership functions make up Chatterjee’s quadripartitioned single valued 

neutrosophic sets: truth, contradiction, unknown, and falsity. Deli et al.’s [5] development of 

intuitionistic fuzzy multisets and fuzzy multisets was the introduction of neurosophic refined 

sets.This paper is arranged in the following manner:Section 2 consists of basic 

concepts.Section 3 consists of quadripartitioned single valued neutrosophic refined contra 

generalized pre continuous mapping and its characterizations.  

 

II. PRELIMINARIES 

  

Definition 2.1 [2] A QSVNRS 𝜚  on 𝛬  can be defined by 𝜚 

={〈𝜅,𝑇𝜚
𝐽(𝜅), 𝐷𝜚

𝐽(𝜅), 𝑌𝜚
𝐽(𝜅), 𝐹𝜚

𝐽(𝜅)〉:𝜅 ∈ 𝛬} 

 

where𝑇𝜚
𝐽(𝜅), 𝐷𝜚

𝐽(𝜅), 𝑌𝜚
𝐽(𝜅), 𝐹𝜚

𝐽(𝜅):Λ →[0,1] such that 0≤ 𝑇𝜚
𝐽
+𝐷𝜚

𝐽
+𝑌𝜚

𝐽
+𝐹𝜚

𝐽 ≤4 (J=1,2,...P) and 

for every 𝜅 ∈ Λ . 𝑇𝜚
𝐽(𝜅), 𝐷𝜚

𝐽(𝜅), 𝑌𝜚
𝐽(𝜅)and𝐹𝜚

𝐽(𝜅)  are the truth membership sequence,a 

contradiction membership sequence,an unknown membership sequence and falsity 

membership sequence of the element x respectively. P is also referred to as the QSVNRS(𝜚) 

dimension.  

  

Definition 2.2 [2] Let 𝜚, 𝜁 ∈ QSVNRS(𝛬) havimg the form  

𝜚 ={〈𝜅,𝑇𝜚
𝐽(𝜅), 𝐷𝜚

𝐽(𝜅), 𝑌𝜚
𝐽(𝜅), 𝐹𝜚

𝐽(𝜅)〉:𝜅 ∈ Λ} (J=1,2,...P) 

𝜁 ={〈𝜅,𝑇𝜁
𝐽(𝜅), 𝐷𝜁

𝐽(𝜅), 𝑌𝜁
𝐽(𝜅), 𝐹𝜁

𝐽(𝜅)〉:𝜅 ∈ Λ} (J=1,2,...P).Then 

1. 𝜚  ⊆̃  𝜁  if 𝑇𝜚
𝐽(𝜅)  ≤  𝑇𝜁

𝐽(𝜅), 𝐷𝜚
𝐽(𝜅)  ≤  𝐷𝜁

𝐽(𝜅) , 𝑌𝜚
𝐽(𝜅) ≤  𝑌𝜁

𝐽(𝜅)  and 𝐹𝜚
𝐽(𝜅) ≤  𝐹𝜁

𝐽(𝜅) 

J=1,2,...P) 

2. 𝜚𝑐̃ ={〈𝜅,𝐹𝜚
𝐽(𝜅), 𝑌𝜚

𝐽(𝜅), 𝐷𝜚
𝐽(𝜅), 𝑇𝜚

𝐽(𝜅)〉:𝜅 ∈ Λ} (J=1,2,...P) 

3.𝜚 ∪̃ 𝜁 = 𝜔1 and is defined by 

𝑇𝜔1
𝐽 (𝜅)=max{𝑇𝜚

𝐽(𝜅) ,𝑇𝜁
𝐽(𝜅)}, 𝐷𝜔1

𝐽 (𝜅)=max{𝐷𝜚
𝐽(𝜅) ,𝐷𝜁

𝐽(𝜅) }, 𝑌𝜔1
𝐽 (𝜅)=min{𝑌𝜚

𝐽(𝜅) ,𝑌𝜁
𝐽(𝜅) }, 

𝐹𝜔1
𝐽 (𝜅)=min{𝐹𝜚

𝐽(𝜅),𝐹𝜁
𝐽(𝜅)}  for all 𝜅 ∈ Λ  and  J=1,2...P. 

4. 𝜚 ∩̃ 𝜁 = 𝜔1 and is defined by 

𝑇𝜔1
𝐽 (𝜅)=min{𝑇𝜚

𝐽(𝜅) ,𝑇𝜁
𝐽(𝜅) }, 𝐷𝜔1

𝐽 (𝜅)=min{𝐷𝜚
𝐽(𝜅) ,𝐷𝜁

𝐽(𝜅) }, 𝑌𝜔1
𝐽 (𝜅)=max{𝑌𝜚

𝐽(𝜅) ,𝑌𝜁
𝐽(𝜅) }, 

𝐹𝜔1
𝐽 (𝜅)=max{𝐹𝜚

𝐽(𝜅),𝐹𝜁
𝐽(𝜅)}  for all 𝜅 ∈ Λ  and  J=1,2...P.  
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Definition 2.3 [2] A QSVNRTS on 𝛬∗  in a family 𝔗 of QSVNRS in 𝛬∗  which satisfy the 

following axioms. 

 

1. Φ̃𝑄𝑁𝑅 , �̃�𝑄𝑁𝑅 ∈ 𝔗. 

2. 𝐻1 ∩̃ 𝐻2 ∈ 𝔗 for any 𝐻1, 𝐻2 ∈ 𝔗. 

3. ∪̃ 𝐻𝑖 ∈ 𝔗 for every{ 𝐻𝑖 : i ∈ I}⊆̃ 𝔗. 

 

Here the pair ( Λ
∗

,𝔗 ) is called a QSVNRTS and any QSVNRS in 𝔗  is said to be 

quadripartitioned single valued neutrosophic refined open set (QNROS) in Λ
∗

. The 

complement of 𝜚𝑐̃  of a QNROS 𝜚  in a QSVNRTS (Λ
∗
,𝔗) is known as quadripartitioned 

single valued neutrosophic refined closed set (QNRCS) in Λ
∗
.  

  

Definition 2.4 [2] Let (𝛬∗,𝔗) be a QSVNRTS and 𝜚 ={〈𝜅,𝑇𝜚
𝐽(𝜅), 𝐷𝜚

𝐽(𝜅), 𝑌𝜚
𝐽(𝜅), 𝐹𝜚

𝐽(𝜅)〉:𝜅 ∈

𝛬∗ } for J=1,2,...P be QSVNRS in X.Then quadripartitioned single valued neutrosophic 

refined closure (QNR( 𝔠𝔩(𝜚) ) and quadripartitioned single valued neutrosophic refined 

interior (QNR𝔦𝔫𝔱(𝜚)) are defined by 

 

 QNR𝔠𝔩(𝜚) = ∩̃{K:K is a QNRCS in 𝕏 and 𝜚 ⊆̃ K} 

 QNR𝔦𝔫𝔱(𝜚)= ∪̃{L:L is a QNROS in 𝕏 and L ⊆̃ 𝜚}  

  

Definition 2.5 [2] Let (𝛬∗,𝔗) be a QSVNRTS is known as 

 

1.Quadripartitioned single valued neutrosophic refined semi closed set(QNRSCS) if 

QNRint(QNRcl(𝜚)) ⊆̃ 𝜚. 

2.Quadripartitioned single valued neutrosophic refined pre-closed set(QNRPCS) if 

QNRcl(QNRint(𝜚)) ⊆̃ 𝜚. 

3.Quadripartitioned single valued neutrosophic refined 𝛼 -closed set(QNR 𝛼 CS) if 

QNRcl(QNRint(QNRcl(𝜚))) ⊆̃ 𝜚. 

4.Quadripartitioned single valued neutrosophic refined regular closed (QNRRCS) if 𝜚  = 

QNRcl(QNRint(𝜚)). 

5.Quadripartitioned single valued neutrosophic refined semi-pre closed set(QNRSPCS) if 

QNRint(QNRcl(QNRint(𝜚))) ⊆̃ 𝜚.  

  

Definition 2.6 [2] Let (𝛬∗,𝔗) be a QSVNRTS is known as 

 

1.generalized closed set (QNRGCS) if QNRcl(𝜚) ⊆̃ L whenever 𝜚 ⊆̃ L and L is a QNROS in 

Λ
∗
. 

2.generalized pre closed set (QNRGPCS) if QNRPcl(𝜚) ⊆̃ L whenever 𝜚 ⊆̃ L and L is a 

QNROS in Λ
∗
. 
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3.generalized semi closed set (QNRGSCS) if QNRScl(𝜚) ⊆̃ L whenever 𝜚 ⊆̃ L and L is a 

QNROS in Λ
∗
. 

4.generalized 𝛼  closed set (QNRG𝛼CS) if QNR𝛼cl(𝜚) ⊆̃ L whenever 𝜚  ⊆̃ L and L is a 

QNROS in Λ
∗
. 

5.generalized semi-pre closed set (QNRGSPCS) if QNRSPcl(𝜚) ⊆̃ L whenever 𝜚 ⊆̃ L and L 

is a QNROS in Λ
∗
.  

  

Definition 2.7 [3] Let (𝜔∗,𝛬) and (𝜅∗,𝛤) be any two QSVNRTS. A map 𝛿:(𝜔∗,𝛬) → (𝜅∗,𝛤) is 

known as,  

 

 Quadripartitioned single valued neutrosophic refined continuous (QNR conti) if 𝛿−1(𝜉𝑄1) 

∈ QNRCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined semi-continuous (QNRS conti) if 

𝛿−1(𝜉𝑄1) ∈ QNRSCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined pre-continuous (QNRP conti) if 

𝛿−1(𝜉𝑄1) ∈ QNRPCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined semi pre-continuous (QNRSP conti) 

if 𝛿−1(𝜉𝑄1) ∈ QNRSPCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined 𝛼 -continuous (QNR𝛼 -conti) if 

𝛿−1(𝜉𝑄1) ∈ QNR𝛼CS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined regular continuous (QNRR conti) if 

𝛿−1(𝜉𝑄1) ∈ QNRRCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined generalized continuous (QNRG 

conti) if 𝛿−1(𝜉𝑄1) ∈ QNRGCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined generalized semi continuous 

(QNRGS conti) if 𝛿−1(𝜉𝑄1) ∈ QNRGSCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined generalized semi pre-continuous 

(QNRGSP conti) if 𝛿−1(𝜉𝑄1) ∈ QNRGSPCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  

 Quadripartitioned single valued neutrosophic refined 𝛼 generalized-continuous (QNR𝛼G 

conti) if 𝛿−1(𝜉𝑄1) ∈ QNR𝛼GCS(𝜔∗) for all QNRCS 𝜉𝑄1 of (𝜅∗,Γ).  
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III. QUADRIPARTITIONED SINGLE VALUED NEUTROSOPHIC REFINED 

CONTRA GENERALIZED PRE CONTINUOUS MAPPINGS 

  

Definition 3.1 A map δ  : (A, τ ) →  (B, κ ) is known as Quadripartitioned single valued 

neutrosophic refined contra generalized continuous(QNRCGP-conti)mapping if δ
−1

(ζ) is a 

QNRGPCS in (A,τ) for every QNROS ζ in (B,κ).  

  

Example 3.2 Let A = {e,f} and B = {w,x}  

𝑈1={〈e,{0.4,0.6,0.7,0.8},{0.5,0.6,0.8,0.3},{0.5,0.7,0.3,0.4}〉, 

〈f,{0.6,0.7,0.4,0.5},{0.7,0.8,0.5,0.6}, {0.8,0.6,0.5,0.7}〉} 

𝑈2={〈w,{0.6,0.8,0.2,0.3},{0.7,0.8,0.3,0.5},{0.6,0.5,0.4,0.3}〉, 

〈x,{0.8,0.7,0.4,0.6},{0.6,0.5,0.4,0.3}, {0.7,0.6,0.3,0.5}〉} 

 

Then 𝜏 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈1} and 𝜅 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈2} are QSVNRTS on A and B.Define a 

mapping 𝛿 : (A,𝜏) → (B,𝜅) by 𝛿(e) = w and 𝛿(f) = x.Then 𝛿 is QNRCGP-conti.mapping.  

  

Theorem 3.3 Every QNRC-conti.mapping is a QNRCGP-conti.mapping but not conversely.  

  

Proof. Let 𝛿 : (A,𝜏) → (B,𝜅) be a QNRC-conti.mapping.Let 𝜁 be a QNROS in B.Then 𝛿−1(𝜁) 

is a QNRCS in A.Since every QNRCS is a QNRGPCS,𝛿−1(𝜁) is a QNRGPCS in A.Hence 𝛿 

is a QNRCGP-conti.mapping.  

  

Example 3.4 Let A = {e,f} and B = {w,x}  

 

𝑈1={〈e,{0.4,0.3,0.6,0.5},{0.6,0.5,0.8,0.7},{0.5,0.3,0.6,0.8}〉,  

     〈f,{0.5,0.4,0.7,0.6},{0.3,0.4,0.7,0.5}, {0.6,0.4,0.8,0.7}〉}  

𝑈2={〈w,{0.5,0.6,0.3,0.4},{0.4,0.3,0.5,0.6},{0.6,0.5,0.5,0.7}〉,  

     〈x,{0.4,0.3,0.6,0.5},{0.8,0.7,0.6,0.4}, {0.5,0.6,0.7,0.6}〉}  

 

Then 𝜏 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈1} and 𝜅 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈2} are QSVNRTS on A and B.Define a 

mapping 𝛿 : (A,𝜏) → (B,𝜅) by 𝛿(e) = w and 𝛿(f) = x.Then 𝛿 is QNRCGP-conti.mapping but 

not QNRC-conti.mapping.  

  

Theorem 3.5 Every QNRC𝛼-conti.mapping is a QNRCGP-conti.mapping but not conversely.  

  

Proof. Let 𝛿  : (A,𝜏) → (B,𝜅) be a QNRC𝛼-conti.mapping.Let 𝜁  be a QNROS in B.Then 

𝛿−1(𝜁) is a QNR𝛼CS in A.Since every QNR𝛼CS is a QNRGPCS,𝛿−1(𝜁) is a QNRGPCS in 

A.Hence 𝛿 is a QNRCGP-conti.mapping.  

 

Example 3.6 Let A = {e,f} and B = {w,x}  

 

𝑈1={〈e,{0.3,0.4,0.7,0.6},{0.4,0.5,0.7,0.8},{0.4,0.5,0.6,0.7}〉, 
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〈f,{0.4,0.5,0.8,0.7},{0.3,0.4,0.6,0.8}, {0.6,0.5,0.7,0.8}〉} 

𝑈2={〈w,{0.5,0.6,0.6,0.5},{0.5,0.7,0.6,0.7},{0.5,0.6,0.6,0.5}〉, 

〈x,{0.6,0.7,0.7,0.6},{0.4,0.5,0.6,0.7}, {0.7,0.5,0.6,0.7}〉} 

 

Then 𝜏 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈1} and 𝜅 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈2} are QSVNRTS on A and B.Define a 

mapping 𝛿 : (A,𝜏) → (B,𝜅) by 𝛿(e) = w and 𝛿(f) = x.Then 𝛿 is QNRCGP-conti.mapping but 

not QNRC𝛼-conti.mapping.  

  

Theorem 3.7 Every QNRCP-conti.mapping is a QNRCGP-conti.mapping but not conversely.  

  

Proof. Let 𝛿  : (A,𝜏) → (B,𝜅) be a QNRCP-conti.mapping.Let 𝜁  be a QNROS in B.Then 

𝛿−1(𝜁) is a QNRPCS in A.Since every QNRPCS is a QNRGPCS,𝛿−1(𝜁) is a QNRGPCS in 

A.Hence 𝛿 is a QNRCGP-conti.mapping.  

  

Example 3.8 Let A = {e,f} and B = {w,x}  

 

𝑈1={〈e,{0.6,0.5,0.8,0.7},{0.4,0.3,0.5,0.6},{0.5,0.4,0.5,0.7}〉,  

     〈f,{0.4,0.3,0.5,0.8},{0.5,0.6,0.8,0.9}, {0.4,0.5,0.8,0.7}〉}  

𝑈2={〈w,{0.7,0.8,0.7,0.6},{0.6,0.5,0.3,0.4},{0.6,0.4,0.4,0.6}〉,  

     〈x,{0.7,0.5,0.3,0.6},{0.6,0.7,0.7,0.8}, {0.7,0.6,0.5,0.6}〉}  

 

Then 𝜏 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈1} and 𝜅 = {0𝑄𝑁𝑅,1𝑄𝑁𝑅, 𝑈2} are QSVNRTS on A and B.Define a 

mapping 𝛿 : (A,𝜏) → (B,𝜅) by 𝛿(e) = w and 𝛿(f) = x.Then 𝛿 is QNRCGP-conti.mapping but 

not QNRCP-conti.mapping.  

  

Theorem 3.9 Let 𝛿  : (A, 𝜏 ) →  (B,𝜅 ) be a mapping.Then the following conditions are 

equivalent. 

 

1. 𝛿 is a QNRCGP-conti.mapping. 

2. 𝛿−1(𝜁) is a QNRGPOS in A for every QNRCS in B.  

  

Proof:  

 

i) ⇒ 2):Let 𝜁  be a QNRCS in B.Then 𝜁𝑐̃  is a QNROS in B.By statement,𝛿−1 (𝜁𝑐̃ ) is a 

QNRGPCS in A.Hence 𝛿−1(𝜁) is a QNRGPOS in A. 

 

ii) ⇒ 1):Let 𝜁  be a QNROS in B.Then 𝜁𝑐̃  is a QNRCS in B.By statement,𝛿−1 (𝜁𝑐̃ ) is a 

QNRGPOS in A.Hence 𝛿−1 ( 𝜁 ) is a QNRGPCS in A.Thus 𝛿  is a QNRCGP-

conti.mapping.  

  

Theorem 3.10 Let 𝛿  : (A, 𝜏 ) →  (B, 𝜅 ) is a QNRCGP-conti.mapping if 

𝛿−1(QNRPcl(𝜁))⊆̃QNRint(𝛿−1(𝜁)) for every 𝜁 in B.  



Recent Trends in Fuzzy Set Theory and its Applications 

e-ISBN: 978-93-6252-914-5 

IIP Series 

QUADRIPARTITIONED SINGLE VALUED NEUTROSOPHIC  

REFINED CONTRA GENERALIZED PRE CONTINUOUS MAPPINGS 

 

Copyright @ 2024 Authors                                                                                                                                 151 

Proof: Let 𝜁 be a QNRCS in B.Then QNRcl(𝜁) = 𝜁.Since every QNRCS is a QNRPCS,this 

implies QNRPcl(𝜁 ) = 𝜁 .By hypothesis,𝛿−1 (𝜁 ) = 𝛿−1 (QNRPcl(𝜁 )) ⊆̃  QNRint(𝛿−1 (𝜁 )) ⊆̃ 

𝛿−1(𝜁).This implies 𝛿−1(𝜁) is a QNROS in A.Therefore 𝛿 is a QNRC-conti.mapping,since 

every QNRC-conti.mapping is a QNRCGP-conti.mapping,𝛿 is a QNRCGP-conti.mapping.  

  

Theorem 3.11 A QNR-conti.mapping 𝛿  : (A,𝜏 ) →  (B,𝜅 ) is a QNRCGP-conti.mapping if 

QNRGPO(A) = QNRGPC(A).  

  

Proof: Let 𝜁 be a QNROS in Y.By hypothesis 𝛿−1(𝜁) is a QNROS in A and hence is a 

QNRGPOS in A.since QNRGPO(A) = QNRGPC(A),𝛿−1(𝜁) is a QNRGPCS in A.Therefore 

𝛿 is a QNRCGP-conti.mapping.  

  

IV. CONCLUSION 

 
In this paper,we introduced uadripartitioned single valued neutrosophic refined contra 

generalized pre-continuous mappings and some of this characterizations.  
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