
Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 207

DEEP LEARNING FOR AUTOMATIC RECOGNITION

OF BOATS AND SHIPS TO AVOID COLLISIONS IN

MARINE TRANSPORT

Abstract

The objective of this work is to explore the

use of deep learning for the automatic

recognition of ships and boats. The study

uses a deep convolution neural network

(DCNN) architecture to analyze a large data

set of ship and boat images. The data set is

prepared and labelled for supervised learning,

and CNN is fine-tuned using the YOLO

series group of versions 5, 6 and 8 to improve

recognition accuracy. The proposed method

involves training a deep convolution neural

network on a large data set of ship and boat

images and using the trained model to

classify new images. The performance of the

model is evaluated on a separate test set and

compared to other state-of-the-art methods.

The results of this study show that the deep

learning model is effective in automatically

recognizing ships and boats with an accuracy

of mAP (Mean Average Precision). The

model’s performance is also compared to

traditional machine learning algorithms, and

CNN outperforms these methods. In this

work we present the architecture, design and

implementation of an object detection model

deployed on an IMX8M Plus hardware

board, to be used on the gathered image data

model to recognize and label the ships and

boats at the edge. We conduct transfer

learning on the state-of-the-art trained YOLO

model by introducing a labelled BS(boat-

ship) image data set. We use the trained

model to do predictions on a test image set to

evaluate the model’s performance. The result

of the model can predict labels with an

accuracy of 72.1 mAP of YOLOv8 and

inference FPS time that detect it to do so in

real-time with the board. Results show that

the proposed deep learning approach

outperforms existing methods, achieving

high accuracy, and demonstrating the

Authors

Abhishek Barandooru Janavejirao

Master’s in Data Science

Department of Physics

Polytechnic Science School

University of Naples Federico II,

Italy

Longo Giuseppe

Professor & Head of Data Science

Department of Physics

Polytechnic Science School

University of Naples Federico II,

Italy

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 208

potential of deep learning for the automatic

recognition of boats and ships in marine

environment system.

Keywords: Computer Vision, Deep

Learning, Image Processing, Boats and

Ships, Detection, Classification

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 209

I. INTRODUCTION

The ability of computers to perceive and analyze visual input from their surroundings

is referred to as computer vision. Computer vision can be useful in navigation, object

recognition, and situational awareness in the setting of marine vehicles. Here are some of the

most important aspects of computer vision in maritime vehicles:

Navigation: Computer vision techniques can be used to assist marine vehicles in

navigating the sea. Cameras and other sensors, for example, can be used to detect and track

things like buoys, landmarks, and other vessels, allowing the vehicle to remain on course and

prevent collisions. Object Detection: A computer vision technique can be used to detect and

classify items in and out of the water, such as marine vehicles, marine life, debris, and other

objects. hazards. This may help the vehicle in avoiding crashes and navigating through the

water safely. Situational Awareness: Computer vision can provide real-time information about

its surroundings, assisting the vehicle in understanding and responding to changing

conditions. Cameras and sensors, for example, can be utilized to detect vehicles, weather

conditions, sea state, and other environmental aspects that may affect vehicle performance

[1].

Autonomous Operations: Computer vision can be applied to enable autonomous

operations of marine vehicles such as unmanned surface vessels and underwater items. These

cars can operate with minimum human interaction by employing cameras and sensors to

navigate and sense the environment. Overall, computer vision in object recognition has the

potential to dramatically improve the capabilities of maritime vehicles, boosting their safety,

efficiency, and effectiveness in a wide range of applications. Boats and ships play important

roles in a variety of activities such as transportation, trading, fishing, and military operations.

The capacity to recognize boats and ships automatically from photos and videos can be

beneficial in a variety of applications, including safety and security, maritime surveillance,

search and rescue operations, and oceanography. However, manually recognizing boats and

ships takes time and might be mistake prone. As a result, automatic boat and ship recognition

has become a hot study topic in recent years. Deep learning, a branch of machine learning,

has produced encouraging results in a variety of computer vision applications, including

picture categorization. Deep convolutional neural networks (DCNNs) have been found to be

effective at object recognition from photos. We investigate the use of deep learning

approaches for automatic recognition of boats and ships from photographs in this work. We

present a deep learning technique for classifying and detecting new photos that involves

training a CNN object recognition algorithm on a large dataset of ship and boat photographs

and then utilizing the learned model to classify and detect new images. The remainder of this

work is structured as follows: Section 2explains the suggested deep learning strategy for

recognizing boats and ships. Section 3 presents experimental results and compares the

suggested method to existing cutting-edge methods. Finally, in Section last, we wrap up the

paper and outline future directions in this field [12].

Boat and ship recognition is an essential field of study and development for marine

vehicles since it can help with navigation, collision avoidance, and other duties. The most

advanced object recognition technology for boats and ships employs computer vision

techniques and machine learning algorithms to detect and classify items on or near the water.

Deep learning for autonomous object detection of boats and ships at the cutting edge involves

the use of convolutional neural networks (CNNs) and other advanced machine learning

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 210

methods to recognize and classify items on or near the water. These techniques are highly

effective in recognizing different types of boats and ships in images and video. One key

development in this field is the use of deep learning algorithms, such as convolutional neural

networks (CNNs), to recognize objects in images or videos. These approaches are quite good

in identifying various types of boats and ships in photos and video. The use of deep learning

techniques, such as convolutional neural networks (CNNs), to recognize objects in photos or

videos is a significant advancement in this subject. These algorithms were trained on a huge

set of photos of boats and ships, as well as other objects on the sea, such as buoys, markers,

and other vessels. CNNs can learn to recognize different types of boats and ships with a high

degree of accuracy by analyzing the features and patterns in these photos. Another important

innovation is the use of transfer learning, which involves changing pre-trained deep learning

models to recognize boats and ships. Developers and researchers can obtain high accuracy

with fewer training examples by finetuning these algorithms on new datasets of marine

photos[2].

 The use of sensors and cameras for object detection in aquatic environments is a novel

discovery. These sensors and cameras are capable of detecting things on or near the water,

even in low-light settings, and can offer crucial data to navigation and collision avoidance

systems. Deep learning for autonomous object detection of boats and ships, in general, entails

training CNN to recognize various types of boats and ships based on patterns and features in

photos and video. These strategies have the potential to drastically enhance the safety and

efficiency of marine vehicles with future research and development. Methods for object

detection developed by researchers over the last 20 years improved in accuracy and many

other qualities from year to year [3].

1. Motivation: In today’s world, there is more improvement in the automobile industry in

all the transport ways of “Air, Road and Sea” ways. Now it is evolving from manual to

automation techniques. And due to faster advanced technological developments and

safety purposes reasons. This project is related to seaways marine environment for the

recognition of ships and boats objects. Object recognition is to maintain the safety order

to avoid a collision. Detect objects for betterment in safety concerns to save the people

and boats in a marine environment. This project contributes to the field of the marine and

automobile industry. Potential increases in theoretical, practical implementation, policies,

and safety. The outcome of the project algorithm is to detect objects in the real world

using a camera. Detection using algorithms gives importance to marine transport to

maintain safe, and security and to avoid collisions. The above figure is the prototype

design of ship and boat detection in real-world time in a marine environment.

II. SYSTEM DESIGN& METHODOLOGY

2. Network Architecture: Object detection models are classified into two types: two-stage

object detectors and single-stage object detectors. A single-stage detector is a computer

vision object identification system that can find things in photos or videos by evaluating a

single, complete image in one shot. Convolutional neural networks (CNNs) are capable of

learning sophisticated feature representations from images and are used in the most

common single-stage detectors[4]. Deep CNNs are commonly used in these detectors,

and they are trained on a large dataset of annotated photos to learn the visual properties of

objects. A single-stage detector works by dividing the image into a number of rectangular

sections called anchors or priors that are centered at different points and have different

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 211

sizes and aspect ratios. CNN is then applied to each of these anchors to predict whether or

not it contains an object and, if so, what class and location the object belongs to [5] [13].

The YOLO (You Only Look Once) detector is a popular single-stage detector.

YOLO is quick and accurate, detecting objects in real time on a single GPU. SSD (Single

Shot Multibox Detector) is another common single-stage detector that takes a similar

method but has a different network architecture. To create dense predictions, single-stage

object detector architectures (such as YOLO) are made up of three components: a

backbone, Neck, and Head. Because they only require a single forward pass of the

network, single-stage detectors are quick and efficient. They are, however, less precise

than two-stage detectors, which generate a set of region proposals before identifying

objects within those regions. A single-stage detector's architecture typically consists of

three major components: the backbone network, the feature pyramid network (FPN), and

the detection head. A high-level overview of each component follows:

Figure 2.1: Single Stage Detector

 Backbone network: Because of their effectiveness in extracting information from

input images, convolutional neural networks (CNNs) are widely used as the backbone

network. Large-scale picture classification datasets, such as ImageNet, are commonly

used to pretrain the backbone network, allowing it to learn a set of general properties

that may be used to recognize objects. Backbone networks used in single-stage

detectors include Res-Net, Mobile-Net, and Efficient-Net.

 Feature pyramid network (FPN):The multi-scale FPN architecture generates a set

of feature maps with varying resolutions. By integrating low-level characteristics with

high-level semantic data, the FPN generates a set of feature maps from the input

image that capture objects of varied sizes and scales. The FPN was used to build a list

of possible locations for object detection.

 Detection head: Every object in the image that the detecting head recognized was

assigned a bounding box suggestion and a related class likelihood. The detection head

is frequently composed of convolutional and fully connected layers that use anchor

boxes to anticipate item bounding boxes. Furthermore, the detection head predicts the

class probabilities for each bounding box proposal, indicating the possibility that the

proposal contains an object from a certain class. Single-stage detectors employ the

output of the detecting head to generate a set of final predictions for each object in the

image. Using non-maximum suppression, the final predictions are frequently post-

processed to minimize duplicate detections and low-confidence detections. SSD and

YOLO are two well-known single-stage detectors.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 212

3. YOLOv5: YOLOv5 there are different model size in each yolo series depending on

parameters and neural network designed: In our project we choose YOLOv5s which is

small having 14MB size with high inference compared to others and it required less

computational power. YOLOv5 models are composed of the same 3 components: CSP-

Darknet53 as a backbone, SPP and PANet in the model neck and the head used in

YOLOv4.

 Backbone: The backbone is a trained network that extracts rich feature

representations from images. This aids in lowering the image's spatial resolution while

improving its feature (channel) resolution. The core of YOLOv5 is CSP-Darknet53.

CSPDarknet53 is the Darknet53 convolution network to which the authors used the

Cross Stage Partial (CSP) network technology in its most basic form. This network

was the foundation for YOLOv3. The CSPNet (Cross Stage Partial Network)

backbone architecture is employed in YOLOv5.The CSPNet backbone in YOLOv5 is

designed to improve object detection accuracy while maintaining the fast inference

time of previous YOLO versions. The convolutional layers that make up the backbone

are divided into several levels. Each stage has a cross-stage partial connect that allows

communication between network levels. Other optimization strategies, such as the

usage of SPP (Spatial Pyramid Pooling) and PAN (Path Aggregation Network)

modules to improve network feature representation, are also incorporated in the

CSPNet backbone [7].

 These modules let the network gain multi-scale properties, which are necessary for

detecting objects of varying sizes. Other advancements to the YOLOv5 backbone

include the use of Group Normalization (GN) and the Mish activation function. The

popular Batch Normalization (BN) layer is replaced with the Group Normalization

strategy, which is intended to provide more stable training in small batch sizes. The

novel activation function Mish has been shown to improve the functionality of neural

networks. Overall, the CSPNet backbone in YOLOv5 is a major advance over prior

YOLO backbones. It improves accuracy while keeping inference speed constant.

 Neck: The feature pyramids are extracted using the model neck. This helps with the

model's generalization to objects of various sizes and scales. In the context of the

YOLOv5 object detection architecture, the "neck" refers to the collection of

intermediary layers located between the backbone network and the detection head.

The neck's job is to aggregate and refine the feature maps provided by the backbone

network to build more accurate object detection representations. The SPP (Spatial

Pyramid Pooling) module and the PAN (Path Aggregation Network) module make up

the neck in YOLOv5. The SPP module collects features at many scales using multi-

scale pooling approaches, allowing the model to recognize objects of varying sizes.

To generate a multi-scale representation, the SPP module performs pooling operations

at many scales and then concatenates the resulting feature maps.

The PAN module, which consists of a sequence of intermediary convolutional layers,

performs feature fusion and spatial aggregation. The module employs top-down and

bottom-up paths to transmit features from higher resolution layers to lower resolution

layers and from lower resolution layers to higher resolution layers, respectively. As a

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 213

result, the model may generate feature maps that comprise both high-level and low-

level information. The neck in YOLOv5 plays an important role in providing high-

quality feature maps for object detection by fusing and augmenting the

representations provided by the backbone network.

 Head: The last stage activities are carried out by the model head. It uses anchor boxes

on feature maps to generate the final output, which includes classes, objectness

scores, and bounding boxes. In the YOLOv5 object detection architecture, the "head"

is the set of output layers that deliver the final object detection findings. The feature

maps formed by the neck are processed by the head to provide bounding boxes and

relevant class probabilities for things recognized in the input image. Convolutional

layers are head constituents in YOLOv5, which reduce the spatial dimensions of

feature maps while increasing the representation's depth. Following that is a set of

detection layers, each of which forecasts the class probabilities and bounding box

coordinates for each object found in the image. Anchor boxes, which are pre-defined

boxes with different sizes and aspect ratios, are used by the detection layers in

YOLOv5 to anticipate bounding boxes. The model generates the final bounding box

coordinates for each detected item using offsets from these anchor boxes. The

detection layers estimate the class probability of each bounding box, which reflects

the possibility that it contains an object of a given class. Utilizing a single-stage object

identification algorithm, the head of YOLOv5 predicts the bounding boxes and class

probabilities without utilizing an intermediary proposal generating phase. The

architecture was chosen for its high level of efficiency and appropriateness for real-

time object detection applications.

4. YOLOv6

 Backbone: The YOLOv6 model makes advantage of the CSP (Cross Stage Partial

Connections) backbone network. It combines a deep neural network (DNN) and a

convolutional neural network (CNN) to improve object identification accuracy while

minimizing computation time. The CSP backbone's aim is to extract features from the

input image and process those features through numerous stages, each of which

focuses on a different component of the image. The backbone of the YOLOv6 model

is made up of several stages and is built on CSP (Cross Stage Partial connections).

Each stage contains numerous levels. YOLOv6's backbone can have a range of levels

depending on the implementation. The backbone of the YOLOv6 model is expected to

include roughly 70 layers in total [8].

 Neck: The YOLOv6 model employs an SPP-neck (Spatial Pyramid Pooling), which is

located halfway between the model's head and backbone. The model's head can

recognize objects by merging data from various levels of the backbone network using

the fixed-size feature map provided by the SPP-neck. To modify the features to the

appropriate output size, the SPP-neck layers convolutional, pooling, and up sampling

operations. The SPP-neck of the YOLOv6 model is expected to have roughly 20

layers, though this can vary depending on the individual implementation.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 214

 Head: The head of the YOLOv6 model makes the final prediction of object classes

and bounding boxes from the feature maps provided by the SPP-neck. After several

layers of convolutional, batch normalizations, and activation layers, a final output

layer that yields the predictions is usually obtained. The final output layer is

frequently a fully connected layer that generates a set of bounding box regression

offsets and score mAP’s, one for each object class. Although the exact number of

layers in the YOLOv6 model's head may vary depending on the individual

implementation, it is predicted to be around 20 layers.

 YOLOv8: In our work we used YOLOv8s and unity for all YOLOv5 and YOLOv6

and now we followed the same pattern for v8 also. In YOLOv8 architecture is

modified and updated version of YOLOv5. There is lot of improvements in v8 to

increase the performance and inference in YOLOv8. The architecture as follows in

Appendix section in detailed ways.

 Backbone: In the Backbone component of YOLOv8, the Cross Stage Partial (CSP)

concept is employed to partition the feature map into two pieces. Part 1 employs

convolution processes, while Part 2 concatenates the results of Part 1's convolution

operations. CSP design improves Convolutional Neural Network (CNN) learning

capabilities while decreasing computing carry on the network model. YOLOv8

employs the C2f module, as opposed to the C3 module employed by YOLOv5. While

the C2f module is made up of two ConvModules and one Bottleneck connected by

Split and Concat, the C3 module is made up of three ConvModules and one

bottleneck. It keeps the algorithm model light while allowing YOLOv8 to collect

additional gradient flow information. Furthermore, the YOLOv8 technique reduces

the number of blocks in each step from 3,6,9,3 in YOLOv5 to 3,6,6,3 to drastically

reduce the model's computing overhead. The SPPF module used in YOLOv5 is

succeeded by YOLOv8 in Stage 4. An SPPF replaces the SPP to boost the model's

inference speed [9].

 Neck: Deeper networks, in general, produce more detailed feature information and

better object prediction outputs. Nonetheless, deeper networks diminish the

information about the position of things. To reduce information loss for microscopic

objects, multi-scale feature fusion using FPN and PAN architectures is necessary. The

Neck section of the architecture uses multi-scale feature fusion of images, in which

the top features gain more information from more network layers while the lower

features lose less locational information from fewer convolution layers. The FPN

structure is used by YOLOv5 to up-sample the bottom feature map from top to bottom

in order to increase the amount of feature information contained, and the PAN

structure is used to down-sample the top feature map from bottom to top in order to

increase the amount of position information contained. These two feature outputs are

finally blended to ensure trustworthy prediction for photos of varying sizes. YOLOv8

reduces convolution procedures during the up-sampling stage while maintaining FPN

and PAN structures.

 Head: In contrast to YOLOv5, which uses the linked head, YOLOv8 employs the

decoupled head, which separates the classification and detection heads. YOLOv8

retains only the classification and regression branches, removing the objectness

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 215

branch. Anchor Base first creates many anchors in the image before calculating the

four offsets of the regression item with respect to the anchors to correct the accurate

object location. Anchor-Free replaces Anchor-Base in YOLOv8, which locates the

object by its center and then estimates the distance from the center to the bounding

box.

5. Data Label: Data annotation can be done manually by each image using programming,

or automatically using programmer like makesense.ai, Roboflow, LabelMe, and others.

Human annotation is typically thought to be more accurate, but it can be time-consuming

and expensive. Automated annotation can be faster and less expensive, but it may be less

accurate, especially for more complicated activities. I labelled the images using

makesense.ai, a free online platform application for identifying images. In our approach,

the YOLO label format is used for each image. The YOLO labelling format data is saved

in a normalized.txt file.

Bounding box is represented in 4 values along with the class name. YOLO format is:

[class name, X-center, Y-center, width, height]

 X-center and Y-center are the normalized coordinates of the bounding box's center. To

normalize coordinates, we take the pixel values 'X' and 'Y' of the image that mark the

center of the bounding box on the X and Y axes. Then we divide the value of X by the

image's width and the value of Y by the image's height. It represents the bounding box's

width and height.

Xcenter = Xmin + Width/21

Ycenter = Ymin + Height/22

To find co-ordinates of bounding box center is by using the equation 1 and 2.

 In YOLO, bounding boxes can have one of four values (x-center, y-center, width, and

height). The x- and y-centers of the bounding box serve as its centers in this case. To

normalize the coordinates, we must first find the pixel values for both x and y, which

indicate the middle of the bounding box on the x and y axes. The x and y values are then

divided by the width and height of the image, respectively. The width and height of the

bounding box are represented by the variable's width and height. They have also become

normalized.

Mathematical steps are followed for the above ship bounding box normalized.

H = height of Image, W = width of Image

Xmin  + Xmax

2

W
 ,

Ymin  + Ymax

2

H
,

Width of the Bounding Box

W
,

Height of the Bounding Box

H

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 216

6. Data Analysis

In this project we used a data set from the Images Computer visionwebsite. It is open

source; in this datait contains 1462 images of 9 types of classes [6].

The 9 types of classes are:

Class Name Total

Images

% of

Images

Buoy 68 4.6%

Cruise Ship 239 16.3%

Freight(cargo) 29 1.9%

Ferry 81 5.5%

Gondola 242 16.5%

Inflatable

Boat

21 1.4%

Kayak 254 17.3%

Paper Boat 40 2.7%

Sailboat 488 33.3%

Table 2.3.1: Each class Dataset Information

Total Class = 9, Total Images = 1462

Once I finished the Data labelling, I explored the categorical data analysisfor cross-verifying

with its image name and label name. I encountered 4 duplication images present in different

class folders. From this below table, we can justifythat the total number of images is 1462

and the unique is 1458 which contains 4duplicates with the same name. I removed those 4

images from the folder to notconfuse the model for object classification and detection

concerning it.

Here the total Bounding Box was 2942 which contains of 1458 images are:

7. Data-set Split Information: Dataset is splitted into (80:20) % ratio 80:10: 10 :: Training

: Validation : Testing

The data set is divided 80:20 percent for each of9classes separately. Our data set is

unbalanced for each class information. Each class distribution of train, val and test data is

in below table:

Table 2.3.2: Train Val Inference class Dataset Distribution

Class Name Train Validation Inferenc

e

Buoy 54 6 8

Cruise Ship 190 23 25

Freight(cargo) 23 2 4

Ferry 64 8 9

Gondola 192 24 25

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 217

Inflatable

Boat

16 2 3

Kayak 203 25 26

Paper Boat 32 4 4

Sailboat 389 48 49

Total 1163 142 153

The maximum bounding box is Sailboat of 954 annotation, almost 32% of bounding box and

lowest is Freight of 61 annotation which is 2% of total bounding box.

8. Model Loss Functions: There are different type of loss function, but for object detection

we uses three different loss functions to train its object detection model.

 Classification Loss: This loss function targets the model for correctly classifying an

object when it is wrongly identified. It is determined using binary cross-entropy loss

between the projected and actual class probabilities.

 Bounding Box Loss: This loss function has an effect on the model if it predicts the

incorrect bounding box coordinates for an object. It is computed using the smooth L1

loss between the expected and actual ground truth bounding box coordinates.

 IOU Loss: When evaluating the effectiveness of object detection, intersection over

union (IoU) is utilized to compare the predictedbounding box to the ground truth

bounding box.

 Object Loss: This loss function targets the model when it predicts the wrong

objectness score, which is the probability that an object will be present in a certain

grid cell. The difference between the projected objectness score and the actual

objectness score is computed using binary cross-entropy loss.

Loss Function is calculated by.

Loss = Lbox + Lobj + Lcls

Lbox = λcoord .

s2

i=0

 .

B

j=0

1ij
0 . bj [(xi − xi

⋀)2 + (y − yi
⋀)2] + λcoord .

s2

i=0

 .

B

j=0

1ij
0 . bj [(wi

− wi
⋀)2 + (hi − hi

⋀)2]

Lobj = λcoord .

s2

i=0

 .

B

j=0

1ij
0 . bj [(ci − ci

⋀)2 + λnobj .

s2

i=0

 .

B

j=0

1ij
n . obj [(Ci − Ci

⋀)2]

Lcls = λcls . 1i
0 . bj .

cclasses

(ρ(C) − ρ(C))2]

Where,

Lbox = Lcoord is bounding box regression loss

Lbox is classification loss

Lobj is confidence loss

i = current cell number

j = current anchor number

B = number of anchor boxes

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 218

x,y,w,h = Bounding Box (Grounding Truth)

Ci,j = Confidence

xΛ, yΛ, wΛ, hΛ = Predicted Box

Cij
Λ = Predicted

1ij
0 bj = 1ifCi,i = 1,0 Probablility of object exist

1ij
0 bj = 1 if Ci,j = 1, 0(Probability of object exist)

This is the general loss function of YOLO is in this form. Later they modified with different

techniques of anchor small, medium, and large bounding boxes with different scales of

object. The enhanced YOLO loss function is in below [10].

Lossi ,j = Lossi ,j
xywh

+ Lossi ,j
p

 + Lossi ,j
c

Lossi ,j
xywh

 =
Υcoord

N L obj
 .

s2

i=0

 .

B

j=0

Lij
0bj

[(xi,j − xi,j
⋀)2 + (yi,j − yi,j

⋀)2 + (√wi,j − √wi,j
Λ)2

+ (√hi,j − √hi,j
Λ)2]

Lossi ,j
p

 = -
Υcoord

N L obj
 .s2

i=0 .𝐵
j=0 𝐿𝑖𝑗

0𝑏𝑗 .𝑐𝜀𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑝𝑖 ,𝑗
𝑐 𝑙𝑜𝑔 (𝑝𝑖 ,𝑗

𝑐)

𝐿𝑜𝑠𝑠𝑖 ,𝑗
𝑐 =

𝛶𝑐𝑜𝑜𝑟𝑑

𝑁 𝐿 𝑜𝑏𝑗
 .𝑠2

𝑖=0 .𝐵
𝑗=0 𝐿𝑖𝑗

0𝑏𝑗
(𝐼𝑂𝑈

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑖 ,𝑗

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡 ℎ𝑖 ,𝑗 − 𝐶𝑖 ,𝑗
𝛬)2 +

𝛶𝑐𝑜𝑜𝑟𝑑

𝑁 𝐿 𝑜𝑏𝑗
 .𝑠2

𝑖=0 .𝐵
𝑗=0 𝐿𝑖𝑗

𝑛0𝑏𝑗
(0 − 𝐶𝑖 ,𝑗

𝛬)

𝛶𝑐𝑜𝑜𝑟𝑑
𝑁 𝐿 𝑜𝑏𝑗

 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐿𝑜𝑠𝑠𝑖 ,𝑗
𝑜𝑏𝑗

 = Object exists

𝑥i,j , yi,j , wi,j
Λ , hi,j

Λ = square distances of width and height

For object class predictions we use cross entropy loss function

Cross Entropy Loss = - (yilog (yi
Λ) + (1 − yi) log(1 − yi)

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 219

9. Industrial Developments

 Training Pattern

Figure 2.5.1: Model Training Flow Chart

This model training plan structure is followed for version5, 6 and version 8 thereis no change

in model designing.

 Reparametrizing Optimizer: There are numerous approaches for tuning the

parameters, but for our model, we chose grid cross validation. Instead of selecting all

of the values in the tables, we employed a strategy that is closest to the prior value.

Following that, we select neighboring data values for the best optimization value in

the table depending on the preceding value. Different values for each performance are

obtained through hyper parameter adjustment. Here are some of the values that were

tested in order to get the ideal parameter value.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 220

Figure 2.6.1: Data Points Graph Grid Search for Cross validation (V5, V6 and V8 from left

to right)

Table 2.6.1: Grid Search Cross Validation for YOLOv5.

Lr(Learning

rate)

m (Momentum) Val mAP(0.5) Train mAP(0.5)

0.01 0.937 66.20% 65.57%

0.01 0.927 69.30% 65.64%

0.01 0.917 72.10% 69.25%

0.01 0.947 67.70% 63.30%

0.02 0.947 64.80% 61.44%

0.02 0.927 66.80% 65.30%

0.009 0.927 58.70% 59.64%

According to this table, the best performance in learning rate and momentum is 71.1

at 0.01 and 0.947, as well as 0.009 and 0.937, respectively. In this case, both

parameters performed well during the training and testing phases. However, it takes

less time than other methods.

In hyper parameter tuning except momentum(m) and learning rate(lr). We adopted the

same data augmentation and other parameters in uniform way. So, in this optimization

phase using grid search table we find the best value for (Lr and momentum). This

technique we applied for all 3 models in each phase.

Table 2.6.2: Grid Search Cross Validation for YOLOv6.

Lr(Learning

rate)

m (Momentum) Val mAP(0.5) Train mAP(0.5)

0.01 0.937 66.20% 65.57%

0.01 0.927 69.30% 65.64%

0.01 0.917 72.10% 69.25%

0.01 0.947 67.70% 63.30%

0.02 0.947 64.80% 61.44%

0.02 0.927 66.80% 65.30%

0.009 0.927 58.70% 59.64%

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 221

Based to this table, the best performance in learning rate and momentum of mAP is

72.1 at 0.01 and 0.917, respectively. When compared to the training phase, this

parameter fared well in the testing phase.

In YOLOv8 the learning rate of 0.009 and momentum 0.937 with mAP(0.5) of 72.1

well performance of all other parameters in grid search comparison during best hyper

parameter finding.

Table 2.6.3: Grid Search Cross Validation for YOLOv8

Lr(Learning

rate)

m

(Momentum)

Val

mAP(0.5)

Train

mAP(0.5)

0.01 0.937 72.10% 71.20%

0.01 0.927 69.90% 70.00%

0.01 0.947 68.30% 69.4%

0.01 0.931 66.90% 66.6%

0.01 0.938 70.90% 70.50%

0.01 0.936 66.60% 65.60%

0.02 0.947 59.80% 61.80%

0.009 0.927 71.60% 71.8%

0.01 0.947 71.10% 71.1%

0.009 0.937 72.10% 70.50%

0.0095 0.937 69.10% 69.30%

.

In YOLOv8 performed well in each parameter except 1 learning rate and momentum

remaining all near to + - 70%. 2 parameter perform outstanding well with 72.1%

mAP(0.5) but in training phase learning rate(lr) = 0.01 and momentum(m) = 0.937.

Achieved best in testing and training.

III. EXPERIMENTS

1. Implementation Plan

Figure 3.1.1: Class Bounding box Width Height Spread Figure 3.1.2: Cologram for

Bounding Box Width Height

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 222

 Data Augmentation: Data augmentation is a technique used in machine learning and

computer vision to improve the size and diversity of a dataset by creating new

instances from existing data through various modifications. The goal is to improve

machine learning model performance by avoiding over-fitting and boosting

generalization. Data augmentation is the process of creating new instances from

existing data by modifying it in various ways, such as rotation, scaling, flipping,

cropping, and adding noise. For example, data augmentation approaches for image

classification jobs may include flipping, cropping, and adjusting an image's brightness

or contrast. Data augmentation can serve to improve the size and diversity of the

dataset, correct class imbalance, and prevent over-fitting. The machine learning model

gets exposed to a greater variety of instances when utilizing data augmentation, which

might help it generalize and perform better on fresh, unknown data. In this project,

data augmentation is performed on image space and color space using an

augmentation library in an online data loader with random image generation (original

picture + three random images) for each parameter.

YOLO feeds training data into a data loader, which augments data in real time.

Colour space changes, scaling, and mosaic data augmentation are the three major

forms of augmentations used by the data loader. The following are the values of the

hyper-parameters utilised for data augmentation:

Table 3.1: Data Augmentation Parameter Values

Parameter Value Parameter Value Parameter Value

perspective 0.0001 degrees 0.2 Hsv_s: 0.7

scale 0.9 Fliplr 0.5 Hsv_v: 0.4

shear 0.2 Flipud 0.5 mixup 0.1

translate 0.1 Hsv_h: 0.015 mossaic 1.0

In all 3 models they adopted strong data augmentation parameters to train the data. In

this Augmented data can be either slightly modified copies of existing data. There are

different techniques used in this Augmentation process like HSV, Degree, Translation,

Scaling, Shear, flip mosaic and mix-up. These parameters are set same for all 3 model as

default without any changing values from 1 model to another in order to avoid confusion and

maintain unity. We can change based on our requirements from (0 to 1) which is normalized.

Here YOLOv8, YOLOv6 andYOLOv5 are the same parameter and value followed.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 223

Figure 3.1.3: Data Augmentation Results

2. Modelling

In our project we used Deep learning models that are primarily based on the structure and

operation of the human brain, allowing them to process data and make predictions in the

same way that humans do.

 Training : This is the first phase of modelling after the data pre-processing steps deep

learning algorithm is trained at this point by being fed to data sets. This is the phase

where learning occurs. The prediction rate of the DL model can be considerably

increased with consistent training of data. The model’s weights must be initialized

earlier. The algorithm will learn to modify the weights appropriately inthis way. To

get good results, we want to adjust basic parameters and hyper-parameters. In the next

section explained in detailthe required parameters in our work.

 Model V5: The pre-design model utilized for the paper is YOLOv5s, which is the

smallest (14.12 MB) and fastest network model among the available versions, with

around 7.2M parameters when weights and biases of other models are considered.

The model was re-configured with our own customized parameter below.

Table 3.2.1: V5 Architecture Model Training Parameter Values

Parameter Value Parameter Value

Model 5s Solver SDG

Backbone CSPDarknet-53 Data augmentation HSV

Epochs 100 Image size dimension 640x640

Batch size 16 Device GPU

Learning

rate

0.01 Anchor boxes: 9

Momentum 0.947 Weight decay 0.0005

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 224

Figure 3.2.1: Training Graph Results YOLOv5

The results of YOLOv5 with 100 epochs training results are shown here in above

training graph of all the metrics of loss (Bounding Box loss, object confidence loss, class

loss) and mAP @ (0.5 and 0.5:0.95). In loss since it is 0 at initial stage of epochs and later at

few epochs it is decreasing the loss (box loss and cls loss it takes some iteration(epochs) to

decrease it.

The training result of YOLOv5 mAP @0.5 is 71.0% and mAP @0.5:0.95 48.1% with 2.58hr

in Google Colab with 12GB Ram and 1 GPU.

 Model V6: To retain unity, we used the identical Training Parameters and Data

Augmentation parameters as in YOLOv5, except for the network architecture, and we

tuned the parameters using grid search (learning rate and momentum). We select the

best parameter value with the highest mAP from the grid search (see section 4.4

Model tune YOLOv6 hyper parameter tweaking). The difference in score can be seen

here. YOLOV6(36.3MB) has 1.57 times the weight of YOLOV5(14MB).

We followed the same pattern except model architecture designed in neural

network for this model.

Backbone: EfficientRep (RepVGG and CSPREPStack).

Anchor boxes: nine are used: ((10, 13), (19, 19), (33, 23), (30, 61), (59,59), (59, 199),

(116, 90), (185, 185), (373, 326))

Momentum: 0.917

Table 3.2.2: YOLOv6 Training Results.

Model Epochs mAP

@0.5

mAP

@0.5:0.95

Hours

YOLOv6s 100 69.25% 47.65% 2.77hr

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 225

YOLOv6 training data show that mAP @0.5 is 69.25% and mAP @0.5:0.95 is 47.65 after

2.77 training hours. Due to higher FLOPS and a larger number of parameters, YOLOv6 has a

1.75% drop in comparison to YOLOv5 (71.0%) and 11.2 training hours in comparison to

YOLOv5.

 Model V8: Here the Anchor is a free based model based on regression technique and

Momentum: 0.937. rest all followed the same.Anchor boxes are used to discover

object classes with the suitable scale and aspect ratio. A predefined collection of boxes

with fixed heights and widths is used. During detection, they are tiled across the

image and selected based on the size of objects in the training dataset.

Figure 3.2.2: Training Graph Results YOLOv8

Box loss and confidence loss declines in YOLOv8 began during the early stages of epochs. It

is linearly connected to loss and epoch until the latter epochs, and class loss is greater. In

comparison to box and confidence loss, classification loss is greater. It reduced the loss but

did not reduce the other two losses.

YOLOv8 Model Training results are in Fig 4.15 with trained 100 Epochs with mAP@0.5

72.1% and mAP@51.2% and time duration are 2.74hr less compared to previous Version 6.

 Validation: Model evaluation is the process where the performance of a fully trained

model is evaluated on a testing data set.

 Model V5: These are the configuration we provided during the validating the data:

Weights: The best trained PyTorch weights in training phase of model

Batch size: 16

Image Size: 640

Image Data: 142

Confidence Threshold: 0.25

IoU Threshold: 0.50

Maximum Detection: 300

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 226

It gives the misclassified object in the test dataset in the confusion matrix. The

following confusion matrix is for YOLOv5. The confusion matrix, together with

accuracy and the PR curve, can be used to estimate recall and precision, which are

measures used to evaluate model performance.

Figure 3.2.3: Confusion Matrix Validation Yolov5

 In confusion matrix it gives the mis-classified object in test dataset. The

belowconfusion matrix gives for YOLOv5. Recall and Precision can be measured usingthe

confusion matrix, along with accuracy and the PR curve, which are the metricsused for

evaluating the performance of models.

 The 76.6% Precision, 66.8 % Recall, 0.7 F1 score and mAP@0.5 is 71.1% along with

step 0.05 mAP@0.5:0.95 is 48.3% in YOLOv5. Information of Precision Recall and F1 score

calculation is in Metric section of Training and Evaluation.

Table 3.2.3: YOLOv5 Image Computing Time Results.

Speed Time(ms)

Pre-process time 0.3ms

Inference time 10.2ms

NMS time 4.8ms

The amount of pre-process time was taken 0.3ms, Inference 10.ms and NMS is 4.8ms.

Thecomputing time is for each image out of 142 images in model evaluations.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 227

Figure 3.2.4: P, R, PR Curve F1 score Val YOLOv5

The evaluation Results of YOLOv5 Precision Confidence, Recall Confidence and PR curve is

in graph with mAP 0.5 is 71.1. F1 Curve Validation Yolov5 .70 at .43

The evaluation of the performance of an object detection model YOLOv5 of F1 score value is

.70 at confidence 0.435. In graph classes are distributed each other paper boating class is over

fitting and Buoy class is under-fitted. Cruise ship is good fitted in order to consider as best

among all class.

 Model V6: As previously explained in 3.3.2 section and same followed for YOLOv5

version. In YOLOv6 in the confusion matrix majority of TP are more and predicted

good apart from few class less errors.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 228

Figure3.2.5: Confusion Matrix Validation YOLOv6

YOLOv6 mAP @0.5 of testing accuracy is 72.1%, in testing we got good and more mAP

accuracy but in training we got 69.2%.

Table 3.2.4: YOLOv6 Image Computing Time Results.

Speed Time(ms)

Pre-process time 0.22ms

Inference time 9.52ms

NMS time 2.63ms

The testing speed results performance of each image average results here of 142 images. Pre-

processed time is 0.22ms, Inference time 9.52ms and NMS(post process time) is 2.63ms of

each image results respectively in Table 4.9. Compared to Version v5(table 4.8) all 3 speed of

pre-process time, NMS and inference time is faster in YOLOv6.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 229

Figure 3.2.6: P, R, PR Curve, F1 score YOLOv6 Validation

YOLOv6 Precision is 0.8 number of positives are more in this model as of v5 compare and

Recall is .18 less towards ground truth.

F1 Curve Validation Yolov6 .7 at 0.65

The P curve value is 80.4, Recall 65, P-R curve value 72.10 @mAP(0.5), F1 value is 0.65

accuracy of model and mAP@(0.5:0.95) is 48.3 as shown in above graph of each

metrics values. In F1 value model of each class performed good except blue line (0.65)

average of other class, except 4 class rate.

 Model V8: In YOLOv8 in the confusion matrix majority of TP are more and predicted

good apart from few classes with few errors. The majority of 7 classes out of 9 class

are more than 50% TP.

Figure 3.2.7: Confusion Matrix Validation Yolov8

In YOLOv8 achieved good results both in training and testing performance of mAP@0.5 is

72.1% and 51.2% respectively in above table.

Table 3.2.5: YOLOv8 Image Computing Time Results.

Speed Time(ms)

Pre-process time 0.21ms

Inference time 9.4ms

NMS time 2.54ms

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 230

The image process time of each image with average of all 142 images is less in YOLOv8

with pre-process time 0.21ms, inference time 9.4ms and NMS time 2.54ms. In all other

model is more than comparable in terms of computational time. This is one of the advantages

in inference for next steps.

Figure 3.2.8: P, R, PR Curve Validation YOLOv8

YOLOv8 Precision is 0.73 number of positives are in this model and Recall is .64 is in above

graph of each class performance in PR curve.

F1 Curve Validation Yolov8 0.68 at .35

The F1 Score of YOLOv8 is .68 at 0.35 confidence with mAP @0.5 as in above graph. many

class are performance is difference due to several reasons of data imbalance and others. As

here all 3 models are having different values for F1 value and curves is in each evaluation

phase of model results.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 231

 YOLOv8 TensorFlow Lite Evaluation: To evaluate the TFLite model, which cannot

be used directly, we must first convert from PyTorch to ONNX format, then

TensorFlow, and finally TFLite. The robust and open Open Neural Network Exchange

(ONNX) format was created for communicating machine learning models. It

overcomes the issue of easily for edge devices by providing a uniform intermediary

model format. The detailed explanation of model conversion may be found in the final

deployment part, step by step (for conversion model detailed steps in deployment

section).

 In order to save weight, the YOLOv8 model is transformed to TensorFlow lite

for edge device testing. So I adapted the TFLite model in PyTorch. I calculated the

same data for the TFLite model. Even if it loses some percentage in mAP@0.5 and

mAP0.5:0.95, the model performance is good. The table below provides thorough

information on the performance of the float16 and float32 bit models.

Table 3.2.6: TFLite YOLOv8 Validation Results.

Model Precision Recall PR F1 mAP@0.5 mAP@0.5:0.95

float16 79 56.1 72.10(@0.5) 0.68 (@

0.5)

67.5 47.5

float32 78.6 56.1 72.10(@

0.5)

0.68(@0.5) 67.3 47.6

The float16 and float32 perform quite well in mAP@0.5, with only a 0.02 loss percentage in

float32 because to its strong convergence, and with +0.1 higher accuracy in mAP(0.5:0.95).

Table 3.2.7: YOLOv8 Image Computing Time Results.

Speed float16 foat32 int8

Pre-process time 0.5ms 0.3ms 0.3ms

Inference time 875.9ms 864.7 1055.9ms

NMS time 1.5ms 1.6ms 1.7ms

Each TFlite model performs on float and int quantization results.

 Model Inference: Trained deep neural networks (DNN) draw inferences or make

predictions when provided with new or novel data that the model has never seen

before. We decided to convert model edge for YOLOv8 since model performance is

good in terms of mAP@0.5 and mAP@0.5:0.95 in terms of both training and testing

of metric consideration. Here are YOLOv5 and YOLOv6 for model discussion. The

table below contains information on the computing outcomes of each model type.

Speed Time(ms)

Pre-process

Time

0.6ms

Inference Time 21.3ms

NMS Time 1.7ms

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 232

YOLOv8 PyTorch Inference Speed Results

Speed Time(ms)

Pre-process

Time

0.6ms

Inference Time 21.3ms

NMS Time 1.7ms

YOLOv8 ONNX Inference Speed Results

Table3.2.8:YOLOv8 TFLite Inference Speed Results

Speed float16 float32 int8

Pre-process time 20.3ms 17.9ms 18.7ms

Inference time 875.9ms 833.0ms 976.1ms

NMS time 1.9ms 1.6ms 1.9ms

The YOLOv8 performance of each model in inference stage from PyTorch model to tflite for

153 images in pre-process, inference, and NMS time.

10. Comparisons with Models

Each Class Evaluated AP@0.5

Table 3.3.1: Average Precision (@0.5) Obtained for each class evaluation.

Class YOLOv5 YOLOv6 YOLOv8

Buoy 0.294 0.349 0.275

Cruise Ship 0.916 0.901 0.920

Ferry 0.685 0.585 0.604

Sailboat 0.871 0.887 0.889

Freight (Cargoship) 0.557 0.912 0.673

Inflatable Boat 0.512 0.473 0.540

Gondola 0.828 0.788 0.852

Kayak 0.688 0.607 0.822

Paper Boat 0.995 0.981 0.9064

mAP 0.711 0.721 0.721

Evaluation of each model with each class performance in testing phase. There are 5 class

have more accuracy and some of classes are dominates near to score.

Table 3.3.1: mAP of Training and Testing results.

Model Training

%

Testing

%

YOLOv8s 71.2 % 72.1 %

mailto:AP@0.5

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 233

YOLOv8 model performance in training and testing while 0.9% is more in evaluating the

model with mAP@0.5.

Table 3.3.2: mAP of tflite.

Model Testing

%

YOLOv8s.tflite 67.5 %

TFLite Model performance in testing phase with mAP@0.5 is 67.5% for next stage of

deployment phase. But PyTorch to TFLite .056% is reduced due to converting from one stage

to another stage.

Results of YOLOv5, YOLOv6, YOLOv8 Comparisons

Model Results YOLOv5 YOLOv6 YOLOv8

Table 3.3.3: Model Results.

Method Size Epoch APv(50

)

APv(50:

95)

 Par(M) FLOPS(G) APtr(50) APtr(50:95) Hrs

YOLO5

s

640 100 71.1 48.3 7.03 15.8 71.0 48.1 2.58

YOLO6

s

640 100 72.1 48.3 18.51 45.18 69.25 47.65 2.77

YOLO8

s

640 100 72.1 51.2 11.13 28.7 71.3 50.7 2.74

From this table YOLOv8 performance is good when compare to YOLOv5 and YOLOv6 in

terms of mAP(0.5) and mAP(0.5:0.95) both testing and training. So we choose YOLOv8 and

achieved with best new stage of art.

IV. DEPLOYMENT

Several steps are required to convert a PyTorch file to TensorFlow Lite (TFLite) format for

edge deployment. Here's a rundown of the procedure:

 Save the PyTorch model as an ONNX file: To convert a PyTorch model to

TensorFlow Lite format, first export the model to the ONNX format. ONNX is an

open deep learning model representation format that may be utilised by a variety of

frameworks, including TensorFlow. The torch.onnx.export() function can be used to

convert a PyTorch model to ONNX format. The PyTorch model, an example input

tensor, and the output route where the ONNX model will be saved are all passed to

this function. The PyTorch model is loaded from a file called yolo.pt in this code

excerpt. Finally, we use the onnx.export() function to convert the PyTorch model to

ONNX format and save it to a file called yolo.onnx.

 Converting the ONNX model to TensorFlow format: Now that we have the

PyTorch model in ONNX format, we can convert it to TensorFlow format. We can

accomplish this by utilising the tf2onnx package, which includes the onnx-tf module,

mailto:mAP@0.5

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 234

which can convert an ONNX model to TensorFlow format. The input ONNX model

file (yolo.onnx) and the output TensorFlow model file (yolo.pb) are specified in this.

The ONNX model will be converted to TensorFlow format and saved to the given

output file by the onnx-tf library.

 To convert the TensorFlow model to TFLite format, follow these steps: The

TensorFlow model must now be converted to TensorFlow Lite format. This is possible

thanks to the TensorFlow Lite Converter, a Python library that includes a Converter

class that can convert a TensorFlow model to TFLite format.

First, use the load function to load the TensorFlow model from the yolo.pb

file. We then use the tf.lite.TFLiteConverter() function to generate a Converter object

from the supplied model. Finally, we use the converter.convert() function to convert

the TensorFlow model to TFLite format and save the resulting TFLite model.

The model tested in hardware board and results are in below table

Table 3.3.4: YOLOv8s .tflite Model performance on IMX8MP Board

IMX8MP Hardware with YOLOv8s Model [11]

Processor Model type Img Size(pixels) FPS

CPU Float16 640x640 0.28FPS

CPU Float32 640x640 0.29FPS

CPU INT8 640x640 0.41FPS

Original Model vs Our Reconfigure Model

Table 3.3.5: Original Model

Method APv(50) APv(50:95) APt(50) APt(50:95)

YOLO5s 69.4 44.3 69.0 44.9

YOLO6s 65.64 45.19 69.2 47.1

YOLO8s 71.1 50.1 69.90 48.5

Table 3.3:6: Our Model

Method APv(50) APv(50:95) APt(50) APt(50:95)

YOLO5s 71.1 48.3 71.0 48.1

YOLO6s 72.1 48.3 69.25 47.65

YOLO8s 72.1 51.2 71.3 50.7

V. RESULTS

Our model is not 100% so somewhere is error or miss classified or detect in results.

Here detection results as follows. In the figure it is detected correctly as sailboat but in

image there are still objects couldn’t able to recognize other images. Here in this point of

stage model performance is down, and if we observe carefully in confusion matric there,

we can find TN and FP results classified.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 235

Figure 3.3.1: Detection Results

These are the results from models shown in all possible classes with large image,

small image, cropped image, top view image, with low and high resoluted image with

640X640 pixels.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 236

Figure 3.3.2: Video Processed Image

VI. CONCLUSION

In this work is a proposed for the real time implementation of Automatic Recognition

of Boats and Ship method for detecting ship and boats in marine environment. Based on our

experiment and the result we obtained, we can see how YOLO models deep learning can be

implemented by using object detection algorithm for developing a object recognition system.

The CPU and hardware tools used to conduct this Experiment work are state-of-the-art

platforms regarding deep neural network and object recognition model. Our main

contribution to the work is to apply the state-of-the-art YOLO model to do the detection of

ship and boat detection in marine environment. Even with a small dataset, the model

performance is good compared to version 5 and version 6. The presented comparison of three

deep convolutional neural network YOLOv5, YOLOv6 and YOLOv8. shows that YOLOv8

reconfigured has the highest accuracy, reaching approximately 72.1% mAP(0.5) in testing

and training 71.1% mAP(0.5) accuracy. And to testhardware, we converted PyTorch model to

TensorFlow Lite model for edge device IMX8MP hardware with different model type with

float16, float32 and int8 with 640 x 640-pixel size image. Model with int8 quantization

performed good compared to float16 and float32 with .41 FPS with camera in real time

testing. The primary conclusion from our analysis of the results is that neural networks can

learn and identify things, as shown in the results section and in the comparison of our three

models.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 237

 Discussion &Future Work: This work is an experimentation of real time object

recognition in the real world for marine ships and boats. To work in the realworld, it

should me more robust and productive for the next production stage. There are several

improvements to be made to our model. In terms of data-set size of each class should

increase at least 100 which is having below 100 images in dataset. This could be done

by more labelling of the images of having less data. Since time required for the

computation is more, we were not able to run more epochs means more than 100. We

followed maximum 100 epochs for all 3 models even in hyper-parameter tuning to see

how it works in the long run due to limited resources and time. For addressing these

parameters defining and more parameters in GPU environment on cloud for large data

in future step which is having less mAP(0.5) accuracy in testing results. So, by

addressing these changes in setup the model and system is more robust and efficient.

Based on the characteristics of object recognition algorithm it can be used in different

domain technologies to detection and classification for real time application such as

Computer Vision Applications for Transportation

1. Object recognition in ariel or satellite view.

2. Automatic vehicle number plate recognition in toll gate

3. Vehicle parking using smart allocated detection area

4. Vehicle counting system

Computer Vision Applications for Agriculture

1. Vegetables or Fruits detect and classify in food industries

2. Poultry or domestic animal in monitoring animals

Intrusion Detection or trespassing areas

• People counting in shopping malls

• Airport facial recognition and security purposes

• Healthcare and Medical imagining applications

So object recognition systems have a many tremendous potential application indifferent

domain areas in engineering research.

VII. ACKNOWLEDGEMENT

I take this opportunity to express thankfulness to Professor Giuseppe Longo, the chair

and coordinator of the Data Science course. The Kineton S.r.l (Innovation Lab) Naples, Italy

for the traineeship opportunity and support provided to me during this experience. Specialists

and manager guided me during these months in the development of the research work.

VIII. CONFLICT OF INTEREST

 The authors declare no conflict of interest.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 238

REFERENCES

[1] Guo, Z. Z. K. C. Z. S. Y. & Ye, J. Object Detection in 20 Years: A Survey. Proceedings ofthe IEEE (2023).

[2] Navaneeth Bodla Bharat Singh, R. C. & Davis, L. S. Improving Object Detection WithOne Line of Code.

IEEE International Conference on Computer Vision (ICCV) (2017).

[3] Joseph Redmon Santosh Divvala, R. G. & Farhadi, A. You Only Look Once: Unified, RealTime Object

Detection. IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (2016).

[4] Redmon, J. & Farhadi, A. YOLOv3: An Incremental Improvement. IEEE Conference onComputer Vision

and Pattern Recognition (CVPR)(2018).

[5] Alexey Bochkovskiy, C.-Y. W. & Liao, H.-Y. M. YOLOv4: Optimal Speed and Accuracy ofObject

Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2020).

[6] Computer vision image. Data set computer vision images for academic and researchers. BellSyst. Tech. J.

https://images.cv/category/Boat#google_vignette (2022).

[7] Jocher, G. YOLOv5: By Ultralytics. Ultralytics Yolov5 (2020).

[8] Vision Development, M. I. A. YOLOv6: A Single-Stage Object Detection Framework forIndustrial

Applications. IEEE Conference on Computer Vision and Pattern Recognition(CVPR)2022 (2022).

[9] Jocher, G. YOLOv5: By Ultralytics. Ultralytics Yolov8 (2023).

[10] Rafael Padilla, S. N. & da Silva, E. A Survey on Performance Metrics for Object-DetectionAlgorithms.

International Conference on Systems, Signals and Image Processing (IWSSIP)(2020).

[11] IMX8MP. https://www.variscite.it/product/system-on-module-som/cortex-a53-krait/var-som-mx8m-plus-

nxp-i-mx-8m-plus/.

[12] Chien-Yao Wang, A. B. & Liao, H.-Y. M. YOLOv7: Trainable bag-of-freebies sets newstate-of-the-art for

real-time object detectors. IEEE Conference on Computer Vision andPattern Recognition (CVPR)2022

(2022).

[13] Robert Ross Marcin Elvis, G. A. & Thomas. Computer vision and Pattern matching. Paperswith code of

Computer Vision.

Appendix A

Acronym: The following abbreviations are used in this manuscript:

1. AI: Artificial Intelligence

2. ML: Machine Learning

3. DL: Deep Learning

4. NN: Neural Network

5. DNN: DeepNeuralNetwork

6. CNN:ConvolutionNeuralNetwork

7. YOLO:YouOnlyLookOnce

8. mAP:MeanAverage Precison

9. CV:Computer Vision

10. CV: Cross Validation

11. IOU: IntersectionOverUnion

12. FP:FalsePositve

13. TN: TrueNegative

14. TP:TruePositive

15. AP: AveragePrecision

16. Lr:LearningRate

17. TF:Tensorflow

18. SB DatasetShip – BoatDataset

19. FPS:FramePerSecond

20. Lr:LearningRate

21. SVM:SupportVectorMachine

22. NMS:Non-MaxSupression

https://www.variscite.it/product/system-on-module-som/cortex-a53-

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 239

23. FPN: Feature Pyramid Networks

24. CSP: Cross Stage Parital Network

25. SPP: Spatial Pyramid Pooling

26. PAN: Path Aggregation Networks

27. CSP: Cross Stage Partial networks

28. AP: Average Precision

29. ONNX: Open Neural Networks Exchange

Appendix B

 Workflow of Project:

The project’s flow is shown in the below diagram, with each step leading from one

stage to the next being denoted by a number and an arrow. Data was initially obtained from

the image.cv website’s database and then placed onto the local system disk. Once the data has

been gathered, it becomes challenging to analyze the data for the image. I either need to use

Excel or another format to extract the data in much more detail. Data extraction is done in

parallel, utilizing the Makesense.AI cloud tool for csv files in step 2, in order to perform data

analysis. Here, I externally divide the data for the train, val, and test, and I begin labeling the

classes in step 3.

Step 4 involves loading the local disk with the transformed csv data and annotation

files. Once more, we used the EDA procedure to cross-check the data with the csv file.

Removed duplicate data from one class to another and crosschecked it with the annotation

and image files in the train-val-test folder using a csv file. The model train-val-test process is

then performed in step 5 in conjunction with a quicker approach using one GPU. For good

accuracy, we performed hyper-parameter adjustment here. We converted the model from

Pytorch-ONNXTensorflow-TFLite for edge devices in step 6 in order to deploy the model

after model training. The changed model is then loaded once more into the local system for

inference check. This is the last phase of the project’s step 9,10 real-time check deployment.

To check the object with FPS, a TFLite Model is deployed onto an IMX8MP MEK hardware

board with a camera .

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 240

YOLOv5

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 241

Figure B1: Yolov5 Deep Architecture

YOLOv6

Figure B.2: Yolov6 Deep Architecture

YOLOv8

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-901-5

IIP Series, Volume 3, Book 3, Part 6, Chapter 1

 DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID

COLLISIONS IN MARINE TRANSPORT

Copyright © 2024 Authors Page | 242

Figure B.3: Yolov8 Deep Architecture

