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DEEP LEARNING FOR AUTOMATIC RECOGNITION 

OF BOATS AND SHIPS TO AVOID COLLISIONS IN 

MARINE TRANSPORT  
 

Abstract 

 

The objective of this work is to explore the 

use of deep learning for the automatic 

recognition of ships and boats. The study 

uses a deep convolution neural network 

(DCNN) architecture to analyze a large data 

set of ship and boat images. The data set is 

prepared and labelled for supervised learning, 

and CNN is fine-tuned using the YOLO 

series group of versions 5, 6 and 8 to improve 

recognition accuracy. The proposed method 

involves training a deep convolution neural 

network on a large data set of ship and boat 

images and using the trained model to 

classify new images. The performance of the 

model is evaluated on a separate test set and 

compared to other state-of-the-art methods. 

The results of this study show that the deep 

learning model is effective in automatically 

recognizing ships and boats with an accuracy 

of mAP (Mean Average Precision). The 

model’s performance is also compared to 

traditional machine learning algorithms, and 

CNN outperforms these methods. In this 

work we present the architecture, design and 

implementation of an object detection model 

deployed on an IMX8M Plus hardware 

board, to be used on the gathered image data 

model to recognize and label the ships and 

boats at the edge. We conduct transfer 

learning on the state-of-the-art trained YOLO 

model by introducing a labelled BS(boat-

ship) image data set. We use the trained 

model to do predictions on a test image set to 

evaluate the model’s performance. The result 

of the model can predict labels with an 

accuracy of 72.1 mAP of YOLOv8 and 

inference FPS time that detect it to do so in 

real-time with the board. Results show that 

the proposed deep learning approach 

outperforms existing methods, achieving 

high accuracy, and demonstrating the 
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potential of deep learning for the automatic 

recognition of boats and ships in marine 

environment system. 
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I. INTRODUCTION 

 

The ability of computers to perceive and analyze visual input from their surroundings 

is referred to as computer vision. Computer vision can be useful in navigation, object 

recognition, and situational awareness in the setting of marine vehicles. Here are some of the 

most important aspects of computer vision in maritime vehicles:  

 

Navigation: Computer vision techniques can be used to assist marine vehicles in 

navigating the sea. Cameras and other sensors, for example, can be used to detect and track 

things like buoys, landmarks, and other vessels, allowing the vehicle to remain on course and 

prevent collisions. Object Detection: A computer vision technique can be used to detect and 

classify items in and out of the water, such as marine vehicles, marine life, debris, and other 

objects. hazards. This may help the vehicle in avoiding crashes and navigating through the 

water safely. Situational Awareness: Computer vision can provide real-time information about 

its surroundings, assisting the vehicle in understanding and responding to changing 

conditions. Cameras and sensors, for example, can be utilized to detect vehicles, weather 

conditions, sea state, and other environmental aspects that may affect vehicle performance 

[1].   

 

Autonomous Operations: Computer vision can be applied to enable autonomous 

operations of marine vehicles such as unmanned surface vessels and underwater items. These 

cars can operate with minimum human interaction by employing cameras and sensors to 

navigate and sense the environment. Overall, computer vision in object recognition has the 

potential to dramatically improve the capabilities of maritime vehicles, boosting their safety, 

efficiency, and effectiveness in a wide range of applications. Boats and ships play important 

roles in a variety of activities such as transportation, trading, fishing, and military operations. 

The capacity to recognize boats and ships automatically from photos and videos can be 

beneficial in a variety of applications, including safety and security, maritime surveillance, 

search and rescue operations, and oceanography. However, manually recognizing boats and 

ships takes time and might be mistake prone. As a result, automatic boat and ship recognition 

has become a hot study topic in recent years. Deep learning, a branch of machine learning, 

has produced encouraging results in a variety of computer vision applications, including 

picture categorization. Deep convolutional neural networks (DCNNs) have been found to be 

effective at object recognition from photos. We investigate the use of deep learning 

approaches for automatic recognition of boats and ships from photographs in this work. We 

present a deep learning technique for classifying and detecting new photos that involves 

training a CNN object recognition algorithm on a large dataset of ship and boat photographs 

and then utilizing the learned model to classify and detect new images. The remainder of this 

work is structured as follows: Section 2explains the suggested deep learning strategy for 

recognizing boats and ships. Section 3 presents experimental results and compares the 

suggested method to existing cutting-edge methods. Finally, in Section last, we wrap up the 

paper and outline future directions in this field [12]. 

 

Boat and ship recognition is an essential field of study and development for marine 

vehicles since it can help with navigation, collision avoidance, and other duties. The most 

advanced object recognition technology for boats and ships employs computer vision 

techniques and machine learning algorithms to detect and classify items on or near the water. 

Deep learning for autonomous object detection of boats and ships at the cutting edge involves 

the use of convolutional neural networks (CNNs) and other advanced machine learning 
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methods to recognize and classify items on or near the water. These techniques are highly 

effective in recognizing different types of boats and ships in images and video. One key 

development in this field is the use of deep learning algorithms, such as convolutional neural 

networks (CNNs), to recognize objects in images or videos. These approaches are quite good 

in identifying various types of boats and ships in photos and video. The use of deep learning 

techniques, such as convolutional neural networks (CNNs), to recognize objects in photos or 

videos is a significant advancement in this subject. These algorithms were trained on a huge 

set of photos of boats and ships, as well as other objects on the sea, such as buoys, markers, 

and other vessels. CNNs can learn to recognize different types of boats and ships with a high 

degree of accuracy by analyzing the features and patterns in these photos. Another important 

innovation is the use of transfer learning, which involves changing pre-trained deep learning 

models to recognize boats and ships. Developers and researchers can obtain high accuracy 

with fewer training examples by finetuning these algorithms on new datasets of marine 

photos[2]. 

 

 The use of sensors and cameras for object detection in aquatic environments is a novel 

discovery. These sensors and cameras are capable of detecting things on or near the water, 

even in low-light settings, and can offer crucial data to navigation and collision avoidance 

systems. Deep learning for autonomous object detection of boats and ships, in general, entails 

training CNN to recognize various types of boats and ships based on patterns and features in 

photos and video. These strategies have the potential to drastically enhance the safety and 

efficiency of marine vehicles with future research and development. Methods for object 

detection developed by researchers over the last 20 years improved in accuracy and many 

other qualities from year to year [3]. 

 

1. Motivation: In today’s world, there is more improvement in the automobile industry in 

all the transport ways of “Air, Road and Sea” ways. Now it is evolving from manual to 

automation techniques. And due to faster advanced technological developments and 

safety purposes reasons. This project is related to seaways marine environment for the 

recognition of ships and boats objects. Object recognition is to maintain the safety order 

to avoid a collision. Detect objects for betterment in safety concerns to save the people 

and boats in a marine environment. This project contributes to the field of the marine and 

automobile industry. Potential increases in theoretical, practical implementation, policies, 

and safety. The outcome of the project algorithm is to detect objects in the real world 

using a camera. Detection using algorithms gives importance to marine transport to 

maintain safe, and security and to avoid collisions. The above figure is the prototype 

design of ship and boat detection in real-world time in a marine environment. 

 

II. SYSTEM DESIGN& METHODOLOGY 

 

2. Network Architecture: Object detection models are classified into two types: two-stage 

object detectors and single-stage object detectors. A single-stage detector is a computer 

vision object identification system that can find things in photos or videos by evaluating a 

single, complete image in one shot. Convolutional neural networks (CNNs) are capable of 

learning sophisticated feature representations from images and are used in the most 

common single-stage detectors[4]. Deep CNNs are commonly used in these detectors, 

and they are trained on a large dataset of annotated photos to learn the visual properties of 

objects. A single-stage detector works by dividing the image into a number of rectangular 

sections called anchors or priors that are centered at different points and have different 
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sizes and aspect ratios. CNN is then applied to each of these anchors to predict whether or 

not it contains an object and, if so, what class and location the object belongs to [5] [13]. 

The YOLO (You Only Look Once) detector is a popular single-stage detector. 

YOLO is quick and accurate, detecting objects in real time on a single GPU. SSD (Single 

Shot Multibox Detector) is another common single-stage detector that takes a similar 

method but has a different network architecture. To create dense predictions, single-stage 

object detector architectures (such as YOLO) are made up of three components: a 

backbone, Neck, and Head. Because they only require a single forward pass of the 

network, single-stage detectors are quick and efficient. They are, however, less precise 

than two-stage detectors, which generate a set of region proposals before identifying 

objects within those regions. A single-stage detector's architecture typically consists of 

three major components: the backbone network, the feature pyramid network (FPN), and 

the detection head. A high-level overview of each component follows: 

 
 

Figure 2.1: Single Stage Detector 

 

 Backbone network: Because of their effectiveness in extracting information from 

input images, convolutional neural networks (CNNs) are widely used as the backbone 

network. Large-scale picture classification datasets, such as ImageNet, are commonly 

used to pretrain the backbone network, allowing it to learn a set of general properties 

that may be used to recognize objects. Backbone networks used in single-stage 

detectors include Res-Net, Mobile-Net, and Efficient-Net. 

 

 Feature pyramid network (FPN):The multi-scale FPN architecture generates a set 

of feature maps with varying resolutions. By integrating low-level characteristics with 

high-level semantic data, the FPN generates a set of feature maps from the input 

image that capture objects of varied sizes and scales. The FPN was used to build a list 

of possible locations for object detection. 

 

 Detection head: Every object in the image that the detecting head recognized was 

assigned a bounding box suggestion and a related class likelihood. The detection head 

is frequently composed of convolutional and fully connected layers that use anchor 

boxes to anticipate item bounding boxes. Furthermore, the detection head predicts the 

class probabilities for each bounding box proposal, indicating the possibility that the 

proposal contains an object from a certain class. Single-stage detectors employ the 

output of the detecting head to generate a set of final predictions for each object in the 

image. Using non-maximum suppression, the final predictions are frequently post-

processed to minimize duplicate detections and low-confidence detections. SSD and 

YOLO are two well-known single-stage detectors. 

 

 



Futuristic Trends in Computing Technologies and Data Sciences 

e-ISBN: 978-93-6252-901-5 

IIP Series, Volume 3, Book 3, Part 6, Chapter 1 

                    DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID 

COLLISIONS IN MARINE TRANSPORT 

Copyright © 2024 Authors                                                                                                                       Page | 212 

 

3. YOLOv5: YOLOv5 there are different model size in each yolo series depending on 

parameters and neural network designed: In our project we choose YOLOv5s which is 

small having 14MB size with high inference compared to others and it required less 

computational power. YOLOv5 models are composed of the same 3 components: CSP-

Darknet53 as a backbone, SPP and PANet in the model neck and the head used in 

YOLOv4. 

 

 Backbone: The backbone is a trained network that extracts rich feature 

representations from images. This aids in lowering the image's spatial resolution while 

improving its feature (channel) resolution. The core of YOLOv5 is CSP-Darknet53. 

CSPDarknet53 is the Darknet53 convolution network to which the authors used the 

Cross Stage Partial (CSP) network technology in its most basic form. This network 

was the foundation for YOLOv3. The CSPNet (Cross Stage Partial Network) 

backbone architecture is employed in YOLOv5.The CSPNet backbone in YOLOv5 is 

designed to improve object detection accuracy while maintaining the fast inference 

time of previous YOLO versions. The convolutional layers that make up the backbone 

are divided into several levels. Each stage has a cross-stage partial connect that allows 

communication between network levels. Other optimization strategies, such as the 

usage of SPP (Spatial Pyramid Pooling) and PAN (Path Aggregation Network) 

modules to improve network feature representation, are also incorporated in the 

CSPNet backbone [7]. 

 

 These modules let the network gain multi-scale properties, which are necessary for 

detecting objects of varying sizes. Other advancements to the YOLOv5 backbone 

include the use of Group Normalization (GN) and the Mish activation function. The 

popular Batch Normalization (BN) layer is replaced with the Group Normalization 

strategy, which is intended to provide more stable training in small batch sizes. The 

novel activation function Mish has been shown to improve the functionality of neural 

networks. Overall, the CSPNet backbone in YOLOv5 is a major advance over prior 

YOLO backbones. It improves accuracy while keeping inference speed constant. 

 

 Neck: The feature pyramids are extracted using the model neck. This helps with the 

model's generalization to objects of various sizes and scales. In the context of the 

YOLOv5 object detection architecture, the "neck" refers to the collection of 

intermediary layers located between the backbone network and the detection head. 

The neck's job is to aggregate and refine the feature maps provided by the backbone 

network to build more accurate object detection representations. The SPP (Spatial 

Pyramid Pooling) module and the PAN (Path Aggregation Network) module make up 

the neck in YOLOv5. The SPP module collects features at many scales using multi-

scale pooling approaches, allowing the model to recognize objects of varying sizes. 

To generate a multi-scale representation, the SPP module performs pooling operations 

at many scales and then concatenates the resulting feature maps.  

 

The PAN module, which consists of a sequence of intermediary convolutional layers, 

performs feature fusion and spatial aggregation. The module employs top-down and 

bottom-up paths to transmit features from higher resolution layers to lower resolution 

layers and from lower resolution layers to higher resolution layers, respectively. As a 
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result, the model may generate feature maps that comprise both high-level and low-

level information. The neck in YOLOv5 plays an important role in providing high-

quality feature maps for object detection by fusing and augmenting the 

representations provided by the backbone network. 

 

 Head: The last stage activities are carried out by the model head. It uses anchor boxes 

on feature maps to generate the final output, which includes classes, objectness 

scores, and bounding boxes. In the YOLOv5 object detection architecture, the "head" 

is the set of output layers that deliver the final object detection findings. The feature 

maps formed by the neck are processed by the head to provide bounding boxes and 

relevant class probabilities for things recognized in the input image. Convolutional 

layers are head constituents in YOLOv5, which reduce the spatial dimensions of 

feature maps while increasing the representation's depth. Following that is a set of 

detection layers, each of which forecasts the class probabilities and bounding box 

coordinates for each object found in the image. Anchor boxes, which are pre-defined 

boxes with different sizes and aspect ratios, are used by the detection layers in 

YOLOv5 to anticipate bounding boxes. The model generates the final bounding box 

coordinates for each detected item using offsets from these anchor boxes. The 

detection layers estimate the class probability of each bounding box, which reflects 

the possibility that it contains an object of a given class. Utilizing a single-stage object 

identification algorithm, the head of YOLOv5 predicts the bounding boxes and class 

probabilities without utilizing an intermediary proposal generating phase. The 

architecture was chosen for its high level of efficiency and appropriateness for real-

time object detection applications. 

 

4. YOLOv6 

 

 Backbone: The YOLOv6 model makes advantage of the CSP (Cross Stage Partial 

Connections) backbone network. It combines a deep neural network (DNN) and a 

convolutional neural network (CNN) to improve object identification accuracy while 

minimizing computation time. The CSP backbone's aim is to extract features from the 

input image and process those features through numerous stages, each of which 

focuses on a different component of the image. The backbone of the YOLOv6 model 

is made up of several stages and is built on CSP (Cross Stage Partial connections). 

Each stage contains numerous levels. YOLOv6's backbone can have a range of levels 

depending on the implementation. The backbone of the YOLOv6 model is expected to 

include roughly 70 layers in total [8]. 

 

 Neck: The YOLOv6 model employs an SPP-neck (Spatial Pyramid Pooling), which is 

located halfway between the model's head and backbone. The model's head can 

recognize objects by merging data from various levels of the backbone network using 

the fixed-size feature map provided by the SPP-neck. To modify the features to the 

appropriate output size, the SPP-neck layers convolutional, pooling, and up sampling 

operations. The SPP-neck of the YOLOv6 model is expected to have roughly 20 

layers, though this can vary depending on the individual implementation. 
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 Head: The head of the YOLOv6 model makes the final prediction of object classes 

and bounding boxes from the feature maps provided by the SPP-neck. After several 

layers of convolutional, batch normalizations, and activation layers, a final output 

layer that yields the predictions is usually obtained. The final output layer is 

frequently a fully connected layer that generates a set of bounding box regression 

offsets and score mAP’s, one for each object class. Although the exact number of 

layers in the YOLOv6 model's head may vary depending on the individual 

implementation, it is predicted to be around 20 layers. 

 

 YOLOv8: In our work we used YOLOv8s and unity for all YOLOv5 and YOLOv6 

and now we followed the same pattern for v8 also. In YOLOv8 architecture is 

modified and updated version of YOLOv5. There is lot of improvements in v8 to 

increase the performance and inference in YOLOv8. The architecture as follows in 

Appendix section in detailed ways.  

 

 Backbone: In the Backbone component of YOLOv8, the Cross Stage Partial (CSP) 

concept is employed to partition the feature map into two pieces. Part 1 employs 

convolution processes, while Part 2 concatenates the results of Part 1's convolution 

operations. CSP design improves Convolutional Neural Network (CNN) learning 

capabilities while decreasing computing carry on the network model. YOLOv8 

employs the C2f module, as opposed to the C3 module employed by YOLOv5. While 

the C2f module is made up of two ConvModules and one Bottleneck connected by 

Split and Concat, the C3 module is made up of three ConvModules and one 

bottleneck. It keeps the algorithm model light while allowing YOLOv8 to collect 

additional gradient flow information. Furthermore, the YOLOv8 technique reduces 

the number of blocks in each step from 3,6,9,3 in YOLOv5 to 3,6,6,3 to drastically 

reduce the model's computing overhead. The SPPF module used in YOLOv5 is 

succeeded by YOLOv8 in Stage 4. An SPPF replaces the SPP to boost the model's 

inference speed [9]. 

 

 Neck: Deeper networks, in general, produce more detailed feature information and 

better object prediction outputs. Nonetheless, deeper networks diminish the 

information about the position of things. To reduce information loss for microscopic 

objects, multi-scale feature fusion using FPN and PAN architectures is necessary. The 

Neck section of the architecture uses multi-scale feature fusion of images, in which 

the top features gain more information from more network layers while the lower 

features lose less locational information from fewer convolution layers. The FPN 

structure is used by YOLOv5 to up-sample the bottom feature map from top to bottom 

in order to increase the amount of feature information contained, and the PAN 

structure is used to down-sample the top feature map from bottom to top in order to 

increase the amount of position information contained. These two feature outputs are 

finally blended to ensure trustworthy prediction for photos of varying sizes. YOLOv8 

reduces convolution procedures during the up-sampling stage while maintaining FPN 

and PAN structures. 

 

 Head: In contrast to YOLOv5, which uses the linked head, YOLOv8 employs the 

decoupled head, which separates the classification and detection heads. YOLOv8 

retains only the classification and regression branches, removing the objectness 



Futuristic Trends in Computing Technologies and Data Sciences 

e-ISBN: 978-93-6252-901-5 

IIP Series, Volume 3, Book 3, Part 6, Chapter 1 

                    DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID 

COLLISIONS IN MARINE TRANSPORT 

Copyright © 2024 Authors                                                                                                                       Page | 215 

branch. Anchor Base first creates many anchors in the image before calculating the 

four offsets of the regression item with respect to the anchors to correct the accurate 

object location. Anchor-Free replaces Anchor-Base in YOLOv8, which locates the 

object by its center and then estimates the distance from the center to the bounding 

box. 

 

5. Data Label: Data annotation can be done manually by each image using programming, 

or automatically using programmer like makesense.ai, Roboflow, LabelMe, and others. 

Human annotation is typically thought to be more accurate, but it can be time-consuming 

and expensive. Automated annotation can be faster and less expensive, but it may be less 

accurate, especially for more complicated activities. I labelled the images using 

makesense.ai, a free online platform application for identifying images. In our approach, 

the YOLO label format is used for each image. The YOLO labelling format data is saved 

in a normalized.txt file. 

Bounding box is represented in 4 values along with the class name. YOLO format is: 

[ class name, X-center, Y-center, width, height] 

 

 X-center and Y-center are the normalized coordinates of the bounding box's center. To 

normalize coordinates, we take the pixel values 'X' and 'Y' of the image that mark the 

center of the bounding box on the X and Y axes. Then we divide the value of X by the 

image's width and the value of Y by the image's height. It represents the bounding box's 

width and height. 

Xcenter =  Xmin + Width/2 .........1 

Ycenter =  Ymin + Height/2 .........2 

 

To find co-ordinates of bounding box center is by using the equation 1 and 2. 

 

 In YOLO, bounding boxes can have one of four values (x-center, y-center, width, and 

height). The x- and y-centers of the bounding box serve as its centers in this case. To 

normalize the coordinates, we must first find the pixel values for both x and y, which 

indicate the middle of the bounding box on the x and y axes. The x and y values are then 

divided by the width and height of the image, respectively. The width and height of the 

bounding box are represented by the variable's width and height. They have also become 

normalized. 

 

Mathematical steps are followed for the above ship bounding box normalized. 

 

H = height of Image, W = width of Image 

 
Xmin  + Xmax

2

W
 ,

Ymin  + Ymax

2

H
,

Width of the Bounding Box

W
,

Height of the Bounding Box

H
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6. Data Analysis 

In this project we used a data set from the Images Computer visionwebsite. It is open 

source; in this datait contains 1462 images of 9 types of classes [6]. 

 

The 9 types of classes are: 

 

Class Name Total 

Images 

% of 

Images 

Buoy 68 4.6% 

Cruise Ship 239 16.3% 

Freight(cargo) 29 1.9% 

Ferry 81 5.5% 

Gondola 242 16.5% 

Inflatable 

Boat 

21 1.4% 

Kayak 254 17.3% 

Paper Boat 40 2.7% 

Sailboat 488 33.3% 

 

Table 2.3.1: Each class Dataset Information 

 

Total Class = 9, Total Images = 1462 

 

Once I finished the Data labelling, I explored the categorical data analysisfor cross-verifying 

with its image name and label name. I encountered 4 duplication images present in different 

class folders. From this below table, we can justifythat the total number of images is 1462 

and the unique is 1458 which contains 4duplicates with the same name. I removed those 4 

images from the folder to notconfuse the model for object classification and detection 

concerning it.  

 

Here the total Bounding Box was 2942 which contains of 1458 images are: 

 

7. Data-set Split Information: Dataset is splitted into (80:20) % ratio 80:10: 10 :: Training 

: Validation : Testing 

 

The data set is divided 80:20 percent for each of9classes separately. Our data set is 

unbalanced for each class information. Each class distribution of train, val and test data is 

in below table: 

 

Table 2.3.2: Train Val Inference class Dataset Distribution 

 

Class Name Train Validation Inferenc

e 

Buoy 54 6 8 

Cruise Ship 190 23 25 

Freight(cargo) 23 2 4 

Ferry 64 8 9 

Gondola 192 24 25 
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Inflatable 

Boat 

16 2 3 

Kayak 203 25 26 

Paper Boat 32 4 4 

Sailboat 389 48 49 

Total 1163 142 153 

 

The maximum bounding box is Sailboat of 954 annotation, almost 32% of bounding box and 

lowest is Freight of 61 annotation which is 2% of total bounding box. 

 

 

8. Model Loss Functions: There are different type of loss function, but for object detection 

we uses three different loss functions to train its object detection model. 

 

 Classification Loss: This loss function targets the model for correctly classifying an 

object when it is wrongly identified. It is determined using binary cross-entropy loss 

between the projected and actual class probabilities. 

 Bounding Box Loss: This loss function has an effect on the model if it predicts the 

incorrect bounding box coordinates for an object. It is computed using the smooth L1 

loss between the expected and actual ground truth bounding box coordinates. 

 IOU Loss: When evaluating the effectiveness of object detection, intersection over 

union (IoU) is utilized to compare the predictedbounding box to the ground truth 

bounding box. 

    Object Loss: This loss function targets the model when it predicts the wrong 

objectness score, which is the probability that an object will be present in a certain 

grid cell. The difference between the projected objectness score and the actual 

objectness score is computed using binary cross-entropy loss. 

 

Loss Function is calculated by. 

Loss =  Lbox +  Lobj  + Lcls  

Lbox  =  λcoord  .

s2

i=0

 .

B

j=0

1ij
0  . bj [(xi  −  xi

⋀)2 + (y −  yi
⋀)2]  +  λcoord  .

s2

i=0

 .

B

j=0

1ij
0  . bj [(wi  

−  wi
⋀)2 +  (hi  −  hi

⋀)2] 

Lobj  =  λcoord  .

s2

i=0

 .

B

j=0

1ij
0  . bj [(ci  −  ci

⋀)2 +  λnobj  .

s2

i=0

 .

B

j=0

1ij
n  . obj [(Ci  −  Ci

⋀)2] 

Lcls  =  λcls . 1i
0  . bj  .

cclasses

(ρ(C)  −  ρ(C))2] 

 

Where, 

Lbox  =  Lcoord  is  bounding  box  regression  loss  

Lbox  is classification loss 

Lobj  is confidence loss 

i = current cell number 

j = current anchor number 

B = number of anchor boxes 
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x,y,w,h = Bounding Box (Grounding Truth) 

Ci,j = Confidence 

xΛ, yΛ, wΛ, hΛ  =  Predicted Box 

Cij
Λ  =  Predicted 

 

 

1ij
0  bj =  1ifCi,i = 1,0 Probablility of object exist  

1ij
0  bj =  1 if  Ci,j  = 1, 0(Probability of object exist) 

 

This is the general loss function of YOLO is in this form. Later they modified with different 

techniques of anchor small, medium, and large bounding boxes with different scales of 

object. The enhanced YOLO loss function is in below [10]. 

 

Lossi ,j  =  Lossi ,j
xywh

+  Lossi ,j
p

 + Lossi ,j
c  

Lossi ,j
xywh

 =  
Υcoord

N L obj
 .

s2

i=0

 .

B

j=0

Lij     
0bj

[( xi,j  −  xi,j
⋀ )2 +  ( yi,j  −  yi,j

⋀ )2  +  ( √wi,j  −   √wi,j
Λ)2  

+  ( √hi,j  −   √hi,j
Λ )2] 

Lossi ,j
p

 = -  
Υcoord

N L obj
 .s2

i=0  .𝐵
j=0 𝐿𝑖𝑗     

0𝑏𝑗  .𝑐𝜀𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑝𝑖 ,𝑗  
𝑐  𝑙𝑜𝑔 ( 𝑝𝑖 ,𝑗  

𝑐 ) 

 

𝐿𝑜𝑠𝑠𝑖  ,𝑗
𝑐  =  

𝛶𝑐𝑜𝑜𝑟𝑑

𝑁 𝐿 𝑜𝑏𝑗
 .𝑠2

𝑖=0  .𝐵
𝑗=0 𝐿𝑖𝑗     

0𝑏𝑗
( 𝐼𝑂𝑈

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑖 ,𝑗

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡 ℎ𝑖 ,𝑗  −  𝐶𝑖 ,𝑗
𝛬 )2  +  

𝛶𝑐𝑜𝑜𝑟𝑑

𝑁 𝐿 𝑜𝑏𝑗
 .𝑠2

𝑖=0  .𝐵
𝑗=0 𝐿𝑖𝑗     

𝑛0𝑏𝑗
( 0 −  𝐶𝑖 ,𝑗

𝛬 ) 

 
𝛶𝑐𝑜𝑜𝑟𝑑
𝑁 𝐿 𝑜𝑏𝑗

 =  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝐿𝑜𝑠𝑠𝑖  ,𝑗
𝑜𝑏𝑗

 = Object exists 

𝑥i,j  , yi,j  , wi,j
Λ  , hi,j

Λ  =  square distances of width and height  

 

For object class predictions we use cross entropy loss function  

Cross Entropy Loss = - (yilog (yi
Λ)  +  (1 −  yi) log(1 −  yi) 
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9. Industrial Developments 

 

 Training Pattern 

 
 

Figure 2.5.1: Model Training Flow Chart 

 

This model training plan structure is followed for version5, 6 and version 8 thereis no change 

in model designing. 

 

 Reparametrizing Optimizer: There are numerous approaches for tuning the 

parameters, but for our model, we chose grid cross validation. Instead of selecting all 

of the values in the tables, we employed a strategy that is closest to the prior value. 

Following that, we select neighboring data values for the best optimization value in 

the table depending on the preceding value. Different values for each performance are 

obtained through hyper parameter adjustment. Here are some of the values that were 

tested in order to get the ideal parameter value. 
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Figure 2.6.1: Data Points Graph Grid Search for Cross validation (V5, V6 and V8 from left 

to right) 

 

Table 2.6.1: Grid Search Cross Validation for YOLOv5. 

 

Lr(Learning 

rate) 

m (Momentum) Val mAP(0.5) Train mAP(0.5) 

0.01 0.937 66.20% 65.57% 

0.01 0.927 69.30% 65.64% 

0.01 0.917 72.10% 69.25% 

0.01 0.947 67.70% 63.30% 

0.02 0.947 64.80% 61.44% 

0.02 0.927 66.80% 65.30% 

0.009 0.927 58.70% 59.64% 

 

According to this table, the best performance in learning rate and momentum is 71.1 

at 0.01 and 0.947, as well as 0.009 and 0.937, respectively. In this case, both 

parameters performed well during the training and testing phases. However, it takes 

less time than other methods. 

 

In hyper parameter tuning except momentum(m) and learning rate(lr). We adopted the 

same data augmentation and other parameters in uniform way. So, in this optimization 

phase using grid search table we find the best value for (Lr and momentum). This 

technique we applied for all 3 models in each phase. 

 

Table 2.6.2: Grid Search Cross Validation for YOLOv6. 

 

Lr(Learning 

rate) 

m (Momentum) Val mAP(0.5) Train mAP(0.5) 

0.01 0.937 66.20% 65.57% 

0.01 0.927 69.30% 65.64% 

0.01 0.917 72.10% 69.25% 

0.01 0.947 67.70% 63.30% 

0.02 0.947 64.80% 61.44% 

0.02 0.927 66.80% 65.30% 

0.009 0.927 58.70% 59.64% 
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Based to this table, the best performance in learning rate and momentum of mAP is 

72.1 at 0.01 and 0.917, respectively. When compared to the training phase, this 

parameter fared well in the testing phase. 

 

In YOLOv8 the learning rate of 0.009 and momentum 0.937 with mAP(0.5) of 72.1 

well performance of all other parameters in grid search comparison during best hyper 

parameter finding. 

 

Table 2.6.3: Grid Search Cross Validation for YOLOv8 

 

Lr(Learning 

rate) 

m 

(Momentum) 

Val 

mAP(0.5) 

Train 

mAP(0.5) 

0.01 0.937 72.10% 71.20% 

0.01 0.927 69.90% 70.00% 

0.01 0.947 68.30% 69.4% 

0.01 0.931 66.90% 66.6% 

0.01 0.938 70.90% 70.50% 

0.01 0.936 66.60% 65.60% 

0.02 0.947 59.80% 61.80% 

0.009 0.927 71.60% 71.8% 

0.01 0.947 71.10% 71.1% 

0.009 0.937 72.10% 70.50% 

0.0095 0.937 69.10% 69.30% 

. 

 

In YOLOv8 performed well in each parameter except 1 learning rate and momentum 

remaining all near to + - 70%. 2 parameter perform outstanding well with 72.1% 

mAP(0.5) but in training phase learning rate(lr) = 0.01 and momentum(m) = 0.937. 

Achieved best in testing and training. 

 

III.  EXPERIMENTS 

 

1. Implementation Plan 

 
 

Figure 3.1.1: Class Bounding box Width Height Spread Figure 3.1.2: Cologram for 

Bounding Box Width Height 



Futuristic Trends in Computing Technologies and Data Sciences 

e-ISBN: 978-93-6252-901-5 

IIP Series, Volume 3, Book 3, Part 6, Chapter 1 

                    DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID 

COLLISIONS IN MARINE TRANSPORT 

Copyright © 2024 Authors                                                                                                                       Page | 222 

 

 Data Augmentation: Data augmentation is a technique used in machine learning and 

computer vision to improve the size and diversity of a dataset by creating new 

instances from existing data through various modifications. The goal is to improve 

machine learning model performance by avoiding over-fitting and boosting 

generalization. Data augmentation is the process of creating new instances from 

existing data by modifying it in various ways, such as rotation, scaling, flipping, 

cropping, and adding noise. For example, data augmentation approaches for image 

classification jobs may include flipping, cropping, and adjusting an image's brightness 

or contrast. Data augmentation can serve to improve the size and diversity of the 

dataset, correct class imbalance, and prevent over-fitting. The machine learning model 

gets exposed to a greater variety of instances when utilizing data augmentation, which 

might help it generalize and perform better on fresh, unknown data. In this project, 

data augmentation is performed on image space and color space using an 

augmentation library in an online data loader with random image generation (original 

picture + three random images) for each parameter. 

 

YOLO feeds training data into a data loader, which augments data in real time. 

Colour space changes, scaling, and mosaic data augmentation are the three major 

forms of augmentations used by the data loader. The following are the values of the 

hyper-parameters utilised for data augmentation: 

 

Table 3.1: Data Augmentation Parameter Values 

 

Parameter Value Parameter Value Parameter Value 

perspective 0.0001 degrees 0.2 Hsv_s: 0.7 

scale 0.9 Fliplr 0.5 Hsv_v: 0.4 

shear 0.2 Flipud 0.5 mixup 0.1 

translate 0.1 Hsv_h: 0.015 mossaic 1.0 

 

In all 3 models they adopted strong data augmentation parameters to train the data. In 

this Augmented data can be either slightly modified copies of existing data. There are 

different techniques used in this Augmentation process like HSV, Degree, Translation, 

Scaling, Shear, flip mosaic and mix-up. These parameters are set same for all 3 model as 

default without any changing values from 1 model to another in order to avoid confusion and 

maintain unity. We can change based on our requirements from (0 to 1) which is normalized. 

Here YOLOv8, YOLOv6 andYOLOv5 are the same parameter and value followed. 
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Figure 3.1.3: Data Augmentation Results 

2. Modelling 

 

In our project we used Deep learning models that are primarily based on the structure and 

operation of the human brain, allowing them to process data and make predictions in the 

same way that humans do. 

 

 Training : This is the first phase of modelling after the data pre-processing steps deep 

learning algorithm is trained at this point by being fed to data sets. This is the phase 

where learning occurs. The prediction rate of the DL model can be considerably 

increased with consistent training of data. The model’s weights must be initialized 

earlier. The algorithm will learn to modify the weights appropriately inthis way. To 

get good results, we want to adjust basic parameters and hyper-parameters. In the next 

section explained in detailthe required parameters in our work. 

 Model V5: The pre-design model utilized for the paper is YOLOv5s, which is the 

smallest (14.12 MB) and fastest network model among the available versions, with 

around 7.2M parameters when weights and biases of other models are considered. 

 

The model was re-configured with our own customized parameter below. 

 

Table 3.2.1: V5 Architecture Model Training Parameter Values 

 

Parameter Value Parameter Value 

Model 5s Solver SDG 

Backbone CSPDarknet-53 Data augmentation HSV 

Epochs 100 Image size dimension 640x640 

Batch size 16 Device GPU 

Learning 

rate 

0.01 Anchor boxes: 9 

Momentum 0.947 Weight decay 0.0005 
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Figure 3.2.1: Training Graph Results YOLOv5 

 

The results of YOLOv5 with 100 epochs training results are shown here in above 

training graph of all the metrics of loss (Bounding Box loss, object confidence loss, class 

loss) and mAP @ (0.5 and 0.5:0.95). In loss since it is 0 at initial stage of epochs and later at 

few epochs it is decreasing the loss (box loss and cls loss it takes some iteration(epochs) to 

decrease it. 

 

The training result of YOLOv5 mAP @0.5 is 71.0% and mAP @0.5:0.95 48.1% with 2.58hr 

in Google Colab with 12GB Ram and 1 GPU. 

 

 Model V6: To retain unity, we used the identical Training Parameters and Data 

Augmentation parameters as in YOLOv5, except for the network architecture, and we 

tuned the parameters using grid search (learning rate and momentum). We select the 

best parameter value with the highest mAP from the grid search (see section 4.4 

Model tune YOLOv6 hyper parameter tweaking). The difference in score can be seen 

here. YOLOV6(36.3MB) has 1.57 times the weight of YOLOV5(14MB). 

 

We followed the same pattern except model architecture designed in neural 

network for this model. 

 

Backbone: EfficientRep (RepVGG and CSPREPStack).  

Anchor boxes: nine are used: ((10, 13), (19, 19), (33, 23), (30, 61), (59,59), (59, 199), 

(116, 90), (185, 185), (373, 326)) 

Momentum: 0.917 

 

Table 3.2.2: YOLOv6 Training Results. 

 

Model Epochs mAP 

@0.5 

mAP 

@0.5:0.95 

Hours 

YOLOv6s 100 69.25% 47.65% 2.77hr 
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YOLOv6 training data show that mAP @0.5 is 69.25% and mAP @0.5:0.95 is 47.65 after 

2.77 training hours. Due to higher FLOPS and a larger number of parameters, YOLOv6 has a 

1.75% drop in comparison to YOLOv5 (71.0%) and 11.2 training hours in comparison to 

YOLOv5. 

 

 Model V8: Here the Anchor is a free based model based on regression technique and 

Momentum: 0.937. rest all followed the same.Anchor boxes are used to discover 

object classes with the suitable scale and aspect ratio. A predefined collection of boxes 

with fixed heights and widths is used. During detection, they are tiled across the 

image and selected based on the size of objects in the training dataset. 

 
 

Figure 3.2.2: Training Graph Results YOLOv8 

 

Box loss and confidence loss declines in YOLOv8 began during the early stages of epochs. It 

is linearly connected to loss and epoch until the latter epochs, and class loss is greater. In 

comparison to box and confidence loss, classification loss is greater. It reduced the loss but 

did not reduce the other two losses. 

 

YOLOv8 Model Training results are in Fig 4.15 with trained 100 Epochs with mAP@0.5 

72.1% and mAP@51.2% and time duration are 2.74hr less compared to previous Version 6. 

 

 

 Validation: Model evaluation is the process where the performance of a fully trained 

model is evaluated on a testing data set. 

 

 Model V5: These are the configuration we provided during the validating the data: 

 

Weights: The best trained PyTorch weights in training phase of model   

Batch size: 16  

Image Size: 640  

Image Data: 142  

Confidence Threshold: 0.25 

IoU Threshold: 0.50  

Maximum Detection: 300 
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It gives the misclassified object in the test dataset in the confusion matrix. The 

following confusion matrix is for YOLOv5. The confusion matrix, together with 

accuracy and the PR curve, can be used to estimate recall and precision, which are 

measures used to evaluate model performance. 

 

 
 

Figure 3.2.3: Confusion Matrix Validation Yolov5 

 

 In confusion matrix it gives the mis-classified object in test dataset. The 

belowconfusion matrix gives for YOLOv5. Recall and Precision can be measured usingthe 

confusion matrix, along with accuracy and the PR curve, which are the metricsused for 

evaluating the performance of models. 

 

 The 76.6% Precision, 66.8 % Recall, 0.7 F1 score and mAP@0.5 is 71.1% along with 

step 0.05 mAP@0.5:0.95 is 48.3% in YOLOv5. Information of Precision Recall and F1 score 

calculation is in Metric section of Training and Evaluation. 

 

Table 3.2.3: YOLOv5 Image Computing Time Results. 

 

Speed Time(ms) 

Pre-process time 0.3ms 

Inference time 10.2ms 

NMS time 4.8ms 

 

The amount of pre-process time was taken 0.3ms, Inference 10.ms and NMS is 4.8ms. 

Thecomputing time is for each image out of 142 images in model evaluations. 
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Figure 3.2.4: P, R, PR Curve F1 score Val YOLOv5 

 

The evaluation Results of YOLOv5 Precision Confidence, Recall Confidence and PR curve is 

in graph with mAP 0.5 is 71.1. F1 Curve Validation Yolov5 .70 at .43 

 

The evaluation of the performance of an object detection model YOLOv5 of F1 score value is 

.70 at confidence 0.435. In graph classes are distributed each other paper boating class is over 

fitting and Buoy class is under-fitted. Cruise ship is good fitted in order to consider as best 

among all class. 

 

 Model V6: As previously explained in 3.3.2 section and same followed for YOLOv5 

version. In YOLOv6 in the confusion matrix majority of TP are more and predicted 

good apart from few class less errors. 
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Figure3.2.5: Confusion Matrix Validation YOLOv6 

 

YOLOv6 mAP @0.5 of testing accuracy is 72.1%, in testing we got good and more mAP 

accuracy but in training we got 69.2%. 

 

Table 3.2.4: YOLOv6 Image Computing Time Results. 

 

Speed Time(ms) 

Pre-process time 0.22ms 

Inference time 9.52ms 

NMS time 2.63ms 

 

The testing speed results performance of each image average results here of 142 images. Pre-

processed time is 0.22ms, Inference time 9.52ms and NMS(post process time) is 2.63ms of 

each image results respectively in Table 4.9. Compared to Version v5(table 4.8) all 3 speed of 

pre-process time, NMS and inference time is faster in YOLOv6. 
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Figure 3.2.6: P, R, PR Curve, F1 score  YOLOv6 Validation 

 

YOLOv6 Precision is 0.8 number of positives are more in this model as of v5 compare and 

Recall is .18 less towards ground truth. 

F1 Curve Validation Yolov6 .7 at 0.65 

The P curve value is 80.4, Recall 65, P-R curve value 72.10 @mAP(0.5), F1 value is 0.65 

accuracy of model and mAP@(0.5:0.95) is 48.3 as shown in above graph of each 

metrics values. In F1 value model of each class performed good except blue line (0.65) 

average of other class, except 4 class rate. 

 

 Model V8: In YOLOv8 in the confusion matrix majority of TP are more and predicted 

good apart from few classes with few errors. The majority of 7 classes out of 9 class 

are more than 50% TP. 

 
 

Figure 3.2.7: Confusion Matrix Validation Yolov8 

 

In YOLOv8 achieved good results both in training and testing performance of mAP@0.5 is 

72.1% and 51.2% respectively in above table. 

 

Table 3.2.5: YOLOv8 Image Computing Time Results. 

 

Speed Time(ms) 

Pre-process time 0.21ms 

Inference time 9.4ms 

NMS time 2.54ms 
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The image process time of each image with average of all 142 images is less in YOLOv8 

with pre-process time 0.21ms, inference time 9.4ms and NMS time 2.54ms. In all other 

model is more than comparable in terms of computational time. This is one of the advantages 

in inference for next steps. 

 

 
 

Figure 3.2.8: P, R, PR Curve Validation YOLOv8 

 

YOLOv8 Precision is 0.73 number of positives are in this model and Recall is .64 is in above 

graph of each class performance in PR curve. 

F1 Curve Validation Yolov8 0.68 at .35 

The F1 Score of YOLOv8 is .68 at 0.35 confidence with mAP @0.5 as in above graph. many 

class are performance is difference due to several reasons of data imbalance and others. As 

here all 3 models are having different values for F1 value and curves is in each evaluation 

phase of model results. 

 



Futuristic Trends in Computing Technologies and Data Sciences 

e-ISBN: 978-93-6252-901-5 

IIP Series, Volume 3, Book 3, Part 6, Chapter 1 

                    DEEP LEARNING FOR AUTOMATIC RECOGNITION OF BOATS AND SHIPS TO AVOID 

COLLISIONS IN MARINE TRANSPORT 

Copyright © 2024 Authors                                                                                                                       Page | 231 

 

 YOLOv8 TensorFlow Lite Evaluation: To evaluate the TFLite model, which cannot 

be used directly, we must first convert from PyTorch to ONNX format, then 

TensorFlow, and finally TFLite. The robust and open Open Neural Network Exchange 

(ONNX) format was created for communicating machine learning models. It 

overcomes the issue of easily for edge devices by providing a uniform intermediary 

model format. The detailed explanation of model conversion may be found in the final 

deployment part, step by step (for conversion model detailed steps in deployment 

section). 

 

 In order to save weight, the YOLOv8 model is transformed to TensorFlow lite 

for edge device testing. So I adapted the TFLite model in PyTorch. I calculated the 

same data for the TFLite model. Even if it loses some percentage in mAP@0.5 and 

mAP0.5:0.95, the model performance is good. The table below provides thorough 

information on the performance of the float16 and float32 bit models. 

 

Table 3.2.6: TFLite YOLOv8 Validation Results. 

 

Model Precision Recall PR F1 mAP@0.5 mAP@0.5:0.95 

float16 79 56.1 72.10(@0.5) 0.68 (@ 

0.5) 

67.5 47.5 

float32 78.6 56.1 72.10(@ 

0.5) 

0.68(@0.5) 67.3 47.6 

 

The float16 and float32 perform quite well in mAP@0.5, with only a 0.02 loss percentage in 

float32 because to its strong convergence, and with +0.1 higher accuracy in mAP(0.5:0.95). 

 

Table 3.2.7: YOLOv8 Image Computing Time Results. 

 

Speed float16 foat32 int8 

Pre-process time 0.5ms 0.3ms 0.3ms 

Inference time 875.9ms 864.7 1055.9ms 

NMS time 1.5ms 1.6ms 1.7ms 

 

Each TFlite model performs on float and int quantization results. 

 

 Model Inference: Trained deep neural networks (DNN) draw inferences or make 

predictions when provided with new or novel data that the model has never seen 

before. We decided to convert model edge for YOLOv8 since model performance is 

good in terms of mAP@0.5 and mAP@0.5:0.95 in terms of both training and testing 

of metric consideration. Here are YOLOv5 and YOLOv6 for model discussion. The 

table below contains information on the computing outcomes of each model type. 

Speed Time(ms) 

Pre-process 

Time 

0.6ms 

Inference Time 21.3ms 

NMS Time 1.7ms 
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YOLOv8 PyTorch Inference Speed Results 

 

Speed Time(ms) 

Pre-process 

Time 

0.6ms 

Inference Time 21.3ms 

NMS Time 1.7ms 

  

YOLOv8 ONNX Inference Speed Results 

 

Table3.2.8:YOLOv8 TFLite Inference Speed Results 

 

Speed float16 float32 int8 

Pre-process time 20.3ms 17.9ms 18.7ms 

Inference time 875.9ms 833.0ms 976.1ms 

NMS time 1.9ms 1.6ms 1.9ms 

 

The YOLOv8 performance of each model in inference stage from PyTorch model to tflite for 

153 images in pre-process, inference, and NMS time. 

 

10. Comparisons with Models 

 

Each Class Evaluated AP@0.5 

 

Table 3.3.1: Average Precision (@0.5) Obtained for each class evaluation. 

 

Class YOLOv5 YOLOv6 YOLOv8 

Buoy 0.294 0.349 0.275 

Cruise Ship 0.916 0.901 0.920 

Ferry 0.685 0.585 0.604 

Sailboat 0.871 0.887 0.889 

Freight (Cargoship) 0.557 0.912 0.673 

Inflatable Boat 0.512 0.473 0.540 

Gondola 0.828 0.788 0.852 

Kayak 0.688 0.607 0.822 

Paper Boat 0.995 0.981 0.9064 

mAP 0.711 0.721 0.721 

 

Evaluation of each model with each class performance in testing phase. There are 5 class 

have more accuracy and some of classes are dominates near to score.  

 

Table 3.3.1: mAP of Training and Testing results. 

 

Model  Training 

%  

Testing 

% 

YOLOv8s  71.2 %  72.1 % 

 

mailto:AP@0.5
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YOLOv8 model performance in training and testing while 0.9% is more in evaluating the 

model with mAP@0.5. 

 

Table 3.3.2: mAP of tflite. 

 

Model Testing 

% 

YOLOv8s.tflite 67.5 % 

 

TFLite Model performance in testing phase with mAP@0.5 is 67.5% for next stage of 

deployment phase. But PyTorch to TFLite .056% is reduced due to converting from one stage 

to another stage. 

 

Results of YOLOv5, YOLOv6, YOLOv8 Comparisons 

 

Model Results YOLOv5 YOLOv6 YOLOv8 

 

Table 3.3.3: Model Results. 

 
Method  Size  Epoch  APv(50

)  

APv(50:

95)  

 Par(M)  FLOPS(G)  APtr(50)  APtr(50:95) Hrs 

YOLO5

s  

640  100  71.1  48.3  7.03  15.8 71.0  48.1  2.58 

YOLO6

s  

640  100  72.1  48.3  18.51  45.18  69.25  47.65 2.77 

YOLO8

s  

640  100  72.1  51.2  11.13  28.7  71.3  50.7  2.74 

 

From this table YOLOv8 performance is good when compare to YOLOv5 and YOLOv6 in 

terms of mAP(0.5) and mAP(0.5:0.95) both testing and training. So we choose YOLOv8 and 

achieved with best new stage of art. 

 

IV.  DEPLOYMENT 

 

Several steps are required to convert a PyTorch file to TensorFlow Lite (TFLite) format for 

edge deployment. Here's a rundown of the procedure: 

 Save the PyTorch model as an ONNX file: To convert a PyTorch model to 

TensorFlow Lite format, first export the model to the ONNX format. ONNX is an 

open deep learning model representation format that may be utilised by a variety of 

frameworks, including TensorFlow. The torch.onnx.export() function can be used to 

convert a PyTorch model to ONNX format. The PyTorch model, an example input 

tensor, and the output route where the ONNX model will be saved are all passed to 

this function. The PyTorch model is loaded from a file called yolo.pt in this code 

excerpt. Finally, we use the onnx.export() function to convert the PyTorch model to 

ONNX format and save it to a file called yolo.onnx. 

 

 Converting the ONNX model to TensorFlow format: Now that we have the 

PyTorch model in ONNX format, we can convert it to TensorFlow format. We can 

accomplish this by utilising the tf2onnx package, which includes the onnx-tf module, 

mailto:mAP@0.5
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which can convert an ONNX model to TensorFlow format. The input ONNX model 

file (yolo.onnx) and the output TensorFlow model file (yolo.pb) are specified in this. 

The ONNX model will be converted to TensorFlow format and saved to the given 

output file by the onnx-tf library. 

 

 To convert the TensorFlow model to TFLite format, follow these steps: The 

TensorFlow model must now be converted to TensorFlow Lite format. This is possible 

thanks to the TensorFlow Lite Converter, a Python library that includes a Converter 

class that can convert a TensorFlow model to TFLite format. 

 

First, use the load function to load the TensorFlow model from the yolo.pb 

file. We then use the tf.lite.TFLiteConverter() function to generate a Converter object 

from the supplied model. Finally, we use the converter.convert() function to convert 

the TensorFlow model to TFLite format and save the resulting TFLite model. 

The model tested in hardware board and results are in below table 

 

Table 3.3.4: YOLOv8s .tflite Model performance on IMX8MP Board 
 

IMX8MP Hardware with YOLOv8s Model [11] 

 

Processor Model type Img Size(pixels) FPS 

CPU Float16 640x640 0.28FPS 

CPU Float32 640x640 0.29FPS 

CPU INT8 640x640 0.41FPS 

 

Original Model vs Our Reconfigure Model 

 

Table 3.3.5: Original Model 

 

Method APv(50) APv(50:95) APt(50) APt(50:95) 

YOLO5s 69.4 44.3 69.0 44.9 

YOLO6s 65.64 45.19 69.2 47.1 

YOLO8s 71.1 50.1 69.90 48.5 

 

Table 3.3:6: Our Model 

 

Method APv(50) APv(50:95) APt(50) APt(50:95) 

YOLO5s 71.1 48.3 71.0 48.1 

YOLO6s 72.1 48.3 69.25 47.65 

YOLO8s 72.1 51.2 71.3 50.7 

 

V. RESULTS 

 

Our model is not 100% so somewhere is error or miss classified or detect in results. 

Here detection results as follows. In the figure it is detected correctly as sailboat but in 

image there are still objects couldn’t able to recognize other images. Here in this point of 

stage model performance is down, and if we observe carefully in confusion matric there, 

we can find TN and FP results classified. 
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Figure 3.3.1: Detection Results 

 

These are the results from models shown in all possible classes with large image, 

small image, cropped image, top view image, with low and high resoluted image with 

640X640 pixels. 
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Figure 3.3.2: Video Processed Image 

 

VI. CONCLUSION 

 

In this work is a proposed for the real time implementation of Automatic Recognition 

of Boats and Ship method for detecting ship and boats in marine environment. Based on our 

experiment and the result we obtained, we can see how YOLO models deep learning can be 

implemented by using object detection algorithm for developing a object recognition system. 

The CPU and hardware tools used to conduct this Experiment work are state-of-the-art 

platforms regarding deep neural network and object recognition model. Our main 

contribution to the work is to apply the state-of-the-art YOLO model to do the detection of 

ship and boat detection in marine environment. Even with a small dataset, the model 

performance is good compared to version 5 and version 6. The presented comparison of three 

deep convolutional neural network YOLOv5, YOLOv6 and YOLOv8. shows that YOLOv8 

reconfigured has the highest accuracy, reaching approximately 72.1% mAP(0.5) in testing 

and training 71.1% mAP(0.5) accuracy. And to testhardware, we converted PyTorch model to 

TensorFlow Lite model for edge device IMX8MP hardware with different model type with 

float16, float32 and int8 with 640 x 640-pixel size image. Model with int8 quantization 

performed good compared to float16 and float32 with .41 FPS with camera in real time 

testing. The primary conclusion from our analysis of the results is that neural networks can 

learn and identify things, as shown in the results section and in the comparison of our three 

models. 
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 Discussion &Future Work: This work is an experimentation of real time object 

recognition in the real world for marine ships and boats. To work in the realworld, it 

should me more robust and productive for the next production stage. There are several 

improvements to be made to our model. In terms of data-set size of each class should 

increase at least 100 which is having below 100 images in dataset. This could be done 

by more labelling of the images of having less data. Since time required for the 

computation is more, we were not able to run more epochs means more than 100. We 

followed maximum 100 epochs for all 3 models even in hyper-parameter tuning to see 

how it works in the long run due to limited resources and time. For addressing these 

parameters defining and more parameters in GPU environment on cloud for large data 

in future step which is having less mAP(0.5) accuracy in testing results. So, by 

addressing these changes in setup the model and system is more robust and efficient. 

Based on the characteristics of object recognition algorithm it can be used in different 

domain technologies to detection and classification for real time application such as 

 

Computer Vision Applications for Transportation 

1. Object recognition in ariel or satellite view. 

2. Automatic vehicle number plate recognition in toll gate 

3. Vehicle parking using smart allocated detection area 

4. Vehicle counting system 

 

Computer Vision Applications for Agriculture 

1. Vegetables or Fruits detect and classify in food industries 

2. Poultry or domestic animal in monitoring animals 

 

Intrusion Detection or trespassing areas 

• People counting in shopping malls 

• Airport facial recognition and security purposes 

• Healthcare and Medical imagining applications 

 

So object recognition systems have a many tremendous potential application indifferent 

domain areas in engineering research. 
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Appendix A 

 

Acronym: The following abbreviations are used in this manuscript: 

 

1. AI: Artificial Intelligence 

2. ML: Machine Learning 

3. DL: Deep Learning 

4. NN: Neural Network 

5. DNN: DeepNeuralNetwork 

6. CNN:ConvolutionNeuralNetwork 

7. YOLO:YouOnlyLookOnce  

8. mAP:MeanAverage Precison  

9. CV:Computer Vision  

10. CV: Cross Validation  

11. IOU: IntersectionOverUnion 

12. FP:FalsePositve 

13. TN: TrueNegative 

14. TP:TruePositive 

15. AP: AveragePrecision 

16. Lr:LearningRate 

17. TF:Tensorflow  

18. SB DatasetShip – BoatDataset  

19. FPS:FramePerSecond  

20. Lr:LearningRate 

21. SVM:SupportVectorMachine  

22. NMS:Non-MaxSupression  

https://www.variscite.it/product/system-on-module-som/cortex-a53-
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23. FPN: Feature Pyramid Networks  

24. CSP: Cross Stage Parital Network  

25. SPP: Spatial Pyramid Pooling  

26. PAN: Path Aggregation Networks  

27. CSP: Cross Stage Partial networks 

28. AP: Average Precision 

29. ONNX: Open Neural Networks Exchange  

 

Appendix B 

 

  Workflow of Project: 

 

The project’s flow is shown in the below diagram, with each step leading from one 

stage to the next being denoted by a number and an arrow. Data was initially obtained from 

the image.cv website’s database and then placed onto the local system disk. Once the data has 

been gathered, it becomes challenging to analyze the data for the image. I either need to use 

Excel or another format to extract the data in much more detail. Data extraction is done in 

parallel, utilizing the Makesense.AI cloud tool for csv files in step 2, in order to perform data 

analysis. Here, I externally divide the data for the train, val, and test, and I begin labeling the 

classes in step 3. 

 

Step 4 involves loading the local disk with the transformed csv data and annotation 

files. Once more, we used the EDA procedure to cross-check the data with the csv file. 

Removed duplicate data from one class to another and crosschecked it with the annotation 

and image files in the train-val-test folder using a csv file. The model train-val-test process is 

then performed in step 5 in conjunction with a quicker approach using one GPU. For good 

accuracy, we performed hyper-parameter adjustment here. We converted the model from 

Pytorch-ONNXTensorflow-TFLite for edge devices in step 6 in order to deploy the model 

after model training. The changed model is then loaded once more into the local system for 

inference check. This is the last phase of the project’s step 9,10 real-time check deployment. 

To check the object with FPS, a TFLite Model is deployed onto an IMX8MP MEK hardware 

board with a camera . 
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YOLOv5  
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Figure B1: Yolov5 Deep Architecture 

YOLOv6 

 
 

Figure B.2: Yolov6 Deep Architecture 

 

YOLOv8 
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Figure B.3: Yolov8 Deep Architecture 

 

 


