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Abstract 

 

Proteins are unique macromolecules 

made up of a long chain of amino acids and are 

classified based on their function, structure, 

shape, chemical composition and solubility in 

different solvents. A wide variety of proteins are 

prone to misfold and create intracellular or 

extracellular aggregates that cause severe cellular 

malfunction. The importance of the protein 

folding problem was recognized and put forward 

50 years back by distinguished scientists. 

Understanding the dynamics of protein folding is 

crucial and this can help us predict the ultimate 

configuration of functional protein. Many of the 

life-threatening diseases are caused by the 

misfolding of proteins. The reason for the 

misfolding can be point mutations since the 

three-dimensional structure of proteins depends 

on the primary sequence of its amino acid. 

Despite fifty years of research, we still need to 

fill the knowledge gap and accelerate our 

understanding, particularly in computational 

biology for the accurate prediction of protein 

structure. Homology modeling is utilized to 

predict protein structure in absence of 

experimental structure. Artificial intelligence, 

machine learning, and deep learning are being 

used extensively by researchers to 

computationally estimate a protein's structure 

based only on its amino acid sequence. 

AlphaFold which is in a second iteration tool has 

changed the perception about protein folding by 

solving the unsolved structures. 
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I. INTRODUCTION 

 

Proteins are the building block of macromolecules and are found in all living systems 

including prokaryotes and eukaryotes. Proteins are unique amongst the macromolecules in 

underpinning every reaction occurring in a biological system (1). Proteins are made up of 

amino acids, which are attached to long-chain fatty acids called polypeptides. The 

polypeptide chains fold into their final three-dimensional structure to constitute a functional 

protein. Twenty different types of amino acids can be combined to make a protein. Amino 

acids are coded by a combination of three nucleotides called codon which is determined by 

the sequence of genes (2). 

 

Proteins are classified based on their function, structure, shape, chemical composition 

and solubility in different solvents (3). Folding and unfolding of proteins are crucial ways of 

regulating biological activity and targeting proteins to different cellular locations. 

Aggregation of misfolded proteins that escape the cellular quality-control mechanisms is a 

common feature of a wide range of highly debilitating and increasingly prevalent diseases 

(4). The folding of proteins is primarily driven by peptide bonds, hydrogen bonds, di-sulphide 

bonds and hydrophobic bonds. 
 

Central dogma and protein folding: Proteins undergo reversible structural changes in 

performing their biological function. There are four protein structures, Primary, Secondary, 

tertiary and quaternary (5). The primary structure is held together by peptide bonds that are 

made during the process of protein biosynthesis. Secondary structure refers to highly regular 

local sub-structures on the actual polypeptide backbone chain and it is defined by patterns 

of hydrogen bonds between the main-chain peptide groups. Two main types of secondary 

structure, the α-helix, random coils and the β-strand or β-sheets, were suggested in 1951 

by Linus Pauling et al (6).  

 

 
 

Figure 1:  shows the central dogma of life which leads to protein synthesis and finally 

post-translational modification which gives rise to the secondary structure of a protein. 

https://en.wikipedia.org/wiki/Peptide_bonds
https://en.wikipedia.org/wiki/Protein_biosynthesis
https://en.wikipedia.org/wiki/Secondary_structure
https://en.wikipedia.org/wiki/Hydrogen_bonds
https://en.wikipedia.org/wiki/Alpha_helix
https://en.wikipedia.org/wiki/Beta_strand
https://en.wikipedia.org/wiki/Beta_sheet
https://en.wikipedia.org/wiki/Linus_Pauling
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The Tertiary structure refers to the three-dimensional structure created by a single 

protein molecule (a single polypeptide chain). The tertiary protein structure folding is driven 

by the non-specific hydrophobic interactions. The quaternary structure of a protein is the 

three-dimensional structure consisting of the aggregation of two or more individual 

polypeptide chains (subunits) that operate as a single functional unit (multimer). There are 

several types of proteins: antibodies, enzymes, hormonal proteins, structural proteins, storage 

proteins, receptor proteins and transport proteins (7). 

 

Different proteins can misfold and form extracellular or intracellular aggregates that 

initiate catastrophic cellular dysfunction. Particularly challenging examples of such disorders 

occur in the post-mitotic environment of the neuron and include Alzheimer's and Parkinson's 

diseases. Understanding some of the principles of protein folding has helped to explain how 

such diseases arise and will help in the field of medical science (8). 

 

II. PROTEIN FOLDING PROBLEM 

 

Some of the fundamental questions about protein folding arose during the 1950s such 

as how mRNA codons dictate the amino acid sequence (9). The information about the native 

three-dimensional structure of the proteins is present in the amino acid sequence but how 

biologically proteins fold so fast (10). Christian Anfinsen was one of the pioneer scientists in 

the biochemistry field who attempted in the year 1959 to merge the recently developing area 

of protein chemistry with classical genetics in his manuscript entitled “The molecular basis of 

evolution. He set the platform for the expansion of molecular biology based on the 

determination of nucleic acids and protein sequence and shared the Noble Prize with Moore 

and Stein in chemistry in the year 1972 for his work on the link between the amino acid 

sequence and the biologically active protein conformation (11). 

 

1. Energy landscape theory of protein: Thermodynamically protein tends to fold from 

open to compact in the lowest free energy possible which is considered the most stable 

state (12). The stability of the protein increases as it starts folding into the local structure 

and finally to the global structure. There are many research gaps in understanding the 

mechanisms of protein folding, the kinetics of partially structured folding intermediate, 

and measuring the interatomic interaction in nano to microsecond time scale (13). We still 

do not have a distinct real-time evaluation technique which could take snapshots in a 

nano-second time scale while the primary sequence of amino acids is folding to its native 

structure (14). The free energy landscape of protein is a statistical analysis of protein 

folding, it is a well-founded model that describes how protein folded into its native 

structure. Very few compact and low free energy conformations of the folded protein fit 

in the narrow bottom of the funnel-shaped energy landscape (Shown in figure 2 A & B) 

(15). A landscape which appears favourable on a global scale can be unfavourable on the 

local scale. We still could not figure out how the different amino acid residues of the 

same protein follow different folding routes for the common native structure (16). Force 

fields are used in computer simulations to study molecular dynamics (17). It gives the 

mathematical expression of energy exchange in the system on coordinates of its 

components, it describes how the interatomic forces are acting upon one another. 

Empirical force field-based simulations have some limitations such as they cannot give 

https://en.wikipedia.org/wiki/Tertiary_structure
https://en.wikipedia.org/wiki/Polypeptide_chain
https://en.wikipedia.org/wiki/Hydrophobic_interactions
https://en.wikipedia.org/wiki/Multimer
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information about the distinct structure of electronic arrangements, its excitations, making 

and breaking of bonds, and charge transfer (18). 

 

 
 

Figure 2: Showing (A) the varying free energy funnel with respect to different 

conformational states of a protein. (B) Gibbs free energy landscape for the major two 

principal components in two-dimensional representation (Ganguly et al., 2022).  

 

2. Consequences of protein-misfolding: More than half a century of research revealed that 

various forces contribute to the protein structure like hydrogen bonding, electrostatic 

interactions, Van der wall interactions, hydrophobic interactions, backbone angle 

preferences and chain entropy (19). Many diseases are also caused by misfolding of 

proteins like Creutzfeldt-Jakob disease, type 2 diabetes, Alzheimer etc. study of these 

diseases provide us with more clue about the significance of misfolding of protein and its 

related consequences. The last 50 years was a period of enormous advancement in the 

protein folding problem. With techniques like energy landscapes, single-molecule 

methods, fast temperature jump methods along with bioinformatics tools we can address 

the current problem of protein folding with more accuracy (20). 

 

III.  ARTIFICIAL INTELLIGENCE IN PROTEIN STRUCTURE PREDICTION 
  

A method for predicting protein structure known as comparative or homology 

modelling is based on the basic insight that proteins with related sequences have related 

structures (21). To gain an understanding of the structure and function of these proteins in the 

absence of experimental structures, computational approaches are employed to predict 3D 

protein models. Protein models created using a variety of automated techniques can be found 

in repositories such as the SWISS-MODEL (http://swissmodel.expasy.org/SWISS-

MODEL.html), Protein Model Portal (http://proteinmodelportal.org) (22), and Modbase 

(http://modbase.compbio.ucsf.edu) (23). For the benefit of biologists and experimentalists 
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working on structural genomics and biomedical research projects, these servers offer models 

that can be used as starting points. But without human intervention, errors brought on by 

incorrect sequence alignment and the inability to recognize and accurately model domains, 

such as loop and ligand-binding regions, are amplified, leading to low-accuracy generated 

models, which restricts their applicability to drug discovery projects (24,25). Research is 

currently being done on the creation and advancement of homology modeling refinement 

tools for drug discovery (26). 

 

Researchers are increasingly using Artificial Intelligence (AI) methods to 

computationally estimate a protein's structure based solely on its amino acid sequence (27, 

28, 29). AlphaFold is a DeepMind AI system that creates cutting-edge predictions of protein 

structures from their amino acid sequences (27). Artificial intelligence software created by 

DeepMind is well renowned. Its primary goal is to push the limits of artificial intelligence by 

creating computers that can figure out how to tackle any hard problem on their own, without 

any training or prerequisite knowledge. A powerful general-purpose learning algorithm set is 

created, and an AI is subsequently made by combining them (30). Deep learning enables 

computational models, which are made up of several processing layers, to learn 

representations of data at various levels of abstraction. The state-of-the-art has been 

significantly enhanced by these techniques in many other fields, including drug discovery and 

genomics, as well as speech recognition, visual object recognition, object detection, and 

many more (31). In a competition in March 2016, Google's artificial intelligence (AI) 

computer program AlphaGo defeated Lee Se-dol, the top Go player in the world, winning 4 

of 5 games (32). AlphaGo Zero can self-train at computer speeds without human assistance 

since it has enough data to create, play, and evaluate any legal game that might exist in its 

world (33,34). 

 

1. Journey from CASP to AlphaFold-2: AlphaFold is now in its second iteration which is 

developed from the Critical Assessment of Structure Prediction (CASP14) algorithm, the 

protein structure predicting software using Artificial intelligence. In between the 

AlphaFold1 came into existence in 2019 (35).  If the accuracy in predicting the structural 

similarity between the experimentally deduced structures and the predicted one comes to 

90 and above it means there are very less discrepancies in prediction. Before AlphaFold 

came into existence this accuracy lied in between 30-40 % in accuracy for different 

versions of CASP (36). For the first time, AlphaFold has achieved an accuracy of above 

80 % which has become the game changer in the field of structural prediction. And the 

second iteration has even enhanced this accuracy to near 90 % (37).   
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Table 1. Shows the number of available experimentally derived structures present in the 

Protein data bank ("PDB Current Holdings Breakdown". RCSB.). 

 

Proteins have a high level of individuality and diversity even among the same 

family, each amino acid sequence gives rise to an intricate arrangement of the amino acid 

which leads to 3-dimensional spatial arrangement and interactions which gives rise to 

protein folding. There are about 8 million sequences present in a non-redundant protein 

sequence database and compare to that the experimentally derived structures present in 

the Protein data bank (RCSB-PDB) are very less (Shown in Table 1) (38). As there is a 

huge gap between the available sequences and the derived structure for a protein highly 

accurate algorithm with a high confidence rate can help fill the gap by modelling and 

predicting the accurate protein structures. AlphaFold not only helped in predicting the 

protein structures to a high level of confidence but also predicted the low electron density 

region to the nearest probable loop structure (39). On a multimer challenge, the 

AlphaFold 2 predicted a very highly accurate protein-peptide complex formation which 

was found to be more fitting as compared to other commercial software (40). AlphaFold 

protein structure database (https://AlphaFold.ebi.ac.uk) which contains several protein 

structures which are biologically important and are not present in a publicly available 

protein data bank. AlphaFold structures were tested with crystal structures found to be 

very similar as compared to other homology-modelled structures (41). AlphaFold has 

mitigated several experimental limitations to study protein dynamics such as membrane-

bound proteins as well as large proteins such as nuclear pore complex which are difficult 

to isolate and crystalize. There are an enormous number of proteins which are important 

from fundamental research point of view which we don’t have much knowledge about 

with respect to their structural and functional aspects (42). 

 

Experimental Proteins Nucleic 

Acids  

Protein/Nucleic 

Acid 

Other Total 

Method complexes 

X-ray diffraction 135170 2097 6945 4 144216 

NMR  11337 1325 264 8 12934 

Electron 

microscopy 

3475 35 1136 0 4646 

Hybrid 155 5 3 1 164 

Other 286 4 6 13 309 

Total: 150423 3466 8354 26 162269 

http://www.rcsb.org/pdb/statistics/holdings.do
https://alphafold.ebi.ac.uk/
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/X-ray_crystallography
https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopy_of_proteins
https://en.wikipedia.org/wiki/Cryo-electron_microscopy
https://en.wikipedia.org/wiki/Cryo-electron_microscopy


Futuristic Trends in Biotechnology 

e-ISBN: 978-93-5747-464-1 

IIP Proceedings, Volume 2, Book 27, Part 3, Chapter 1 

LEVERAGING THE STRENGTH OF ARTIFICIAL 

INTELLIGENCE IN SOLVING PROTEIN STRUCTURES BY 

ALPHAFOLD-2-A MODERN APPROACH TO UNDERSTAND PROTEIN DYNAMICS 

 

Copyright © 2022 Authors                                                                                                                      Page | 240  

  

Figure 3: Showing some biologically important protein structures which are not derived 

experimentally but present in alfa fold protein repository such as (A) Leucine zipper 

motif present in humans, (B) Angiopoietin-like 3, (C) Transcription factor IIB in homo 

sapiens, (D) Serine/threonine protein kinase (E) Human albumin protein (F) NADPH 

oxidase-1, (G) human F-box protein (H) Xanthine oxidase. 

 

 

2. Solving the yet to be solved protein galaxy: Proteins such as Leucine zipper (LZ) 

structural motifs which are also known as leucine scissors found in several different 

transcription factors with 20-40 amino acids of an alpha helix which is rich in leucine in 

every seventh position (43). LZ binds to the major groove of the DNA in the “ACGT” 

rich repeat within the promoter or enhancer region with the N-terminal domain and helps 

in the process of transcription. The structure of the leucine zipper motif in a human was 

not available in PDB and is derived by AlphaFold with a high level of accuracy (shown in 

figure 3. A). Angiopoietin-like 3 (ANGPLT-3) protein inhibits lipoprotein lipase which is 

an enzyme that degrades lipoproteins. Several recent studies have predicted that 

ANGPLT-3 can be an excellent therapeutic target against several cardiovascular 

conditions (44). AlphaFold derived complete protein structure for ANGPLT-3 (shown in 

figure 3.B) was not available in any publicly available protein database. Factor in 

transcription Growth hormone-secreting pituitary adenomas' production of the aryl 

hydrocarbon receptor-interacting protein (AIP) protein is controlled by GTF2B also 

known as Transcription factor IIB, which also influences tumour behaviours. This can be 

a probable marker for cancer biology and due to the lack of experimental structures, there 

was less scope in the field of structure-based drug discovery (45). AlphaFold has helped 

in deriving this important biological macromolecule very precisely (Shown in figure 3.C). 

AlphaFold derived protein structure of Serine/Threonine Kinase was not present 

previously and was derived with a high confidence level (shown in figure 3.D) (46), It is 

an effective enzyme target in the treatment of ovarian cancer patients. Figure 2. E is 
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showing the most abundant protein in blood plasma, human serum albumin protein and 

the AlphaFold derived structure was found highly similar to the experimentally derived 

structure (47).  NADPH oxidase-1 (nox-1)  is a major player in Reactive oxygen species 

(ROS) production and plays an important role in clinical conditions such as pulmonary 

ischemia which can cause a catastrophic outcome (48), AlphaFold structural database for 

the first time made this structure publicly available (Shown in figure 3.F) for Insilco 

experimentations. Human F-box protein which helps in the protein-protein interaction in 

the process of ubiquitination plays a very significant physiological role, AlphaFold has 

reported the complete accurate structure of F-box protein (Shown in figure 3.G) (49). The 

production of uric acid depends on the enzyme xanthine oxidoreductase (XOR). 

inhibition of excess uric acid production improves patients who have reduced 

cardiovascular function. For the first time, the structure of XOR has been derived by 

AlphaFold 2 (shown in figure 3.H) (50).  

 

3. AlphaFold architecture: The AlphaFold 2 architecture consists of three important parts. 

The first step includes “Embedding” which involves a multiple sequence alignment of 

the query sequence with others and finding template structures. No coordinates are 

associated with any of this data, which is not embedded in 3D space (51). The second part 

is called “The Trunk” which involves a pairwise alignment of the residue-residue graph 

edges and the sequence-residue graph edges. Similar to relative distances in 3D space and 

relative angles, the residue-residue edges convey pairwise information between all 

residues. The edges of the sequence residues can include information on sequence 

evolution. Pairwise distances may be predicted using this information, but more 

significantly, it is given to the structure module so that it can create the structure's 3-

dimensional coordinates. Strings of amino acids are used by the "Embedding" and the 

"Trunk" to generate matrix descriptions of possible interactions and relationships (52). 

The third and final module includes “The Structure module” which refines backbone 

coordinates and predicts side chains using a 3D equivariant transformer architecture. This 

network's job is to predict new red triangle placements and orientations as well as the 

confidence score (53). 

 

 
 

Figure 3. Showing the overall architecture of AlphaFold-2 (DeepMind blog, November 

2020). 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ischemia
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 The backbone is represented by oriented red triangles. It becomes complicated in 

the structural module. Unexpectedly, 3D coordinates appear. Normal neural networks are 

unable to recognise coordinates. Coordinates are just integers by default. Even though the 

energy doesn't change when the backbone is rotated, these values do. Although dealing 

with global rotations accurately imposes a learning challenge that is far from 

straightforward, a neural network might presumably learn this. The structural module of 

AlphaFold 2 is not required to learn this. Its design combines it. To do this, it combines 

the ideas of equivariance and self-attention (also known as the transformer mechanism) 

(54). Transformer and self-attention are two terms that are frequently used 

interchangeably to refer to a neural network mechanism that acts on a collection of 

objects (an object may, for example, be an atom or an amino acid) and enables the 

querying of particular data. A self-attention layer updates the nodes' characteristics as it 

maps from set to set, or in our instance, graph to graph. It examines one thing at a time, 

says a carbon atom, and makes enquiries about nearby objects based on the data or 

attributes associated with that carbon atom (55). For instance, it could be very helpful to 

look for nitrogen atoms nearby given what we currently know about the position of the 

carbon atom. The second machine learning concept that is used is called equivariance. 

The most effective approach to demonstrate it is to use CNN's (convolutional neural 

networks). Convolutional layers shift their output by three pixels to the right for every 

three pixels that the input image is moved to the right because they are translation 

equivariant. If the input is shifted a few pixels to the right, the problem isn't entirely new. 

Utilizing this symmetry and treating the two inputs equally is essential since doing so 

reduces overfitting, saves parameters, and speeds up learning (56).  

 

With the development of high-performance computing and cloud computing 

research on artificial intelligence has enhanced and emerging with a lot of solutions to 

several problems that were present in the society for ages. AI is being used in different 

aspect of life from share market stock prediction to navigate a car, from translating any 

language using your phone camera to defeating the world famous go player multiple 

times. The advancement in the field of medicine will not only make AlphaFold as a game 

changer but it will definitely solve several diseases related to protein dysfunction due to 

improper folding, protein overexpression, mutations. AlphaFold has helped the 

bioinformatics community by giving a solution to the unsolved structures, thereby leading 

to development of structure-based inhibitor design and also understanding protein 

dynamics in details. It is expected that in coming days the tool will further enhance its 

capabilities with advancement of Artificial intelligence and deep mining. 
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