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Abstract 
 

Samuelson (1970), has studied the 

law conservation of capital-output ratio. 

After that, Isvoranuand Udriste(2006), 

locate fluid flow versus Geometric 

Dynamics and achieved from metrics to 

dynamicsandflows and winds. Also, Gay-

Balmaz, Holm and Ratiu (2009) stumble on 

Geometric dynamics of optimization. In this 

paper, the author calculateddecomposable 

single-timeand multi-timedynamicson 

Riemann-Kaehlerian manifolds. 
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I. INTRODUCTION 

The single-time dynamics we identify with an ordinary differential equation related to 

Newton second law.A second-order elliptic partial differential equation elucidates a dynamic 

that occurs across multiple time instances.Any ordinary differential equation is 

malformedaddicted toaone-flow or any partial differential equation is malformedaddicted to 

an m-flow in any satisfactorily huge dimension. The spatial geometry transforms the mono-

flow dependency into a geodesic movement within a gyroscope-influenced field of forces. 

Similarly, the dual spatial geometry alters the multi-flow into harmonically mapped 

distortions under the influence of the gyroscopic field of forces.[Udriste (2005); Udriste and 

Bejenaru (2012)]. 

 

The equations of mechanics might appear differently in terms of their form:       

       , The ordinary differential equations of the form                           
  Occasionally termed "jerk equations" involving third-order derivatives have been shown to 

accurately represent the fundamental setup where solutions display chaotic behaviour in a 

mathematically precise fashion. It has been proven that these jerk equations correspond to a 

system of three initial nonlinear first ODE, capturing the most minimal configuration for 

chaotic dynamics. 

                                                 
 

This pertains to a Lagrangian system existing on the jet space defined by coordinates 

                  , along with its associated geometric dynamics in relation to the Riemannian 

metric       . 
 

                                                           

                                   
                      

 

Further usually, given a set of n Lagrangians: 

 

                                                              
 

  
 

 
          

                                 

 

The solution to a system of ordinary differential equations is given by the Extremely 

Euler-Lagrange method.  

 

 

 

    

   
         

 
   

   
        

 
   

   
     

 

If the Lagrangian   is connected to ordinary differential equations                  
   then the extremals have solutions tothe dynamics and that equation is 

decomposable[Mihlin (1983); Stefanescu and Udriste (1993); Furi (1995); Treanta and 

Udriste (2013)]. 
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Let        be the density of the diffusive material at location      and time   
  Let                             be the collective spreading coefficient for density  at 

location . The spreading partial differential equations are: 

 
  

  
      

 

   
              

  

   
     . 

 

If the behaviour relies on both density and diffusion coefficient variations, The 

diffusion equation exhibits nonlinearity; otherwise,it remains linear. Moreover, in cases 

where                forms a symmetric positive definite matrix, the equation characterizes 

anisotropic diffusion.[Arnold (1969); Chorin and Marsden (2000); Udriste and Teleman 

(2004)]. 

 

The equivalent first-order non-linear partial differential equations is diffusion partial 

differential equations 
  

   
        

  

  
 

 

   
         

 

The limitation on evolution       occurs in an      -dimensional context. A 

Riemannian metric              gives rise to a Lagrangian that minimizes the sum of 

squares. 

        
  

   
     

  

   
      

  

  
 

 

   
        

 

  

 

On the jet space of coordinates                       Then Euler-Lagrange equations are 

 

 

 

    

  
 
  

   
     

  

   
      

  

  
 

 

   
          

 

   
 
    

  
    

      
   

  

   
         

  

  
 

 

   
            

Or        
  

  
 

 

   
          . 

 

Again, consider an orientable manifold denoted as T,with the coordinates   
           and let M be another manifold with coordinate             . Utilizing a set 

of m smooth vector fields, denoted as        of class        , we can represent the 

spreading by means of p faff equations. 

 

         
                                            

 

Constructing a least squares Lagrangian for non-decomposable dynamics involves utilizing 

the metric tensors              along with the components
   

   
      

       of the 

pullbacks. 
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Further generally being given n,m Lagrangians from: 

  
                                                

                                  

 

Subsequently, the corresponding Lagrangian density for least squares in related to the 

Riemannian metrics       
             is formulated as follows: 

 

  = 
 

 
          

       
                 

 
                

 

If we consider a subset      the solutions that extremize the Euler-Lagrange 

partial differential equationsystem can be described as follows: 

 

 

 

    

   
     

   
 
     

    
   

 

   
        

    
 
   

   
      

 

If the Lagrangian    
  is associated to the partial differential 

equation   
                  the solutions of that equation are given by the extremals, and 

the decomposability property holds for the dynamics [Lovelock and Rund (1975)]. 

 

II. SINGLE-TIME GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN 

MANIFOLDS 

Consider a differentiable manifold denoted as M, and let I be a nontrivial interval 

contained with the real number, R. we define a non-autonomous first order differential 

equation on the manifold M as the mapping of a non-autonomous   vector field       , 

where V represents an open subset of    . This vector field remains consistently aligned 

with Mfor all values of t in the real numbers, for any all    , the map       
        defined as                                 vector field on the open 

subset                       [Furi(1995] 

 

                  (2.1) 

 

The solution to differential Equation (2.1) corresponds to a function      that 

belongs to the class  . the function has the property that for every t in the interval I, the point 

            additionally, the derivative of                                            I. 

Specifically considering the Cauchy problem, a resolutionto theordinary differential equation 

(2.1) is sought, which adheres to the original condition          . Under these 

circumstances, it can be concluded then the solution of this Cauchy problemnot only exists 

but is also unique. 

 

Let          be a   map. An equality of the type: 

 

                            (2.2) 
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Designated as a second-order differential equation on M, given the condition of a 

connected vector field. [Furi(1995)]: 

 

                                   
 

Is tangent to TM, i.e.,                                       A solution of 

the differentialEquation (2.2) is a    curve       , in such a way that         and 

                        identically on I. In the case of The Cauchy problem, a solution of 

the ordinary differential equation (2.2) which satisfies the preliminary conditions      
              . The solution to this initial value problem exists and is singular. When 

employing the constituents, the equations (2.1) and (2.2) are referred to as first-order and 

second-order systems of ordinary differential equations, respectively. 

 

Let’s begin with the triple (M, g, X), where M represents a manifold with a dimension 

of                                              is a smooth, time-dependent vector field 

in the manifold M. Consider thatthe Levi-Civita connection  associated with the      pair 

is described by the components    
                                     

 

Definition 2.1 Use the notations: 

      
     

     
           

       
 

 
        

 

A function           is considered to be produced by the pair       if it can be 

expressed in the following manner: 

 

        
         

     
 

  
 . 

 

If F arises from the combination of X and g, then the differential equation (2.2) 

represents a form of geometric dynamics occurring at a specific time, akin to motion along a 

geodesic path within a gyroscopic force field. Drawing an analogy to the way force systems 

are simplified in mechanics, involving resultants and momentum, the breakdown of the 

solution set leads back to the concepts of flow and motion within the gyroscopic force field. 

[Udriste (2000); Udriste (2004); Udriste (2005); Isvoranu, and Udriste (2006) and Udriste 

and Bejenaru (2012)]. 

 

1. Theorem 2.1: If         is generated by the pair      , then the set of maximal 

solutions of ODE(2.2) is decomposable into a subset corresponding to the initial values 

 

                                 
 

Results which are reducible to solutions of the ordinary differential equation (2.1), 

and a subset of solutions corresponding to the preliminary values 

 

                                    
 



Trends in Contemporary Mathematics 

e-ISBN: 978-93-6252-737-0 

IIP Series, Volume 3, Book  2, Part 1, Chapter 2  

DECOMPOSABLE OF SINGLE-TIME AND MULTI-TIME  

GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN MANIFOLDS 

 

Copyright © 2024 Authors                                                                                                                          Page | 12  

Transversal to the solutions of the ordinary differential equation (2.1).  Converse 

is also true. 

 

 Proof: According to the theorem of existence and uniqueness, any solution x(t) 

derived from a second-order continuous or first-order ordinary differential equation 

(ODE) system possesses the following characteristic: 

 

                                            
 

A Riemannian metric g and a flow X together give rise to a Lagrangian of 

least squares nature. 

 

          
 

 
                        

 

The Euler-Lagrange ordinary differential equations represent a seamless 

extension of the trajectory in a geometric sense. These equations effectively describe 

a separable and dynamic motion along geodesic paths within fields of forces akin to 

gyroscopic effects. These geodesic paths are interwoven with additional trajectories 

that are influenced by the spatial geometry. 

 

2. Theorem 2.2: If the function        is generated by X and g,X is an autonomous 

vector field then the set of maximal solutions of ordinary differential equation (2.2) 

divides into three parts i.e.Curves [    ,                       .  

 

 Proof: We have from Hamiltonian: 

 

          
 

 
                       

 

 
                           

 

The curves      with                 are solutions of ordinary 

differential equation (2.1). The solutions with                 , are transversal 

to solutions of ordinary differential equation (2.1). 

 

For any given ordinary differential equation, the resulting flow within the 

phase space creates a geometric dynamic when combined with the inherent phase 

space geometry. However, complications arise when dealing with a flow that is 

subject to constraints. 

 

Let's examine the elements (M, X, g, Γ) where M represents a Riemannian 

manifold, X stands for a flow within M, g corresponds to a fundamental tensor field, 

and Γ represents a symmetric connection. Together, these components (X, g, Γ) give 

rise to an expanded geometric motion on M, which is defined by systems of ordinary 

differential equations (ODEs). 

 

          
   

      
         

        
   

  
    

        
   . 
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In Riemannian manifold               , take the flow       We assign 

the least squares lagrangian             with Euler-Lagrange equation       On 

any other Riemannian manifold               we find the least squares Lagrangian 

                with Euler-Lagrange equation    
     

     
              Here, 

Γ    
     

     
isa linear connection. We have the option to broaden the preceding 

ordinary differential equation into a system of ordinary differential equations. 

 

         
          

                 
                                 

 

with possible disorder in velocities. 

 

Consider a differentiable manifold of dimension n, denoted as M, and let I R 

represent a nontrivial interval. In the case where the ordinary differential equation 

system (2.2) corresponds to a Euler-Lagrange system on the manifold M, with respect 

to a regular Lagrangian function         ,then there exists afundamental tensor field  

 

        On TMs.t. 

 

            
 

 

   

        
                     

 

On the other hand, when provided with           ,  the task is to find 

         . Under these circumstances, by employing two consecutive line integrals of 

the second kind, we are able to express 

 

                       
      

                  
         

      

 

 

The pair      is called a Lagrangian manifold. 

 

III. MULTI-TIME GEOMETRIC DYNAMICS ON RIEMANN-KAEHLERIAN 

MANIFOLDS. 

We start with an operator                   where:  

 

       Represents an oriented Riemannian manifold with a dimension of m. It possesses 

local coordinates denoted as       , where α ranges from 1 to m. The manifold is 

equipped with a metric tensor denoted as   , along with Christoffel symbols given by 

    
 . 

 

 (Consider the Riemannian manifold       with dimension n, where        represents 

the local coordinates,    is the metric tensor, and   
  denotes the Christoffel symbols. 
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 (           
                        are    vector fields on M, dependent on  

     which describe the first order PDE system: 

 

 
  

   
                                                                                                                   (3.1) 

 

1. Theorem 3.1The existence of a unique solution for the Cauchy problem, which includes 

the partial differential equation system (3.1) and the initial condition          , is 

guaranteed only when the system is completely integrable. This equivalence holds: 

 

   
   

      
                             

                                                         (3.2) 

 

Is called a second order elliptical partial differential equation on M. 

 

 Proof: Consider a hypersurface Γ: G(t) = 0 within T, which passes through the 

point   . Let ⋀ (t) represent a unit vector field along Γ that intersects it in a transversal 

manner. Let       and       be vector functions with n components defined on Γ. 

The first function belongs to class  , while the second function is of class  . We are 

concerned with the Cauchy problem associated with partial differential equation (3.2) 

[Mihlin (1983)]and find ina unilateral neighbourhood of Γ, the solution of the PDE 

(3.2)satisfying the Cauchy conditions: 

 

     Γ                                                                                             (3.3) 

 

Hence the solution of this Cauchy problem exists and it is unique. From, Cauchy 

conditions at function      on the Cauchy surface , initially, 

 

   

   
 
 
 

   

   
              

 

And then the equalities: 

 

               
  

   
   ⋀      

 

Together with ⋀         

 

  

   
      

 

⋀    
        

   

   
   

   

   

⋀       

 

The preliminary conditions (3.3) are equivalent either to the preliminary conditions: 
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And 

 

             
  

   
                     

 

Regarding the complete set of integrability conditions and the compatibility condition 

with respect to     

 

Definition 3.2 Using the vector field  , the metric tensor           and the Christoffel 

symbols    
      

  we define: 

 

   
      

            
        

 

 
        

   
 
 

 

And 

 

    
  

   
 

   
    

   
           

  
   

 

   
    

 
  
   

 

 

The function              is said to be generated by the operator         if it is of the 

form: 

            
 
  
     

 
        

 
        

    
 
      . 

 

2. Theorem 3.2If              is created by the triplet          then the set of 

maximal solutions ofpartial differential equation (3.2) is decomposable into a subset 

corresponding to the preliminary values: 

 

             
  

   
                  

 

Solutions which are reducible to solutions of partial differential equation (3.1), and a 

subset of solutions corresponding to the preliminary values: 

 

             
  

   
                            

 

A transversal intersecting the solutions of Partial Differential Equation (3.1) 

demonstrates the same truth in reverse. 

 

 Proof: Let solution        of any second order continuation of the first order 

partial differential equation system has the property:                     

implies                        Any m-flow   and two Riemannian metrics 

h and g determine a least squares Lagrangian density: 

 

          
 

 
 
        

    
          

 
   

 
      . 
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The Euler-Lagrange Partial differential equationsdenote a continuation of 

the m-flow and just a decomposabledynamic.Once again, a typical partial 

differential equation generates a multi-dimensional flow within the phase space. 

This, in conjunction with the geometry of the phase space, results in a dynamic 

with a distinct geometric interpretation. This principle holds for all partial 

differential equations; however, complications arise when dealing with a multi-

dimensional flow subject to constraints. 

 

Let's explore the tuple (T, h, H), where T signifies a Kahlerian manifold, h 

represents a fundamental tensor field, and H indicates a symmetric connection. 

Introducing the operator          , where M stands for a Kahlerian manifold, 

       denotes an m-flow on M, g is a fundamental tensor field, and G is a 

symmetric connection (derivation). The pentad               gives rise to an 

expanded geometric dynamic on T×M. 
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