CHROMATOGRAPHIC TECHNIQUES FOR PHARMACEUTICAL ANALYSIS

Abstract

This chapter serves as a comprehensive review of various chromatographic techniques employed in pharmaceutical analysis. It delves into the instrumentation, principles. and factors influencing separation for essential chromatographic methods, including High Chromatography Performance Liquid (HPLC), Gas Chromatography (GC), Thin Layer Chromatography (TLC), and other significant techniques like Size Exclusion Chromatography, Exchange Ion Chromatography, Supercritical Fluid Chromatography, and Chiral Chromatography. Emphasizing the importance of HPLC and GC, the chapter explores their extensive applications in drug profiling, analysis. impurity assay determination, and drug stability studies, ensuring the quality and safety of pharmaceutical products. The simplicity and cost-effectiveness of TLC find prominence in qualitative analysis, compound identification, and purity checks. Method validation, a critical aspect in chromatographic analysis, is meticulously addressed to highlight its role in ensuring accuracy, precision, specificity, and robustness in pharmaceutical research and quality control. As an essential resource in the book, this chapter offers valuable insights into cutting-edge advancements and best practices in chromatographic techniques for pharmaceutical analysis, aiding researchers and analysts in staying at the forefront of the field.

Keywords: Chromatographic Techniques; Gas Chromatography; High Performance Liquid Chromatography; Method Validation; Pharmaceutical Analysis; Thin Layer Chromatography

Authors

Sravani Ratnam Arji

Lecturer Department of Chemistry Government College (A) Rajahmundry, India. pharmafeiringer2019@gmail.com

Vyshnavi K

Lecturer Department of Chemistry Government College (A) Rajahmundry, India. vaishnavik@gcrjy.ac.in

Prakash Nathaniel Kumar Sarella

Associate Professor Department of Pharmaceutics Aditya College of Pharmacy Surampalem, India. sarellaprakash@acop.edu.in

Vinny Therissa Mangam

Assistant professor Department of Pharmaceutical Analysis Aditya College of Pharmacy Surampalem, India. vinnytherissa@gmail.com

I. INTRODUCTION

In the rapidly evolving landscape of pharmacy and nursing, chromatographic techniques play a pivotal role in pharmaceutical analysis [1]. Chromatography, as a powerful separation and identification tool, is indispensable in the pharmaceutical industry for ensuring the quality, safety, and efficacy of drugs and formulations [2], [3]. The chapter introduces the fundamental principles of chromatography, highlighting its differential interaction between the stationary and mobile phases, leading to precise separation of complex mixtures. Subsequently, the instrumentation and key parameters affecting separation in prominent techniques like High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), and Thin Layer Chromatography (TLC) are explored. Additionally, the chapter discusses other important chromatographic techniques, including Size Exclusion Chromatography, Ion Exchange Chromatography, Supercritical Fluid Chromatography, and Chiral Chromatography, each offering unique advantages in pharmaceutical analysis. The significance of method validation to ensure the accuracy and reliability of results is emphasized throughout the chapter. By providing valuable insights into cutting-edge advancements and best practices, this chapter equips researchers and analysts with the knowledge needed to leverage chromatographic techniques effectively in pharmaceutical research and quality control.

II. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

- 1. HPLC: HPLC is the most widely used chromatographic technique for analysis of drugs and pharmaceutical formulations. It offers high resolving power, sensitivity, accuracy and reproducibility [4]. HPLC has advantages like high selectivity, sensitivity and speed of analysis which make it an invaluable technique for pharmaceutical analysis and quality control applications. Developing robust and optimized HPLC methods is an essential part of drug development and product lifecycle management [5].
- **2. Principle of HPLC:** HPLC separates components based on their differential partitioning between a stationary phase and a mobile phase. In reverse phase HPLC, nonpolar stationary phase and polar mobile phase are used [6].
- **3.** Instrumentation of HPLC System : A basic HPLC system consists of high pressure pumps to deliver mobile phase, injection system to inject sample, chromatographic column packed with stationary phase, a detector like Ultraviolet (UV), Photo Diode Array (PDA), Evaporative light scattering detector (ELSD), etc., and data acquisition and processing system [7]. Table 1 compares Ultraviolet-Visible (UV/Vis), Evaporative light scattering detector (ELSD), and fluorescence detection based on parameters like sensitivity, selectivity, compatibility with mobile phase, suitable applications, etc.

Donomotor	Detection technique			
Parameter	UV/Vis	ELSD	MS	Fluorescence
Sensitivity [7]	Moderate	High	High	High
Selectivity [4]	Low	Low	High	High

Table 1: Con	nparison of	different	Detectors	Employed	in HPLC
--------------	-------------	-----------	------------------	----------	---------

Compatible	All	All	Limited	Limited
mobile phases [5]				
Typical	Determination of	Determinatio	Determination of	Based on
applications [5]	compounds with	n of non-UV	molecular weight;	intrinsic
	UV	compounds	identification of	fluorescence
	chromophores	like sugars,	compounds	of
		lipids		compounds
Suitable	Analysis of drugs	Analysis of	Metabolic	Analysis of
applications[5], [5]	and impurities in	excipients in	stability studies;	biological
	pharmaceuticals	formulations	identification of	samples;
			unknown	trace
			compounds	impurity
				analysis

4. Parameters affecting HPLC separation

Following are the parameters [6] that affect HPLC separation:

- Nature of stationary and mobile phases
- pH, ionic strength and temperature of mobile phase
- Flow rate of mobile phase
- Column dimensions

5. Applications of HPLC in pharmaceutical analysis

The applications of HPLC in pharmaceutical analysis [7] are:

- Determination of drug content and impurities in samples
- Simultaneous determination of multiple drug components
- Determination of drugs in biological samples like plasma and urine
- Separation of enantiomers for chiral drugs
- Stability-indicating assays for drug degradation products

III.GAS CHROMATOGRAPHY (GC)

GC offers advantages like high sensitivity, selectivity and speed of analysis. It is particularly suitable for analysis of volatile and semi-volatile compounds like small molecule drugs [8]. Developing robust GC methods with proper temperature programming and choice of stationary phase can help resolve complex mixtures commonly encountered in the pharmaceutical industry [9].

- 1. Principle of GC: GC separates components based on their volatility and differential partitioning between a mobile gas phase and a stationary phase coated on the inner surface of the GC column [10].
- 2. Instrumentation of GC System: A typical GC system consists of: Gas cylinders to supply carrier and makeup gases, gas flow controllers to regulate flow rate, inlet system to volatilize and inject sample, GC column packed with stationary phase, oven to control

column temperature, and detectors like Flame ionization detection (FID), The thermal conductivity detector (TCD), Electron capture detector (ECD), etc [11], [12].

3. Parameters Affecting GC Separation: The parameters affecting GC separation are: nature and flow rate of carrier gas, temperature and pressure of column, nature of stationary and coated phases, column dimensions[13]

4. Applications of GC in Pharmaceutical Analysis

- Analysis of thermal stability and degradation products of drugs
- Analysis of organic volatile impurities in drugs and formulations
- Determination of residual solvents and pesticide residues
- Chiral separation of drug enantiomers
- Detection of counterfeit and substandard drugs

IV. THIN LAYER CHROMATOGRAPHY (TLC)

TLC is a simple, cost-effective and rapid technique for preliminary separation and analysis of drugs. Though it lacks sensitivity and resolution compared to HPLC and GC, TLC finds practical applications as an initial step in method development and quality control testing.

- 1. **Principle of TLC:** TLC works on the same principle as column chromatography. A small quantity of sample is applied as a spot on a thin layer of adsorbent coated on a flat support plate. As the mobile phase travels up the plate by capillary action, different compounds separate based on their partition coefficients.
- **2. Instrumentation of TLC:** The basic components of a TLC system are: TLC plates coated with adsorbent like silica gel, mobile phase solvents for development, developing chamber, and UV lamp or staining reagents for visualization.

3. Applications of TLC in pharmaceutical analysis

- Quick screening and identification of compounds in complex mixtures
- Determination of Rf values for standardization and method development
- Purity testing of drug substances and formulations
- Separation of isomers and enantiomers
- Identification of degradation products

The characteristic differences between HPLC, GC, and LC are listed out in Table 2.

Parameter/ Technique	HPLC	GC	TLC
Separation mechanism	Differential	Volatility based	Differential
[13]	partitioning	partitioning	adsorption based
	between mobile	between mobile gas	on partition
	and stationary	and coated	coefficient
	phases	stationary phase	

Table 2: Comparison of HPLC, GC, and TLC

Resolving power [14]	High	High-Moderate	Low
Sensitivity [15]	High-Moderate	High	Low
Speed of Analysis [8],	Moderate-Fast	Fast	Fast
[9]			
Cost [12]	Moderate-High	High	Low
Suitable applications	Drug identification	Volatile compound	Method
[13]	and quantification,	analysis, thermal	development,
	impurity profiling,	stability studies,	purity testing,
	chiral separations	residual solvent	isomer separation
		determination	
		Initial screening,	

V. OTHER CHROMATOGRAPHIC TECHNIQUES

- 1. Size Exclusion Chromatography: Also known as gel permeation chromatography. Separation is based on size rather than interactions. Large molecules are excluded and elute first while smaller molecules penetrate into pores and elute later [16]–[18]. It is used for:
 - Determining molecular weight distribution of polymers
 - Purification of macromolecules
- 2. Ion Exchange Chromatography: Separation based on ionic interactions between sample ions and oppositely charged stationary phase[19], [20]. This technique is used for:
 - Determination of ionic impurities
 - Purification of chiral drugs by changing buffer pH and salt concentration
- **3.** Super Critical Fluid Chromatography: This technique uses supercritical carbon dioxide as mobile phase instead of liquids [21], [22]. The advantages of this method are:
 - Higher diffusivity and lower viscosity for better separation
 - Greens chemistry technique
 - Used for analysis of thermally labile compounds
- **4. Chiral Chromatography**: This chromatographic technique uses Enantioselective separation of chiral drugs using chiral stationary phases or chiral mobile phases [23], [24]. It is used for:
 - Enantiomeric purity testing of chiral drugs
 - Separation of enantiomers for development of single enantiomer drugs

These chromatographic techniques offer various separation mechanisms and advantages that complement HPLC and GC. They find applications in specific areas like determination of impurities, purification of samples and chiral separations which are important tasks in pharmaceutical analysis. The differences in various chiral chromatography techniques based on factors like resolving ability, type of stationary phase, range of applicable compounds, cost, etc. are described in Table 3.

Chromatography Method	Resolving Ability	Type of Stationary Phase	Range of Applicable Compounds	Cost
High-Performance	High	Chiral selectors,	Small to large	Moderate
Liquid Chromatography		polysaccharides, cyclodextrins	molecules	to high
(HPLC) [2]				
Gas	Moderate	Cyclodextrin	Volatile	Moderate
Chromatography		derivatives, Cyclodoxtrin based	compounds	
		phases		
Supercritical	Moderate	Chiral stationary	Non-volatile	High
Fluid	to High	phases,	and semi-	
Chromatography		Polysaccharides,	volatile	
(SFC) [22]		Protein-based phases	compounds	
Thin Layer	Low to	Chiral plates coated	Limited range,	Low to
Chromatography	Moderate	with chiral selectors	mostly for	moderate
(TLC) [1], [2]			small	
			molecules	
Capillary	Moderate	Chiral selectors,	Small to	Low to
Electrophoresis		Cyclodextrins	medium-sized	moderate
(CE) [25]			molecules	
Immobilized	Low to	Immobilized metal	Peptides,	Low to
Metal Affinity	Moderate	ions on stationary	proteins	moderate
Chromatography		phase		
(IMAC) [15]				

Table 3: Comparision of chiral chromatography techniques

The recent advances in latest column technologies with their key features and applications are summarized in Table 4.

Table 4: Recent advances in column technologies

Column Technology	Key features	Applications
	HPLC	
Core-Shell	These columns have a solid core and	They find applications in
Columns [8],	porous shell, leading to higher	pharmaceutical analysis,
[25]	efficiency, faster separations, and	environmental monitoring, &
	lower backpressure	food and beverage testing
Monolithic	Single continuous stationary phase	Suitable for peptide mapping,
Columns [12]	results in reduced band broadening,	protein analysis, and
	high permeability, and fast	oligonucleotide separation
	separations	
Ultra-high-	UHPLC columns offer smaller	Drug discovery,
performance	particle size and higher pressure	metabolomics, and
liquid	capabilities improved resolution and	biochemical analysis

chromatography	speed	
(UHPLC)		
Columns [14]		
	GC	
Micro- and	These miniaturized columns with	Ideal for environmental
Nano-columns	smaller internal diameters reduce	analysis, petrochemical
[13]	analysis time and improve	analysis, and forensic
	sensitivity	toxicology
Chiral GC	Designed with chiral selectors, they	Finds applications in
Columns [24]	offer enhanced enantioselectivity	pharmaceutical analysis,
	and improved resolution of chiral	flavor and fragrance analysis,
	compounds	and environmental monitoring
High-	These columns are stable at elevated	Suitable for petrochemical
Temperature GC	temperatures and enable the analysis	analysis, polymer
Columns [25]	of high-boiling compounds	characterization, and food
		safety analysis
	SFC	
Sub-2 µm	Featuring sub-2 µm particle size,	Useful for chiral separation,
Particle Columns	they offer higher efficiency,	natural product isolation, and
[21]	improved peak capacity, and speed	drug purification
Chiral SFC	These columns have chiral selectors	Pharmaceutical analysis,
Columns [22]	for enantioselective separations,	agrochemical analysis, and
	complementing chiral HPLC and	chiral compound isolation
	GC	
Hybrid Columns	Combining SFC with other	Useful for complex sample
[22]	techniques like HPLC or GC,	analysis, natural product
	provide enhanced selectivity and	analysis, and biomolecule
	separation power	separation

VI. METHOD VALIDATION FOR CHROMATOGRAPHIC TECHNIQUES

- **1. Specificity:** It is defined as the ability of method to measure analyte response in the presence of interferences. Specificity is assessed by comparing chromatograms of blank, standard and sample.[26]
- **2.** Accuracy: Accuracy is closeness of test results to the true value. It is determined by recovery studies at multiple concentration levels.[26]
- **3. Precision:** Precision is the degree of reproducibility of test results under normal operation. It is assessed by repeatability and intermediate precision.[26]
- **4.** Limit of Detection (LOD) and Quantification (LOQ): The smallest concentration that can be reliably detected is called as LOD and while that can be quantified is called LOQ by the method. It is determined from the calibration curve.[26]
- **5.** Linearity and Range: Method's ability to obtain test results proportional to concentration within a given range. It is established by analyzing standards at multiple concentration levels.[26]

6. **Robustness:** Robustness is the method's capacity to remain steady with small alterations in parameters. It is assessed by deliberately changing conditions and analyzing the impact on method performance.[26]

Thorough method validation as per regulatory guidelines is essential to demonstrate that a chromatographic technique will consistently provide reliable results for its intended use. The various parameters ensure the method is specific, accurate, precise and rugged enough for quantitative analysis of drugs and impurities [26]. Table 5 list outs various method validation parameters as per Food and Drug Administration (FDA), International Council for Harmonisation (ICH) and other regulatory guidelines and the extent of validation required for different applications.

Validation parameters	FDA, ICH, and other regulatory guidelines
Accuracy	All regulatory guidelines, including FDA and ICH, mandate accuracy
	validation for quantitative analysis of drug substances and products,
	bioanalytical methods for pharmacokinetic studies, and stability-
	indicating methods [27]
Precision	Precision validation is required by FDA, ICH, and other regulatory
	guidelines for quantitative analysis of drug substances and products,
	bioanalytical methods for pharmacokinetic studies, and stability studies
	[28]
Specificity/Sel	FDA, ICH, and other regulatory guidelines necessitate
ectivity	specificity/selectivity validation for stability-indicating methods, assay
	of drug substances and products, and cleaning validation assays [6]
Sensitivity	Sensitivity validation is required by FDA, ICH, and other regulatory
	guidelines for impurity testing, bioanalytical methods, and cleaning
	validation assays [9]
Linearity	FDA and ICH mandate linearity validation for calibration curve
	preparation in assay and impurity methods, as well as for quantitative
	analysis of drug substances and products. Other regulatory guidelines
	recommend it [5]
Range	FDA and ICH require range validation for calibration range in assay and
	impurity methods, and linearity range for quantitative analysis. Other
	regulatory guidelines recommend it.[26]
LOD and	FDA, ICH, and other regulatory guidelines recommend LOD and LOQ
LOQ	validation for impurity testing, bio analytical methods, and cleaning
	validation assays [26]
Robustness	FDA and ICH require robustness validation for changes in pH,
	temperature, and mobile phase composition, as well as variations in
	sample preparation. Other regulatory guidelines recommend it [2]
Ruggedness	While not specified by FDA and ICH, other regulatory guidelines
	recommend demonstrating method consistency across different
	laboratories, analysts, and instruments [14]
System	While not specified by FDA and ICH, other regulatory guidelines
Suitability	recommend using system suitability tests to monitor column

Table 5: Regulatory requirements for method validation

	performance before sample analysis and to ensure the system is suitable
	for the intended analysis [18]
Forced	While not specified by FDA and ICH, other regulatory guidelines
Degradation	recommend conducting forced degradation studies to evaluate the
Studies	stability-indicating capability of the method and identify degradation
	products [24]
Repeatability	While not specified by FDA and ICH, other regulatory guidelines
and	recommend assessing method precision under repeatability conditions
Intermediate	and across different days, analysts, and instruments. [25]
Precision	

VII. CONCLUSION

In conclusion, this chapter highlights the vital role of chromatographic techniques in pharmaceutical analysis. The review of various methods, including HPLC, GC, TLC, and others, underscores their indispensable applications in drug analysis and quality control. Emphasizing precision through method validation ensures reliable results and safe pharmaceutical products. As the field evolves, staying informed about cutting-edge advancements and best practices will shape the future of pharmacy and nursing, elevating standards in research and development. Chromatography remains a powerful tool that continues to shape the pharmaceutical landscape, contributing to safer and more efficacious medications.

REFERENCES

- [1] I. Smith, *Chromatography*. Elsevier, 2013.
- [2] O. Coskun, "Separation techniques: chromatography," *Northern clinics of Istanbul*, vol. 3, no. 2, p. 156, 2016.
- [3] J. S. Fritz, "Ion chromatography," Analytical Chemistry, vol. 59, no. 4, pp. 335A-344A, 1987, doi: 10.1021/ac00131a737.
- [4] D. DeVault, "The theory of chromatography," *Journal of the American Chemical Society*, vol. 65, no. 4, pp. 532–540, 1943, doi: 10.1021/ja01244a011.
- [5] L. R. Snyder, J. J. Kirkland, and J. W. Dolan, *Introduction to modern liquid chromatography*. John Wiley & Sons, 2011.
- [6] E. Lederer and M. Lederer, *Chromatography*. Elsevier Publishing, 1953.
- [7] C. F. Poole, *The essence of chromatography*. Elsevier, 2003.
- [8] R. L. Grob and E. F. Barry, Modern practice of gas chromatography. John Wiley & Sons, 2004.
- [9] W. Jennings, E. Mittlefehldt, and P. Stremple, *Analytical gas chromatography*. Academic Press, 1997.
- [10] A. B. Littlewood, Gas chromatography: principles, techniques, and applications. Elsevier, 2013.
- [11] H. M. McNair, J. M. Miller, and N. H. Snow, Basic gas chromatography. John Wiley & Sons, 2019.
- [12] C. Poole, Gas chromatography. Elsevier, 2021.
- [13] K. Dettmer-Wilde and W. Engewald, "Practical gas chromatography," A Comprehensive Reference. Springer, p. 902, 2014.
- [14] S. J. Lehotay and J. Hajšlová, "Application of gas chromatography in food analysis," *TrAC Trends in Analytical Chemistry*, vol. 21, no. 9–10, pp. 686–697, 2002, doi: 10.1016/S0165-9936(02)00805-1.
- [15] P. J. Marriott, S.-T. Chin, B. Maikhunthod, H.-G. Schmarr, and S. Bieri, "Multidimensional gas chromatography," *TrAC Trends in Analytical Chemistry*, vol. 34, pp. 1–21, 2012, doi: 10.1016/j.trac.2011.10.013.
- [16] S. Mori and H. G. Barth, Size exclusion chromatography. Springer Science & Business Media, 1999.
- [17] H. G. Barth, C. Jackson, and B. E. Boyes, "Size exclusion chromatography," *Analytical chemistry*, vol. 66, no. 12, pp. 595–620, 1994, doi: 10.1021/ac00084a022.

- [18] L. K. Kostanski, D. M. Keller, and A. E. Hamielec, "Size-exclusion chromatography—a review of calibration methodologies," *Journal of biochemical and biophysical methods*, vol. 58, no. 2, pp. 159–186, 2004, doi: 10.1016/j.jbbm.2003.10.001.
- [19] S. Fekete, A. Beck, J.-L. Veuthey, and D. Guillarme, "Ion-exchange chromatography for the characterization of biopharmaceuticals," *Journal of pharmaceutical and biomedical analysis*, vol. 113, pp. 43–55, 2015, doi: 10.1016/j.jpba.2015.02.037.
- [20] A. Jungbauer and R. Hahn, "Ion-exchange chromatography," *Methods in enzymology*, vol. 463, pp. 349– 371, 2009, doi: 10.1016/S0076-6879(09)63022-6.
- [21] L. T. Taylor, "Supercritical fluid chromatography for the 21st century," *The Journal of Supercritical Fluids*, vol. 47, no. 3, pp. 566–573, 2009, doi: 10.1016/j.supflu.2008.09.012.
- [22] D. R. Gere, "Supercritical fluid chromatography," Science, vol. 222, no. 4621, pp. 253–259, 1983, doi: 10.1126/science.6414083.
- [23] T. E. Beesley and R. P. Scott, *Chiral chromatography*. John Wiley & Sons, 1999.
- [24] A. Tarafder and L. Miller, "Chiral chromatography method screening strategies: Past, present and future," *Journal of Chromatography A*, vol. 1638, p. 461878, 2021, doi: 10.1016/j.chroma.2021.461878.
- [25] A. Cavazzini, L. Pasti, A. Massi, N. Marchetti, and F. Dondi, "Recent applications in chiral high performance liquid chromatography: a review," *Analytica Chimica Acta*, vol. 706, no. 2, pp. 205–222, 2011, doi: 10.1016/j.aca.2011.08.038.
- [26] J. Breaux, K. Jones, and P. Boulas, "Analytical methods development and validation," *Pharm. Technol*, vol. 1, pp. 6–13, 2003.
- [27] S. K. Bhardwaj, K. Dwivedia, and D. D. Agarwala, "A review: HPLC method development and validation," *International Journal of Analytical and Bioanalytical Chemistry*, vol. 5, no. 4, pp. 76–81, 2015.
- [28] A. Anees, A. A. Bahazeq, M.-U. Rehman, S. Akbar, and J. Mehveen, "Development and validation of memantine hydrochloride by RP-HPLC method," *Asian Journal of Pharmaceutical Research*, vol. 9, no. 2, pp. 69–74, 2019, doi: 10.5958/2231-5691.2019.00011.x.