NOVAL CYTOTOXIC COMPOUNDS FROM FUNGAL ENDOPHYTES

Abstract

Fungi and bacteria that live in the internal tissues of the plant are referred to as endophytes. They have no harmful effects on their host plant. Endophytic fungi synthesise metabolites that are structurally and functionally similar to those of their host plants. They are able to create a wide range of biomolecules from different classes with countless applications. Fungal endophytes such as Penicillium, Fusarium, Aspergillus, Sclerotium, Myxormia, Alternaria, Colletotrichum, Cladosporium, Diaporthe, and other endophytic species are well recognized to produce bioactive chemicals that have a crucial role in the management of disease. Bioactive compounds derived from endophytic fungi were classified as alkaloids, steroids, flavonoids, phenolic acids, benzopyranones, quinines, tannins, xanthones, terpenoids and they possess antimicrobial, antioxidant, cytotoxic, immunosuppressive, and anti-inflammatory activities.

deadliest illness, The cancer kills thousands of individuals annually. In this scenario, the scientific community is searching for new anticancer drugs to combat cancer. Studies on the discovery of anti-cancer drugs from endophytes began in the early 90s and gained prominence in the twenty-first century. More than 200 novel cytotoxic chemicals have been discovered in the last thirty years from endophytic fungi of both terrestrial and marine plants. The majority of these cytotoxic substances fall into the following categories: polyketides, terpenoids, sterols, macrolides, lactones, azaphilones, alkaloids, preussomerins, p-terphenyls, hybrid structures, and other substances. The most important anti-cancer

Authors

Karthika M

Post Graduate & Research Department of Botany, Government Victoria college (Affiliated to university of Calicut), Palakkad, India karthikanair.karthi@gmail.com

Rasmi A.R

Post Graduate & Research Department of Botany, Government Victoria college (Affiliated to university of Calicut), Palakkad, India rasmibotany@gmail.com

IIP Series

NOVAL CYTOTOXIC COMPOUNDS FROM FUNGAL ENDOPHYTES

drugs are from endophytes, including taxol, podophyllotaxin, camptothecin, vinca alkaloids, cytochalasin 1-3, malformin, graphislactone A, etc. Discovery of taxol and its analogue from endophytes marked a significant advance in cancer drugs research. Studies have reported the production of taxol by *Pestalotiopsis* versicolor, and an apoptotic experiment using the isolated fungal taxol demonstrated high cytotoxic action against tested human cancer cells in *in vitro* culture, demonstrating that an increase in taxol concentration causes more cell death.

In this review we have referred a total of sixty-one research papers during the year 2010 to 2022 and tried to highlight the significance of fungal endophytes and the bioactive substances produced by them in cancer treatment.

Keywords: fungal endophytes, secondary metabolites, anti-cancer compounds.

1. INTRODUCTION

1. Cancer

Uncontrolled and unchecked division of cells leads to cancer. Cancer can occur almost anywhere in the body, and these cells may form tumors. Based on the organ or tissue where the tumors form, more than 100 types of cancer have been reported (NIH). According to the American Cancer Society, there will be 1.9 million new cancer cases in the country in 2022. It is anticipated that by 2050, the annual death toll due to cancer will rise to 17.5 million [1]. The primary cause of the increase in cancer incidence can be attributed to the modern lifestyle, which includes drug use, smoking, exposure to toxins, environmental pollution, drunkenness, viral infections, etc. Although the use of genomic, proteomic, and bioinformatics approaches will assist to grasp the intricacy of cancer, the scientific community has not yet found a complete cure for the disease [2].

For the treatment of cancer, a number of medications have been suggested, and many of these contain plant-based ingredients. Plants are a rich source of natural compounds that have the potential to fight cancer and be used to make new medications. In the current market, there are four types of plant-based anticancer drugs are available such as: vinca alkaloids (vinblastine, vincristine, and vindesine), epipodophyllotoxins (etoposide and teniposide), taxanes (paclitaxel and docetaxel), and camptothecin derivatives (camptotecin and irinotecan) [3,4].

2. Endophytic Fungi and Cancer

The word "endophyte" includes bacteria and fungi that, at certain stage in their life cycles, colonies interior plant tissue without displaying any harmful symptoms. [5,6,7]. They can be found in root complexes and other parts of the host plant, and their host ranges differ from simple thallophytes to complex angiosperms [8]. Endophytic fungi are considered an important component of microbial diversity. These endosymbionts help alter the characteristics of the ecosystem. They change the host plant's growth and development, boost its productivity, and make it more resilient to biotic and abiotic stress [9]. In biotechnology, fungal endophytes are essential for studies like enzyme production, biocontrol potential, plant growth promotion, bioremediation, biodegradation, biotransformation, biosynthesis, and nutrient cycling. They also serve as sources for cutting-edge biological chemicals. [10].

The cytotoxic and anti- cancer activities of endophytic fungi were deemed the most important topics to the scientific community. There have been multiple reports of fungal endophytic strains that produce drugs like vincristine, irinotecan, topotecan, vinblastine, and others that are used in clinical trials to treat various types of cancer in humans. [11]. Studies revealed that taxol and taxol-like compounds might be produced by fungal endophytes from taxus and non-taxus plants. A number of endophytic genera, including Alternaria, Aspergillus, Botryodiplodia, Botrytis, Cladosporium, Ectostroma, Fusarium, Metarhizium, Monochaetia, Mucor, Ozonium, Papulaspora, Periconia, Pestalotia, Pestalotiopsis, Phyllosticta, Pithomyces, and Taxomyces, were reported for the production of taxol [11]. The Pacific yew tree (Taxus brevifolia), from which paclitaxel (commonly known as "taxol") is derived, exhibits broad-spectrum action against the treatment of a number of tumor types, including breast, ovarian, and Kaposi's sarcoma. The endophytic fungus Taxomyces

andreanae was found in the bark of *Taxus brevifolia* and is capable of producing taxol and other similar chemicals [12].

Similarly, podophyllotoxin is a plant based anticancer agent commonly used in lung cancer and testicular cancer treatment [13]. Fungal endophytes yielded podophyllotoxin. The common podophyllotoxin-producing endophytes include *Fusarium sp., Aspergillus sp., Mucor sp.*, etc. Another fungal endophyte derived anti cancerous compound is camptothecin. The common camptothecin-producing endophytes includes *Fusarium sp,Phomopsis sp, Aspergillus sp, and Trichoderma sp.* Vinca alkaloids such vinblastine, vincristine, vinleunosine, and vinrosidine are used to treat acute lymphoblastic leukaemia and nephroblastoma by lowering the number of white blood cells [11]. Endophytic fungi such as *Alternaria sp., Fusarium sp* are found to produce vinca compounds [11].

3. Cytotoxic Activity of Endophytic Fungi

Research conducted by El-Kassem et al. in 2019 [14]. showed that Emericella nidulans (RSSSS-22, RSL24), Fusarium oxysporum SML-41, and Penicillium sp. RSL-43 endophytic fungal extracts had strong cytotoxic activity against human breast cancer cell lines (MCF-7), with IC50 values of 10.8, 11.0, 12.5, and 13.7 g/ml, respectively and with IC50 values of 14.8, 20.3, and 24.0 g/ml, respectively, E. nidulans (RSSSSSS-22, RSL-43), and Fusarium showed a strong cytotoxic effect on human liver cancer cell lines (HEP-G2). In addition, Colletotrichum gloeosporioides extract in ethyl acetate shown potential cytotoxicity against cancer cell lines HCT116, HeLa, and HepG2 with IC50 values of 76.59 g/mL, 176.20 g/mL, and 1750.70 g/mL, respectively [15]. Studies by Sunkar et al. (2017) [16] on Hep2 cells revealed that the cytotoxicity of cells was influenced by a fungal extract in a time- and dose-dependent manner. Similarly, marine plant-associated fungal endophytes were potentially cytotoxic to the cell lines M059J (brain), PC3 (prostate), DLD-1 (colon), MDAMD231 (breast), NCIH1299 (lung), B16F10 (melanoma), PC12 (pheochromocytoma), and Detroit 551 (fibroblast) [17]. Endophytes from the bacopa plant were toxic to the cell lines HCT-116, MCF-7, PC-3, and A-549, and extracts were more effective against HCT-116 cells than the other cell lines [18]. Endophytic fungi from the *Piper crocatum* strongly suppressed the growth of human ductal breast epithelial cancer cell lines (T47D) and human colon carcinoma cell lines (WiDr), and they also significantly inhibited the growth of MCF-7 and HCT116 cell lines [19,20]. AgNP nanoparticles produced from endophytic fungus reduced cell proliferation at an IC50 value of 100 g/mL in human MCF7 breast cancer cell lines and human A549 lung cancer cell lines [21].

4. Anti-Cancer Compounds Obtained From Endophytic Fungi

Therapeutically significant molecules have been manufactured from the secondary metabolites of endophytes. The discovery of potent anticancer medications at a reasonable price may be greatly aided by endophytic fungus. In light of this, investigating and employing endophyte metabolites is a great way to find new, potent medicines for severe human diseases. Research on anticancer properties and compound isolation from fungal endophytes has a significant impact (Table -1).

 Table 1: Some Anti-Cancer Compounds From Fungal Endophytes

Name of Endophyte	Host Plant With Segment Where Endophyte Isolated	Name of Compound	Tested Cell Line And Activity	Reference
Penicillium melinii and Penicillium janthinellum	Panax ginseng – root segment	Ginsenocin, methyl 2,4-dihydroxy-3,5,6-trimethylbenzoate, 3,4,5-trimethyl-1,2-benzenediol, penicillic acid, mannitol, ergosterol, and ergosterol peroxide and brefeldin A	,	[22]
Aspergillus tubingensis	Pongamia pinnata – Radix	Rubasperone D, Rubasperone E, Rubasperone F, Rubasperone G, Naphtho-G-Pyrones - TMC 256 A1, Rubrofusarin B, Fonsecin, and Flavasperone	Huh7, SNB19, and U87 MG tumour cell lines with IC50 values	[23]
Talaromyces flavus	Mangroves	Talaperoxides A–D	Human cancer cell lines MCF-7, MDA-MB-435, HepG2, HeLa, and PC-3 with IC50 values between 0.70 and 2.78 μg/mL.	[24]
Trichoderma harzianum	Cola nitida - Leaves	4'-hydroxy-deacetyl-18- deoxycytochalasin H, deacetyl-18- deoxycytochalasin H, 18- deoxycytochalasin H	Cytotoxic action (IC50 0.19–6.97 µM) against the human ovarian cancer cell lines A2780 sens and A2780 CisR as well as the murine lymphoma (L5178Y) cell line.	[25]

Penicillium	Rhizome of Pinellia	Indoloditerpene, 6,7-	Cytotoxicities with IC50 values of	[26]
brefeldianum.	ternate	dehydropaxilline, spirotryprostatin	14.1 mmol/L and 35.5 mmol/L,	
		F, N-demethylmelearoride A	respectively, against HepG2 and	
			MDA-MB-231 cells.	
Lasiodiplodia	Marine mangrove A.	Chlorinated preussomerins,	Cytotoxicity with IC50 values	[27]
theobromae	ilicifolius – Leaf	Chloropreussomerins A and B (1	ranging from 5.9 to 8.9 µM against	
		and 2), Preussomerin analogues,	the human cancer cell lines A549	
		3–11	and MCF-7	
Phomopsis sp.	Mangroves	Phomopchalasins D–O (1–3, 5–12,	Cytotoxicity against the MDA-	[28]
		And 14)	MB-435 human cancer cell line,	
			with an IC50 range of 0.2 to 8.2	
			μM.	
	Entada Abyssinica –	Beauvericin,	On Vero cells, THP-1, and RAW	[29]
Epicoccum nigrum	Leaves	parahydroxybenzaldehyde, indole-	264.7, the LC50 values varied	
		3-carboxylic acid and quinizari	from 40.42 to 86.56 µg/ml, 31.87	
			to 86.57 µg/ml, and 21.59 to 67.27	
			μg/ml, respectively.	
Coniochaeta sp	Ageratina	Phomoxanthone A and Penialidin	Cytotoxicity in a cell line of	[30]
	Adenophora	A	mouse embryonic fibroblasts	
			Balb/c3T3.	
Penicillium	Marine Red Algal	Penicisteroids A and B	Activity against HeLa, SW1990,	[31]
chrysogenum	Species of the		and NCI-H460 tumour cell lines	
	Genus Laurencia.		with IC50 values of 15, 31, and 40	
			lg/mL	

Fusarium	Anvillea Garcinii-	Fusarithioamide A 2(2-	BT-549 and SKOV-3 cell lines are	[32]
chlamydosporium	Leaves	aminopropanamido)-N-(1-	targets of strong and selective	
		hydroxy-3-mercaptopropyl)	action, with IC50 values of 0.4 and	
		benzamide, 4), 1-O-acetylglycerol,	0.8 mM, respectively.	
		8-acetylneosolaniol, and ergosta-		
		7,22-diene-3b,5a,6b-triol		
Cladosporium sp	Rauwolfia	Anhydrofusarubin and methyl	Potential cytotoxicity was seen	[33]
	serpentina - Leaves	ether of fusarubin	against human leukaemia cells (K-	
			562) with IC50 values of 3.97 and	
			3.58 μg/mL	
Eutypella scoparia	Hevea Brasiliensis –	Cytochalasin derivative,	The IC50 values for compounds 1,	[34]
	Leaves	scoparasin C (1), four	3, 4, and 7 against Vero cell lines	
		cytochalasins (2–5), four pimarane	were 1.19, 0.04, 1.01, and 2.50	
		diterpenes (6–9) and two chromene	μM, respectively With an IC50	
		derivatives (10 and 11)	value of 2.46 μM, compound 3	
			showed strong cytotoxic action	
			against KB-oral cavity cancer cell	
			lines.	
Pleosporales sp.	Siraitia grosvenorii -	Pleospyrones A-E, congener	Hepatocellular carcinoma of the	[35]
	Tuberous roots		liver (HCT-116), gastric cancer	
			(BGC-823), non-small-cell lung	
			carcinoma (NCI-H1650), and	
			medulloblastoma cells (Daoy) with	
			1.26 to 47.5 μM IC50 values.	

Pleosporales sp	Mahonia fortunei. –	Heptaketides, pleosporalins A-F	Against the cancer cell lines	[36]
	Pedicel	and pleosporalin G	MDA-MB-231, SMMC-721, and	
			A549. Compound 7's IC50 value	
			of 22.4 1.1 μM against MDA-MB-	
			231 indicated significant	
			cytotoxicity.	
Talaromyces flavus.	Sonneratia apetala	Talaperoxides A–D, teperoxide B	The MCF-7, MDA-MB-435,	[37]
			HepG2, HeLa, and PC-3 human	
			cancer cell lines. The IC50 values	
			for compounds 2 and 4 ranged	
			from 0.70 to 2.78 μg/mL	
Chaetomium	Ginkgo biloba	Chaetoglobosins, C, E, F, Fex, 20-	Cytotoxic effects on human colon	[38]
globosum		dihydrochaetoglobosin A	cancer cell HCT116 with IC50	
			values between 3.15 and 8.44 μM	
Talaromyces sp	Kandelia candel -	7-epiaustdiol (1) and 8-O-	Cytotoxicity against all tested cell	[39]
	Stem bark	methylepiaustdiol (2),	lines.	
		stemphyperylenol (3), skyrin (4),		
		secalonic acid A (5), emodin (6),		
		and norlichexanthone (7)		
estalotiopsis	Drepanocarpus	Pestalotioprolides C (2),	Cytotoxicity against the human	[40]
microspora	lunatus	D-H(4-8), and 7-O-	ovarian cancer cell line A2780	
		methylnigrosporolide,pestalotiopro	with an IC50 value of 1.2 μM and	
		lide B (1), seiricuprolide (9),	against the murine lymphoma cell	
		nigrosporolide (10), and	line L5178Y with IC50 values of	
		4,7dihydroxy-13-tetradeca-2,5,8-	0.7, 5.6, 3.4, and 3.9 μM	
		trienolide (11)		

Trichoderma	Physalis angulate	Trichodestruxins A, destruxin E2	Cytotoxicity with IC50 values	[41]
harzianum		chlorohydrin (5) and destruxin A2	ranging from 0.7 to 19.1	
			μM against the HT-29, A549,	
			and/or P388 cell lines.	
Penicillium brocae	Avicennia marina.	Brocazines A-F	IC50 values for the following cell	[42]
			lines: Du145, Hela, HepG2, MCF-	
			7, NCI-H460, SGC-7901,	
			SW1990, SW480, and U251 range	
			from 0.89 to 9.0 μM	
Phoma macrostoma	Glycyrrhiza glabra	Macrophin (1), rosellisin (2), 2-(2-	Cytotoxic activity against the	[43]
		hydroxy-5-6-methoxy-3-	cancer cell lines MDA-MB-231,	
		methylene-1,4-benzodioxin-2(3H)-	T47D, MCF-7, and MIAPaCa-2,	
		one (3), and	with IC50 values of 14.8, 8.12,	
		methoxyphenoxyacrylic acid	13.0, and 0.9 μM, respectively.	
Phialophora mustea	Crocus sativus	Phialomustin A-D	Cytotoxic potential with an IC50	[44]
			of 1 μM against the T47D human	
			breast cancer cell line.	
Mycoleptodiscus sp.	Desmotes	Mycoleptodiscin A (1) and	With IC50 values between 0.60	[45]
	incomparabilis	mycoleptodiscin B	and $0.78 \mu M$., limiting the	
			proliferation of cancer cell lines	
Curvularia	Cathranthus roseus -	Vinblastine analogous	The HeLa cell line had a stronger	[46]
verruculosa	Leaves		activity with an IC50 of 8.5 µg/mL	
Aspergillus niger	Taxus baccata.	Lovastatin	Human cancer cells (HeLa&	[47]
			HepG2)	

Alternaria alternata	Mappia foetida	Camptothecin	Cytotoxic activity against	[48]
and Fusarium species			Hepatocellular carcinoma cell line	
			(Hep G2), non-small cell lung	
			carcinoma (H1975), breast cancer	
			(MCF-7), and cervical carcinoma	
			(HeLa)	
Phoma sp.	-	α-pyrone derivatives	IC50 values in between 0.52-9.85	[49]
			μM.	
A. niger and $A.$	Cinnamomum	Hydroxyramulosin	Cytotoxic against murine leukemia	[50]
fumigatus	mollissimum		cells with IC50 value 2.10 μg/mL).	
Allantophomopsis	Beech branch	Allantopyrone A	Cytotoxic against HL60 cell lines	[51]
lycopodina				
Aspergillus sp.,	Argassum muticum	Quinoline, indole, 2,4-bis(1,1-	Cytotoxicity against LN-229	[52]
Nigrospora		dimethylethyl) phenol, and	(glioblastoma), HeLa (cervical	
sphaerica,		hexadecenoic acid	adenocarcinoma), MCF-7 (breast	
Talaromyces			adenocarcinoma), A-549 (lung	
purpureogenus, and			carcinoma), A-431 (skin/epidermis	
Talaromyces			carcinoma), and Hep G2	
stipitatus			(hepatocellular carcinoma) with an	
			IC50 value of 24 2 24 \pm 2 μ g/ml,	
			HeLa cells were the most	
			susceptible to ASE treatment.	
Bipolaris sorokiniana	Pogostemon cablin	Isocochlioquinones D–E (1–2) and		[53]
		cochlioquinones G–H (3–4)	cell lines MCF-7, NCI-H460, SF-	
			268, and HepG-2	

	Tricyrtis maculate-	Bellidisins A-D, pinolidoxin (5),	The IC50 value varied from 3.40	[54]
Phoma bellidis,	Leaves	5,6-epoxypinolidoxin (6), and 2-	to 15.25 μM, which is stronger	
		epi-herbarumin II (7)	than cisplatin (4.86-27.70 M), for	
			the human cancer cell lines HL-60,	
			A549, SMMC-7721, MCF-7, and	
			SW480.	
Pseudolagarobasidiu	Bruguiera	Merulin A and merulin D	Selective activity against the HL-	[55]
m acaciicola	gymnorrhiza		60 cell line and cytotoxic activity	
			(IC50 0.28 μM).	
Perenniporia	Taxus chinensis var.	Sesquiterpenoid, perenniporin A	Cytotoxic action against PANC-1,	[56]
tephropora	mairei,	(1), ergosterol (2), rel-(+)-	SMMC-7721, and HeLa cells) and	
		(2aR,5R,5aR,8S,8aS,8bR)-	IC50 values for EPT with	
		decahydro-2,2,5,8-tetramethyl-2H-	cytotoxicity range from 2 to 15	
		naphtho[1,8-bc]genfuran-5-ol (3),	ug/mL. Compound 2 had IC50	
		and albicanol (4).	values of 1.16, 11.63, and 11.80	
			ug/mL for each of the examined	
			cell lines, making it the most	
			cytotoxic component.	
			While the IC50 values for	
			compounds 1, 3, and 4 ranged	
			from 6 to 58 ug/mL, they showed	
			considerable cytotoxicity.	
Pestalotiopsis	Dendrobium officinale	(4S,6S)-6-[(1S,2R)-1, 2-	The cytotoxicities of compounds	[57]
clavispora KJ677242,		dihydroxybutyl]-4-hydroxy-4-	1-4 against HL-60 cell lines	
P. mangiferae		methoxytetrahydro-2H-pyran-2-	exhibit IC50 values less than 100	
		one (1), (6S,2E)-6-hydroxy-3-	M. The IC50 values for	

		methoxy-5-oxodec-2-enoic acid	compounds 1, 2, 4, and 5 are	
		(2), LL-P880γ (3), LL-P880α (4),	below 100 M, indicating	
		& ergosta-5,7,22-trien-3b-ol (5)	cytotoxicity against the LOVO cell	
			line.	
Periconia sp.	-	Periconiasins A–C	Cytotoxicity against human HCT-	[58]
			8 cancer cells.	
Stachybotrys	Pinellia ternate	Stachybochartins A–G (1–7)	Cytotoxicity against breast cancer	[59]
chartarum			cells (MDA-MB-231) &	
			osteosarcoma cells (U-2OS), with	
			IC ₅₀ values in between 4.5 to 21.7	
			μΜ	
Aspergillus oryzae	P. polyphylla var.	Oryzaeins A–D(1-4),	IC50 values in between 2.8-8.8	[60]
	yunnanensis,		μM.	
Marine-derived	Marine-derived	Marinamide (I) and its methyl	Cytotoxicity against HepG2, 95-D,	[61]
Mangrove Endophyte	mangrove	ester (II), pyrrolyl 1-isoquinolone	MGC832 & HeLa tumour cell	
			lines.	

II. CONCLUSION

Although endophytic fungi aid in the production of new bioactive compounds, but these efforts are limited by low yields of active compounds, an incomplete understanding of the biochemical interactions between fungi and plants, and increasing contamination. The cytotoxic potential of endophytic fungi has, however, been extensively studied. Numerous endophyte-derived substances have been found to have potent anti-cancer effects.

REFERENCES

- [1] Kharwar, R. N., Mishra, A., Gond, S. K., Stierle, A., & Stierle, D. (2011). Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Natural Product Reports, 28(7), 1208. https://doi.org/10.1039/c1np00008j
- [2] Chakraborty, S., & Rahman, T. (2012). The difficulties in cancer treatment. Ecancermedical science, 6, ed16. https://doi.org/10.3332/ecancer.2012.ed16
- [3] Chorghade, M. S. (Ed.). (2006). Drug discovery and development. Wiley-Interscience.
- [4] Desai, A. G., Qazi, G. N., Ganju, R. K., El-Tamer, M., Singh, J., Saxena, A. K., Bedi, Y. S., Taneja, S. C., & Bhat, H. K. (2008). Medicinal Plants and Cancer Chemoprevention. Current Drug Metabolism, 9(7), 581–591.
- [5] Carroll, G. C. (1986). The biology of endophytism in plants with particular reference to woody perennials. Microbiology of the Phyllosphere, 203–222.
- [6] de Bary, A. (1866). Morphologie und physiologie der pilze, flechten und myxomyceten. Engelmann.
- [7] Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial ecology of leaves. Springer, 179-197.
- [8] Gond, S. K., Verma, V. C., Kumar, A., Kumar, V., & Kharwar, R. N. (2007). Study of endophytic fungal community from different parts of *Aegle marmelos* Correae (Rutaceae) from Varanasi (India). World Journal of Microbiology and Biotechnology, 23(10), 1371–1375.
- [9] Rudgers, J. A., Koslow, J. M., & Clay, K. (2004). Endophytic fungi alter relationships between diversity and ecosystem properties. Ecology Letters, 7(1), 42–51.
- [10] Zheng, Y.-K., Qiao, X.-G., Miao, C.-P., Liu, K., Chen, Y.-W., Xu, L.-H., & Zhao, L.-X. (2016). Diversity, distribution and biotechnological potential of endophytic fungi. Annals of Microbiology, 66(2), 529–542.
- [11] Uzma, F., Mohan, C. D., Hashem, A., Konappa, N. M., Rangappa, S., Kamath, P. V., Singh, B. P., Mudili, V., Gupta, V. K., Siddaiah, C. N., Chowdappa, S., Alqarawi, A. A., & Abd_Allah, E. F. (2018). Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review. Frontiers in Pharmacology, 0. https://doi.org/10.3389/fphar.2018.00309
- [12] Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260(5105), 214–216.
- [13] Kusari, S., Singh, S., & Jayabaskaran, C. (2014). Rethinking production of Taxol (paclitaxel) using endophyte biotechnology. Trends in Biotechnology, 32(6), 304–311.
- [14] El-Kassem, L. A., Hawas, U. W., El-Souda, S., Ahmed, E. F., El-Khateeb, W., & Fayad, W. (2019). Anti-HCV protease potential of endophytic fungi and cytotoxic activity. Biocatalysis and Agricultural Biotechnology, 19, 101170. https://doi.org/10.1016/j.bcab.2019.101170
- [15] Rai, N., Keshri, P. K., Gupta, P., Verma, A., Kamble, S. C., Singh, S. K., & Gautam, V. (2022). Bioprospecting of fungal endophytes from *Oroxylum indicum* (L.) Kurz with antioxidant and cytotoxic activity. PLOS ONE, 17(3), e0264673. https://doi.org/10.1371/journal.pone.0264673
- [16] Sunkar, S. (2017). Bioprospecting endophytic fungus *Colletotrichum* sp. Isolated from *Artocarpus heterophyllus* for anticancer activity. Research Journal of Biotechnology, 12, 12.
- [17] Ariffin, S. A., Davis, P., & Ramasamy, K. (2011). Cytotoxic and antimicrobial activities of Malaysian marine endophytic fungi. 54(1), 95-100. https://doi.org/10.1515/bot.2011.005
- [18] Katoch, M., Singh, G., Sharma, S., Gupta, N., Sangwan, P. L., & Saxena, A. K. (2014). Cytotoxic and antimicrobial activities of endophytic fungi isolated from *Bacopa monnieri* (L.) Pennell (Scrophulariaceae). BMC Complementary and Alternative Medicine, 14(1), 1–8.
- [19] Astuti, P., & Nababan, O. A. (2014). Antimicrobial and cytotoxic activities of endophytic fungi isolated from *Piper crocatum* Ruiz & Pav. Asian Pacific Journal of Tropical Biomedicine, 4, S592–S596.
- [20] Ramasamy, K., Lim, S. M., Bakar, H. A., Ismail, N., Ismail, M. S., Ali, M. F., Faizal Weber, J.-F., & Cole, A. L. (2010). Antimicrobial and cytotoxic activities of Malaysian endophytes. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(5), 640–643.
- [21] Janakiraman, V., Kathiravan, G., & R, M. (2019). Biosynthesis of Silver Nanoparticles from Endophytic Fungi, and its Cytotoxic Activity. BioNanoScience, 9. https://doi.org/10.1007/s12668-019-00631-1
- [22] Zheng, C.-J., Xu, L.-L., Li, Y.-Y., Han, T., Zhang, Q.-Y., Ming, Q.-L., Rahman, K., & Qin, L.-P. (2013). Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Applied Microbiology and Biotechnology, 97(17), 7617–7625.

- [23] Huang, H.-B., Xiao, Z.-E., Feng, X.-J., Huang, C.-H., Zhu, X., Ju, J.-H., Li, M.-F., Lin, Y.-C., Liu, L., & She, Z.-G. (2011). Cytotoxic Naphtho-γ-pyrones from the Mangrove Endophytic Fungus *Aspergillus tubingensis* (GX1-5E). Helvetica Chimica Acta, 94(9), 1732–1740.
- [24] Li, H., Huang, H., Shao, C., Huang, H., Jiang, J., Zhu, X., Liu, Y., Liu, L., Lu, Y., & Li, M. (2011). Cytotoxic norsesquiterpene peroxides from the endophytic fungus *Talaromyces flavus* isolated from the mangrove plant *Sonneratia apetala*. Journal of Natural Products, 74(5), 1230–1235.
- [25] Chen, H., Daletos, G., Okoye, F., Lai, D., Dai, H., & Proksch, P. (2015). A new cytotoxic cytochalasin from the endophytic fungus *Trichoderma harzianum*. Natural Product Communications, 10(4), 1934578X1501000412.
- [26] Gao, N., Shang, Z.-C., Yu, P., Luo, J., Jian, K.-L., Kong, L.-Y., & Yang, M.-H. (2017). Alkaloids from the endophytic fungus *Penicillium brefeldianum* and their cytotoxic activities. Chinese Chemical Letters, 28(6), 1194–1199.
- [27] Chen, S., Chen, D., Cai, R., Cui, H., Long, Y., Lu, Y., Li, C., & She, Z. (2016). Cytotoxic and antibacterial preussomerins from the mangrove endophytic fungus *Lasiodiplodia theobromae* ZJ-HQ1. Journal of Natural Products, 79(9), 2397–2402.
- [28] Chen, Y., Yang, W., Zou, G., Wang, G., Kang, W., Yuan, J., & She, Z. (2022). Cytotoxic bromine-and iodine-containing cytochalasins produced by the mangrove endophytic fungus *Phomopsis* sp. QYM-13 using the OSMAC approach. Journal of Natural Products.
- [29] Dzoyem, J. P., Melong, R., Tsamo, A. T., Maffo, T., Kapche, D. G., Ngadjui, B. T., McGaw, L. J., & Eloff, J. N. (2017). Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus *Epicoccum nigrum* associated with *Entada abyssinica*. Revista Brasileira de Farmacognosia, 27, 251–253.
- [30] Fu, J., Hu, L., Shi, Z., Sun, W., Yue, D., Wang, Y., Ma, X., Ren, Z., Zuo, Z., & Peng, G. (2021). Two metabolites isolated from endophytic fungus *Coniochaeta* sp. F-8 in *Ageratina adenophora* exhibit antioxidative activity and cytotoxicity. Natural Product Research, 35(17), 2840–2848.
- [31] Gao, S.-S., Li, X.-M., Li, C.-S., Proksch, P., & Wang, B.-G. (2011). Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus *Penicillium chrysogenum* QEN-24S. Bioorganic & Medicinal Chemistry Letters, 21(10), 2894–2897.
- [32] Ibrahim, S. R. M., Elkhayat, E. S., Mohamed, G. A. A., Fat'hi, S. M., & Ross, S. A. (2016). Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus *Fusarium chlamydosporium*. Biochemical and Biophysical Research Communications, 479(2), 211–216.
- [33] Khan, M. I. H., Sohrab, M. H., Rony, S. R., Tareq, F. S., Hasan, C. M., & Mazid, M. A. (2016). Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, *Cladosporium* sp. Toxicology Reports, 3, 861–865.
- [34] Kongprapan, T., Rukachaisirikul, V., Saithong, S., Phongpaichit, S., Poonsuwan, W., & Sakayaroj, J. (2015). Cytotoxic cytochalasins from the endophytic fungus *Eutypella scoparia* PSU-H267. Phytochemistry Letters, 13, 171–176.
- [35] Lai, D., Mao, Z., Zhou, Z., Zhao, S., Xue, M., Dai, J., Zhou, L., & Li, D. (2020). New chlamydosporol derivatives from the endophytic fungus *Pleosporales* sp. and their cytotoxic and antimicrobial activities. Scientific Reports, 10(1), 1–9.
- [36] Li, G., Xu, K., Chen, W.-Q., Guo, Z.-H., Liu, Y.-T., Qiao, Y.-N., Sun, Y., Sun, G., Peng, X.-P., & Lou, H.-X. (2019). Heptaketides from the endophytic fungus Pleosporales sp. F46 and their antifungal and cytotoxic activities. RSC Advances, 9(23), 12913–12920.
- [37] Li, H., Huang, H., Shao, C., Huang, H., Jiang, J., Zhu, X., Liu, Y., Liu, L., Lu, Y., & Li, M. (2011). Cytotoxic norsesquiterpene peroxides from the endophytic fungus *Talaromyces flavus* isolated from the mangrove plant *Sonneratia apetala*. Journal of Natural Products, 74(5), 1230–1235.
- [38] Li, H., Xiao, J., Gao, Y.-Q., Tang, J.-J., Zhang, A.-L., & Gao, J.-M. (2014). Chaetoglobosins from *Chaetomium globosum*, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. Journal of Agricultural and Food Chemistry, 62(17), 3734–3741.
- [39] Liu, F., Cai, X.-L., Yang, H., Xia, X.-K., Guo, Z.-Y., Yuan, J., Li, M.-F., She, Z.-G., & Lin, Y.-C. (2010). The bioactive metabolites of the mangrove endophytic fungus *Talaromyces* sp. ZH-154 isolated from *Kandelia candel* (L.) Druce. Planta Medica, 76(02), 185–189.
- [40] Liu, S., Dai, H., Makhloufi, G., Heering, C., Janiak, C., Hartmann, R., Mandi, A., Kurtán, T., Müller, W. E., & Kassack, M. U. (2016). Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus, *Pestalotiopsis microspora*. Journal of Natural Products, 79(9), 2332–2340.
- [41] Liu, Z., Sun, Y., Tang, M., Sun, P., Wang, A., Hao, Y., Wang, Y., & Pei, Y. (2020). Trichodestruxins A–D: Cytotoxic Cyclodepsipeptides from the endophytic fungus *Trichoderma harzianum*. Journal of Natural Products, 83(12), 3635–3641.

- [42] Meng, L.-H., Li, X.-M., Lv, C.-T., Huang, C.-G., & Wang, B.-G. (2014). Brocazines A–F, cytotoxic bisthiodiketopiperazine derivatives from *Penicillium brocae* MA-231, an endophytic fungus derived from the marine mangrove plant *Avicennia marina*. Journal of Natural Products, 77(8), 1921–1927.
- [43] Nalli, Y., Arora, P., Khan, S., Malik, F., Riyaz-Ul-Hassan, S., Gupta, V., & Ali, A. (2019). Isolation, structural modification of macrophin from endophytic fungus *Phoma macrostoma* and their cytotoxic potential. Medicinal Chemistry Research, 28(3), 260–266.
- [44] Nalli, Y., Mirza, D. N., Wani, Z. A., Wadhwa, B., Mallik, F. A., Raina, C., Riyaz-Ul-Hassan, S., & Ali, A. (2015). Phialomustin A–D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, *Phialophora mustea*. RSC Advances, 5(115), 95307–95312.
- [45] Ortega, H. E., Graupner, P. R., Asai, Y., TenDyke, K., Qiu, D., Shen, Y. Y., Rios, N., Arnold, A. E., Coley, P. D., & Kursar, T. A. (2013). Mycoleptodiscins A and B, cytotoxic alkaloids from the endophytic fungus *Mycoleptodiscus* sp. F0194. Journal of Natural Products, 76(4), 741–744.
- [46] Parthasarathy, R., Shanmuganathan, R., & Pugazhendhi, A. (2020). Vinblastine production by the endophytic fungus *Curvularia verruculosa* from the leaves of *Catharanthus roseus* and its in vitro cytotoxicity against HeLa cell line. Analytical Biochemistry, 593, 113530.
- [47] Raghunath, R., Radhakrishna, A., Angayarkanni, J., & Palaniswamy, M. (2012). Production and cytotoxicity studies of lovastatin from *Aspergillus niger* PN2 an endophytic fungus isolated from *Taxus baccata*.
- [48] Ravi, P., Somu, P., Acharya, D., Gomez, L. A., Thathapudi, J. J., Ramachandra, Y. L., Rudraiah, S. B., Isaq, M., Karua, C. S., & Arifullah, M. (2022). Isolation and Phytochemical Screening of Endophytic Fungi Isolated from Medicinal Plant *Mappia foetida* and Evaluation of Its In Vitro Cytotoxicity in Cancer. Applied Biochemistry and Biotechnology, 1–17.
- [49] Sang, X.-N., Chen, S.-F., Tang, M.-X., Wang, H.-F., An, X., Lu, X.-J., Zhao, D., Wang, Y.-B., Bai, J., & Hua, H.-M. (2017). α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus *Phoma* sp. YN02-P-3. Bioorganic & Medicinal Chemistry Letters, 27(16), 3723–3725.
- [50] [50]. Santiago, C., Fitchett, C., Munro, M. H., Jalil, J., & Santhanam, J. (2012). Cytotoxic and antifungal activities of 5-hydroxyramulosin, a compound produced by an endophytic fungus isolated from *Cinnamomum mollisimum*. Evidence-Based Complementary and Alternative Medicine, 2012.
- [51] Shiono, Y., Yokoi, M., Koseki, T., Murayama, T., Aburai, N., & Kimura, K. (2010). Allantopyrone A, a new α-pyrone metabolite with potent cytotoxicity from an endophytic fungus, *Allantophomopsis lycopodina* KS-97. The Journal of Antibiotics, 63(5), 251–253.
- [52] Taritla, S., Kumari, M., Kamat, S., Bhat, S. G., & Jayabaskaran, C. (2021). Optimization of PhysicoChemical Parameters for Production of Cytotoxic Secondary Metabolites and Apoptosis Induction Activities in the Culture Extract of a Marine Algal–Derived Endophytic Fungus *Aspergillus* sp. Frontiers in Pharmacology, 12, 542891.
- [53] Wang, M., Sun, Z.-H., Chen, Y.-C., Liu, H.-X., Li, H.-H., Tan, G.-H., Li, S.-N., Guo, X.-L., & Zhang, W.-M. (2016). Cytotoxic cochlioquinone derivatives from the endophytic fungus *Bipolaris sorokiniana* derived from Pogostemon cablin. Fitoterapia, 110, 77–82.
- [54] Wang, W.-X., Zheng, M.-J., Li, J., Feng, T., Li, Z.-H., Huang, R., Zheng, Y.-S., Sun, H., Ai, H.-L., & Liu, J.-K. (2019). Cytotoxic polyketides from endophytic fungus *Phoma bellidis* harbored in *Ttricyrtis maculate*. Phytochemistry Letters, 29, 41–46.
- [55] Wibowo, M., Prachyawarakorn, V., Aree, T., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2016). Cytotoxic sesquiterpenes from the endophytic fungus *Pseudolagarobasidium acaciicola*. Phytochemistry, 122, 126–138.
- [56] Wu, L.-S., Hu, C.-L., Han, T., Zheng, C.-J., Ma, X.-Q., Rahman, K., & Qin, L.-P. (2013). Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from *Taxus chinensis var. Mairei*. Applied Microbiology and Biotechnology, 97(1), 305–315.
- [57] Wu, L.-S., Jia, M., Chen, L., Zhu, B., Dong, H.-X., Si, J.-P., Peng, W., & Han, T. (2015). Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from *Dendrobium officinale*. Molecules, 21(1), 0014.
- [58] Zhang, D., Ge, H., Xie, D., Chen, R., Zou, J., Tao, X., & Dai, J. (2013). Periconiasins A–C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus *Periconia* sp. Organic Letters, 15(7), 1674–1677.
- [59] Zhang, H., Yang, M.-H., Zhuo, F., Gao, N., Cheng, X.-B., Wang, X.-B., Pei, Y.-H., & Kong, L.-Y. (2019). Seven new cytotoxic phenylspirodrimane derivatives from the endophytic fungus *Stachybotrys chartarum*. RSC Advances, 9(7), 3520–3531.

NOVAL CYTOTOXIC COMPOUNDS FROM FUNGAL ENDOPHYTES

- [60] Zhou, M., Zhou, K., He, P., Wang, K.-M., Zhu, R.-Z., Wang, Y.-D., Dong, W., Li, G.-P., Yang, H.-Y., & Ye, Y.-Q. (2016). Antiviral and cytotoxic isocoumarin derivatives from an endophytic fungus *Aspergillus oryzae*. Planta Medica, 82(05), 414–417.
- [61] Zhu, F., Chen, G., Wu, J., & Pan, J. (2013). Structure revision and cytotoxic activity of marinamide and its methyl ester, novel alkaloids produced by co-cultures of two marine-derived mangrove endophytic fungi. Natural Product Research, 27(21), 1960–1964.