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COUPLED MAP LATTICE MODEL FOR EDWARDS-
WILKINSON GROWTH CLASS 
 
Abstract 
 

We present a coupled map lattice 
model using coupled diffusive maps. We 
study coupled map lattice with a non-linear 
coupling to neighbors. We observe a power-
law growth in roughness with time followed 
by saturation. We carry out standard finite-
size scaling analysis. We observe standard 
scaling corresponding to Edwards-
Wilkinson class. We also find persistence 
exponents in this case. 
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I. INTRODUCTION  
 

Interfaces in nature are omnipresent. Every living or non-living body is associated 
with some surface. From a biological cell, whose membrane forms the surface to heavy 
water-logged clouds on the earth’s surface are affiliated to the surface. One gets habituated to 
the shapes of the interface one encounters, so it can be astonishing that their morphologies 
can appear quite different depending on the scale with which we observe them [1]. Thus, one 
can say that morphology depends on the length scale of observation [1]. It has been shown 
that the concepts like roughness can be replaced by exponents whichalso refer to the fashion 
in which the roughness changes when the observation scale itself changes. The systems we 
care for, display essentially the same physics: there is an elastic surface which propagates in a 
disordered material. The randomness of the surface acts to pin the interface, thereby making 
the interface rough. These systems are described by the same laws that can be studied using 
similar set of numerical and analytical methods. A few deposition processes to name are: 
atomic deposition, molecular beam epitaxial (MBE),sputter deposition, ballistic deposition 
(BD), random deposition (RD), random deposition with surface relaxation (RDSR)[1]. 

 
II.  DEVELOPING STOCHASTIC GROWTH EQUATION 
 

Random deposition (RD) model is simple, all the relevant quantities can be calculated 
exactly using the microscopic growth rules [4]. Growth equation stochastic in nature with the 
specified process of growth is one of the successful approaches to analytically study the 
growth rules. A differential equation can be introduced to describe RD, to illustrate this 
approach. We seek to determine the relationship between the height h(x, t) and time t at every 
place x, where x is a part of a d-dimensional substrate. In general, we can describe the growth 
by making use of the continuum equation. 

 
ℎ( , )

= 𝑟(𝑥, 𝑡)                                                         (1) 

 
Where r(x, t) represents the number of particles per unit time arriving on the surface at 
position x and time t. The particle flux is not uniform because the particles are placed in 
arbitrary/random locations. We consider the randomness that got incorporated into the theory 
by decomposing ϕ into two terms. The above equation thus becomes: 
 

ℎ( , )
= 𝐹 + η(𝑥, 𝑡)                                                                     (2) 

 
Here, F represents the average number of particles arriving at site x. Random fluctuations in 
the deposition process are given by η(x,t) , which is an uncorrelated random number that has 
zero configurationally average. ⟨η(x,t)⟩=0 [7]. 
 

We mainly explore the RDSR creating a linked surface as a result. In contrast to the 
RD model, it is smooth. In the RDSR model, the newly deposited atoms can relax to the 
closest neighbors if it has a lower height rather than adhering permanently to the location 
where they fell. The deposition in the RD model is rougher than the RDSR model. In order to 
choose where to stick, the freshly landed particle first assesses the elevations of the 
surrounding columns. Through this process, the neighboring heights begin to correlate with 
one another, eventually correlating the surface as a whole. These correlations eventually lead 
to the saturation of the interface. Scaling components are the outcomes of a single-
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dimensional simulation. – the growth exponent α= 0.24 ± 0.01 and the roughness exponent 
α= 0.48 ± 0.02. Which for randomdeposition, we had β=0.5 and α=∞. 
 

We follow the guiding principle that: ‘The equation of motion should bethe simplest 
possible equation compatible with symmetries of the problem’ [5].Symmetry principles can 
be applied by deriving the equation describingthe equilibrium interface. Equilibrium means 
that no external field drivesthe interface. Thus, an equilibrium interface separates two 
domains thatare in equilibrium such that no domain grows at the expense of the other.We 
observe such surfaces in magnetic systems in immiscible fluids. F = 0corresponds to the case 
of an equilibrium interface. 
 
As a first step to obtain the growth equation, the basic symmetries of the problem is: 

 The equation maintains its invariance after the transformation, or invariance under 
time translation (t)t →t + δh 

 Translation invariance along the growth direction h →h + δh[5] 
 Translation invariance in the direction perpendicular to the growth direction →x + 

δx[5] 
 Rotation and inversion symmetry along the growth direction [5] which means we rule 

out all the odd-ordered derivatives of vectors such as ∇ ∇h, (∇2h), etc that are not 
included in the in the coordinates. 

 Up/down symmetry for h: Since the fluctuations at the interface have comparable in 
relation to the average interface height, we do not take even powers of h into 
consideration (∇h)2, (∇h)4 

 

As discussed earlier, a general method to construct the growth equation from 
symmetry principles allow us to associate a stochastic equation with the model. In this final 
form of the growth equation, we consider all terms that can be formed from the combinations 
of powers of (∇nh). All those terms that violate at least one of the symmetries mentioned 
above are eliminated. In this way, we find, 

 
ℎ( , )

= (∇ ℎ) + (∇ ℎ) + (∇ ℎ) + ⋯ + (∇ ℎ) + (∇ℎ) + η(𝑥, 𝑡)                  (3)                          

 
Where any positive integer number for n, j, and k is possible. We concentrate on the 

long time (t → ∞), long distance (x → ∞) and behavioral characteristics of functions that 
define the surface because these are the scaling properties that are of interest to us. The 
hydrodynamic limit is this. We are able to verify that higher-level derivatives are less 
significant than the lowest-order derivatives using scaling considerations. By ‘less important 
term’ we mean that the scaling behavior of the growth equation is not affected by this term. It 
can be thus shownin the hydrodynamic limit that ∇4h term is less important than the 
∇2hterm. So, in the hydrodynamic limit, ∇4h ∇→ 0 faster than 2h.The stochastic equation is 
linear and can be solved exactly for the valuesof the scaling equation. The Edwards-
Wilkinson (EW) equation, which has the following form, is the simplest equation to describe 
fluctuations at an equilibrium interface. 

 
ℎ( , )

= ν∇ ℎ + η(𝑥, 𝑡)(4) 
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In this equation ,x denotes the position, t marks the time, h stands for the height of the 
interface, ν is the surface tension, η is the noise term that incorporates the stochastic character 
of the fluctuation process. 
 

When non-linear factors are introduced into the growth equation, the anticipated 
outcomes of the linear model are altered. Kardar, Parisi, and Zhang (KPZ) originally 
suggested expanding the EW model to induct non-linear components. The KPZ equation is 
not derivable formally, but one can surely apply i) the physical principles, which motivate the 
addition of non-linear terms and ii)symmetry principles. For one dimensional case of ballistic 
deposition (BD),extensive numerical simulations forecast slightly different growth and 
roughness exponent values than those determined analytically. In RDSR the particle arrives 
on the surface then relaxes while in BD, falling particle sticks to the first particle it meets. 
The BD process suggests lateral growth, where growth takes place in a direction of the local 
normal to the surface. Here, when a particle is added to the surface, growth occurs in a 
direction locally normal to the interface [5], generating an increase ∂ℎalongthe h axis, which 
by the Pythagorean theorem is 

 
∂ℎ = [(ν ∂𝑡) + (ν ∂𝑡∇ℎ) ] / = ν ∂𝑡[1 + (∇ℎ) ] /                                        (5)                                                   

 
If |∇h| <<1, the expansion of the above equation gives 
 

ℎ( , )
= ν +

ν
(∇ℎ) + ⋯.                                                                                   (6)                

 
Suggesting a non-linear term (∇h)2 that must be present in the growth equation. Adding this 
term to the EW equation, we obtain the KPZ equation: 

ℎ( , )
= ν(∇ ℎ) +

λ
(∇ℎ) + η(𝑥, 𝑡)                                                              (7) 

 
The first term on the RHS describes relaxation of the interface caused by asurface tension ν. 
The KPZ equation is the simplest growth equation that has symmetry principles viz. 

 Invariance under translation in time i.e. the equation remains invariant under the 
transformation t →t + δh 

 Translation invariance along the growth direction h →h + δh[5] 
 Translation invariance in the direction perpendicular to the growth direction→ x + δx 

[5] 
 Rotation and inversion symmetry along the growth direction[5] which means we rule 

out all the odd ordered derivatives in the coordinates excluding vectors such as ∇h, 
∇ ∇( 2h), etc. 

 The interface fluctuations are dissimilar with respect to the mean interface height, so 
we also consider the even powers of h, terms such as (∇h)2. 
 

The model we work upon is as follows: 
𝑥 (𝑡) = 𝑓 𝑥 (𝑡) +

ϵ
𝑓 𝑥 (𝑡) − 2𝑓 𝑥 (𝑡) + 𝑓 𝑥 (𝑡)                            (8) 

 
Where, 

𝑓 𝑥 (𝑡) = 𝑥 (𝑡) − μ sin 2π𝑥 (𝑡)                                                                     (9) 
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We consider the system for 
behavior and was initially analyzed in [3]. We want 
diffusive maps show behavior in

∑ 𝑥 (𝑡) − �̅�(𝑡) where�̅�(𝑡

denote the sites I such that 
persistence P(t) at time t are the fraction of sites that did 
till time t[6]. For the EW class, we 
Persistence is not a universal
[2]suggest that the persistence
 

First, we consider large size simulation for 
configurations. We indeed observe that 
numerical fluctuations at long times. However, 
observe a constant value over a few decades confirming the expected persistence.

 

Figure 1:

We simulate this system for finite sizes 
√𝑡  initially and saturates. We plot 
collapse showing that the systemis indeed in EW class.

Figure 2: ρ(t)is plotted as a function of 

Futuristic Trends in Physical Sciences
e-ISBN:

IIP Series, Volume 3, Book 
COUPLED MAP LATTICE MODEL FOR EDWARDS-WILKINSON

Copyright © 2024 Authors                                                                                                     

We consider the system for = 1 and ϵ= 0.1. This function is known to
behavior and was initially analyzed in [3]. We want to explore the possibility that the coupled 
diffusive maps show behavior in EW class. Naturally, we study variance given by

̅(𝑡) = ∑ 𝑥 (𝑡). Another quantity study is persistence. We 

such that 𝑥 (𝑡) > �̅�(𝑡)as + spin and if 𝑥 (𝑡) < �̅�(
are the fraction of sites that did not change their spin state even once 

. For the EW class, we expect roughness to grow as √𝑡  and saturate at 
a universal quantity. However, previous numerical studies in EW class 

[2]suggest that the persistence𝑃(𝑡) ∼ 1/𝑡θ𝑤𝑖𝑡ℎ θ ∼ 1.5. 

First, we consider large size simulation for N = 2 × 105 sites 
configurations. We indeed observe that ρ(𝑡) ∼ √𝑡  . Because P(t)decays very fast there are 
numerical fluctuations at long times. However, if we plot P(t)t1.5 as a function of 
observe a constant value over a few decades confirming the expected persistence.

 
Figure 1: f(x) as a function of x for = 1 

 
We simulate this system for finite sizes N = 100 and N = 200. Thevariance grows as 

initially and saturates. We plot ρ(t)/𝑁as a functionof t/N2 and we find remarkable scaling 
collapse showing that the systemis indeed in EW class. 

 
is plotted as a function of t for N = 25. We also plot t0.51 
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known to show diffusive 
the possibility that the coupled 

EW class. Naturally, we study variance given byρ(𝑡) =

. Another quantity study is persistence. We 

̅(𝑡)it is −spin. The 
their spin state even once 

and saturate at t = N2. 
quantity. However, previous numerical studies in EW class 

sites averaged over 20 
)decays very fast there are 

as a function of t, we 
observe a constant value over a few decades confirming the expected persistence. 

= 200. Thevariance grows as 
and we find remarkable scaling 

51 forcomparison. 
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Figure 3:

Figure 4: ρ(t) 

Figure 5: ρ(t)/𝑁 is plotted as a function of 

In short, we have shown that coupled diffusive maps are in Edwards
universality class. We thank Divya Joshi for her help in figures.PMG thanks SERB grant 
CRG/2020/003993. Author credits: PMGaiki: First draft and introduction. PMGade: 
Model,softare, visualization. 
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Figure 3: P(t)t1.5 is plotted as a function of t for N = 2

 

 
 is plotted as a function of t for N = 100 and N 

 

 
is plotted as a function of t/N2 for N = 100 and N = 200.Excellent 

scaling collapse is obtained. 
 

shown that coupled diffusive maps are in Edwards
universality class. We thank Divya Joshi for her help in figures.PMG thanks SERB grant 

Author credits: PMGaiki: First draft and introduction. PMGade: 
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= 25. 

N = 200. 

= 200.Excellent 

shown that coupled diffusive maps are in Edwards-Wilkinson 
universality class. We thank Divya Joshi for her help in figures.PMG thanks SERB grant 

Author credits: PMGaiki: First draft and introduction. PMGade: 
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