
Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 230

PREDICTION BASED DYNAMIC LOAD BALANCING

MODEL FOR DISTRIBUTED RENDERING

Abstract

Rendering of animation is

computational intensive errand. Rendering

of complex scenes requires high

computational power setup. In absence of

high end computational setup rendering

creates a big challenge for a computer

animator to maintain quality of service. In

present approach we solve this problem of

complex scene rendering using prediction

based dynamic load balancing mechanism.

This model uses frame as a unit of

distribution and does impartial distribution

of animation frames among the

computational nodes to achieve efficient

rendering. Proposed prediction model

utilizes Index, Glossiness, Light, width and

height as a basic key attributes of rendering

frame.

Keywords: Distributed Rendering,

Dynamic Load Balancing, Blender

3D.Blender, Rendering.

Author

Dr. G. V. Patil
Associate Professor

DYPCET, Kolhapur

pganeshv@gmail.com

Dr. S. D. Bhopale

Assistant Professor

DYPCET, Kolhapur

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 231

I. INTRODUCTION

Modern era of animation based computer graphics demands use of imaginary effects

to be inculcated in film industry, animation movies and many more simulation based

scientific applications. It comes in reality with the process of animation. Animation is a

process of adding imaginary effects in series of still images with respect to time. Core of

animation process is rendering. Rendering is the process of generating a 2D image which

comprises several phases such as modeling, setting materials and textures, placing virtual

light sources. Rendering algorithms take a description of geometry, materials, textures, light

sources, and the virtual camera as input in order to produce an image or a sequence of images

(in the case of animations)as output [1].Rendering adds photorealistic effects in 3D

geometric models. Unfortunately this process is computationally intensive and requires a lot

of time when the rendering technique simulates global illumination issues [1].To achieve

highly photo realistic images more computational power is required. In proposed work we

experimented a task of 3D animation rendering using distributed rendering farm setup. The

core part of current experimental work is use of dynamic load balancing in distributed

rendering phenomena. The task of rendering is professionally carried out with the high end

computing setup. Instead of this in current experimentation, we are using low cost networked

rendering setup which achieves efficient rendering of complex 3D scenes.

Distributed system gives coordinated network of computing resources to achieve

efficient execution. Distributed system itself is a good solution for achieving good response

time in rendering of complex animation scenes. Rendering adds photorealistic effects to

geometrical images to have real time environmental effects. The process of rendering

requires high computational setup as it involves most CPU intensive calculations. Load in

these types of complex computationally intensive task is very high. Imbalance in load

distribution causes an increase in response time. To achieve an impartial load distribution we

are applying a load balancing concept in distributed rendering. Basically load balancing is

categorized in two classes i.e. static and dynamic. Static load balancing requires prior

information of computational resources. In static load balancing decision making is based on

the static state information of resources involved in computation. As we are considering the

process of web based distributed rendering static load balancing cannot give proper justice.

Dynamic load balancing provides more suitable platform for distributed rendering as the task

assignment is done at dynamic time. In dynamic load balancing decision of load balancing is

based on the runtime information of computational resources. The run time state information

is a base of job scheduling in dynamic load balancing. Technique of dynamic load balancing

in distributed rendering provides a more promising platform in real time processing. In

current exhibit think we are using Blender 3D based rendering farm setup. Blender 3D is a

open source software and provides high quality photorealistic effects at low cost.

This research paper is organized in five sections. Section two elaborates related work

in the era of animation rendering. Section three illustrates methodology and architecture of

current exhibit think. Section four contains results and discussions.

II. RELATED WORK

In today’s world rendering becomes unavoidable part of computer graphics. A

colossal amount of research is going in sector of computer graphics. Rendering attracts more

and more researchers to achieve good response time and efficiency.

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 232

 In [1] Carlos Gonzalez-Morcillo et. al. presented MAgArRO as a distributed, non

centralized , multi agent rendering architecture to optimize the rendering process by making

use of expert knowledge of previous jobs. Experimental results prove optimization in

rendering time.

 In research think exhibition [2] Thu D. Nguyen et. al. described cluster based real

time rendering toolkit i.e DDDDRRaW which supports a repeated, low-latency computation,

the drawing of frames, which must take place on a time scale of 30-100 ms. DDDDRRaW

applies Image Layer Decomposition as a rendering-specific work partitioning algorithm. It

applies the concept of parallelism to evaluate the performance of rendering.

 Steven Molnar et. al. [3] presents classification based parallel rendering algorithm.

Sorting of object coordinates to screen coordinates has done to carry out parallel processing

of both geometry processing and rasterization. Analysis of both computational and

communication cost of parallel rendering has exhibited using rendering pipeline. Huabing

Zhu et. al.[4] has given main focus to develop the rendering algorithm which splits screen

space into tiles and assign them to rendering nodes to achieve more performance in

rendering.

 Risto Rangel-Kuoppa et. al. [5] has experimented multi agent based rendering

platform. Each individual object is rendered first and then aggregation has done to achieve a

realistic virtual environment. It mostly considers object movements and remote

communication requirements. Dynamic Pixel Bucket algorithm given by Huabing Zhu et. al.

[6] mainly focus on task allocation in distributed rendering environment. Load balancing

based rendering environment has experimented using computational grids. Frederico

Abraham et. al. [7] has presented multithreaded sort first distributed rendering algorithm

which achieves load balancing in both geometry processing and rasterization. Ali Sheharyar

et. al.[8] presented a dynamic rendering environment to reduce overall resource utilization in

university campus. It works well for system where computational load is more than rendering

load without physical separation of actual resources. Nicolae Tapus et.al.[9] puts light on

incapability of a dedicated parallel computational set up as scalability and portability could

not be obtained so easily on those architectures using rendering application. Erick Irawadi

Alwi et. al. [10] experimented MPICH cluster system using POV-Ray distributed processing

software. According to author they had average speedup of 2.68 and average increase in

efficiency rate by 92%.Ruby Annette.Ja et. al. [11] provides knowledge about the RaaS

(Rendering-as-a-service) Services business models and enables the animators to compare the

popular RaaS services easily and effectively using the tree structured taxonomy.Akira

Takeuchi et. al. [12] presents an improvement on an efficient image compositing algorithm

for sort-last parallel rendering i.e. binary-swap (BS) method. It uses three acceleration

techniques, (1) the interleaved splitting, (2) multiple bounding rectangle, and (3) run-length

encoding. Jiaqi Wu et.al. [13] gives analysis of challenges for a animation rendering industry

is given using aloud computing theory. It also establishes a private cloud platform for

rendering process and had given key factor analysis for practical animation rendering

problems.Cristian F. Perez-Monte et. al. [14] focuses mainly on frame losses in multiple

GPU-based heterogeneous nodes distributed graphics rendering system. Stefan Eilemann

et.al. [15] gives OpenGL based equalizer system i.e. toolkit for scalable parallel rendering.

Equalizer provides API for development of scalable graphics applications for a wide range of

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 233

systems ranging from large distributed visualization clusters and multiprocessor multipipe

graphics systems to single-processor single-pipe desktop machines. Ganesh Patil et.al. [16]

presented a distributed Blender 3D frame based rendering system. This system considers run

time parameters i.e. CPU and RAM utilization for task distribution. This is a self configured

PXE booting based rendering system.

III. METHODOLOGY OF WORK

Figure 1 : Basic Methodology of the Work

Figure 1 shows the basic methodology of proposed work. In this client submits .Blend

file as an input to rendering farm based computational grid which returns final .mp4 file as a

output.

Figure 2 shows architecture of the proposed work. Users submit the .blend files as an input to

the system which is collectively submitted to a master node.

1. Master node comprises of following components:

 Script generator: Its task of script generator to convert the .blend file in .xml file. In

our experimental work we are using YafaRay [18] rendering engine. YafaRay [18]

accepts only .xml file as a input so we have converted .blend file to .xml files. Blend

file consists of multiple frame in sequence. Each frame is converted into a separate .xml

file.

 Scheduler: Scheduler periodically collects dynamic state information from the
underlying networked resources i.e. CPU and RAM utilization and takes the scheduling

decisions based on the dynamic state information [17]. We are using predictive

dynamic load balancing mechanism. When input frame comes to scheduler it calculates

the predictive time required for rendering and then schedule it for execution based on

the periodical state information.

 Encoder: Rendering node converts an .xml file in .tga file and sends back as an output
to a master node. The responsibility of master node to collect all .tga files and convert

those files collectively in final .mp4 files using Encoder.

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 234

Figure 2: Architecture of Proposed Work

 Boot/config manager: We are using PXE boot based auto configuration mechanism.
As any computational node is added in a network a preconfigured operating system

with rendering engine is installed on that node. This process of auto configuration

ismanaged by Boot/Config manager.

Figure 3: Basic Flow Diagram

Figure 3 shows flow of how input .blend file is converted into .mp4 file.

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 235

IV. EXPERIMENTAL SETUP

Proposed Architecture is based on central coordinated system as shown in Figure 2.

Details of node specification are given in Table 1. Details of software tools are given in

Table 2.

Table 1: Computational set up specifications

Sr.

No.
Node Details Hardware specifications

1 Manager
Dell Vostro 1014,CPU-Intel Core 2 Duo,2.10GHz,RAM-2GB,

OS- Ubuntu 11.10

2 Worker
Dell Optiplex 380,CPU-Intel Core 2 Duo,2.93GHz,RAM-2GB,

OS-Windows 7(32 Bit)

3 Network Giga Bit Network

Table 2: Software tools used for computation

Sr.

No.
Software Name Purpose

1 DnsMasq Dynamic Host Configuration Protocol

2 Thrift-0.7.0 Library for distributed programming

3 Blender-Yafaray Reendering Engine

4 TinyCoreLINUX Kernel for PXE Booting

5 Ffmpeg .tga to .mp4 converter

V. RESULTS AND DISCUSSIONS

Table 3: Results obtained by preprocessing the input rendering frame

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 236

Sr.

No. Index Gloss

V

Count

Light

Count Width Height

Total

Time

Sr.

No Index Gloss

V

Count

Light

Count width Height

Total

Time

1 1.5 0.349 64 1 50 50 19 45 1 0.000 262144 4 200 200 5241

2 1.5 0.349 64 1 100 100 60 46 1 0.000 64 8 50 50 19

3 1.5 0.349 64 1 200 200 139 47 1 0.000 64 8 100 100 69

4 1.5 0.349 4096 1 50 50 54 48 1 0.000 64 8 200 200 257

5 1.5 0.349 4096 1 100 100 210 49 1 0.000 4096 8 50 50 114

6 1.5 0.349 4096 1 200 200 813 50 1 0.000 4096 8 100 100 462

7 1.5 0.349 262144 1 50 50 237 51 1 0.000 4096 8 200 200 1825

8 1.5 0.349 262144 1 100 100 835 52 1 0.000 262144 8 50 50 486

9 1.5 0.349 262144 1 200 200 3252 53 1 0.000 262144 8 100 100 1962

10 1.5 0.349 64 4 50 50 15 54 1 0.000 262144 8 200 200 7922

11 1.5 0.349 64 4 100 100 50 55 1 0.262 64 1 50 50 9

12 1.5 0.349 64 4 200 200 200 56 1 0.262 64 1 100 100 26

13 1.5 0.349 4096 4 50 50 84 57 1 0.262 64 1 200 200 90

14 1.5 0.349 4096 4 100 100 342 58 1 0.262 4096 1 50 50 42

15 1.5 0.349 4096 4 200 200 1321 59 1 0.262 4096 1 100 100 159

16 1.5 0.349 262144 4 50 50 335 60 1 0.262 4096 1 200 200 608

17 1.5 0.349 262144 4 100 100 1371 61 1 0.262 262144 1 50 50 166

18 1.5 0.349 262144 4 200 200 5688 62 1 0.262 262144 1 100 100 649

19 1.5 0.349 64 8 50 50 33 63 1 0.262 262144 1 200 200 2727

20 1.5 0.349 64 8 100 100 69 64 1 0.262 64 4 50 50 9

21 1.5 0.349 64 8 200 200 256 65 1 0.262 64 4 100 100 27

22 1.5 0.349 4096 8 50 50 117 66 1 0.262 64 4 200 200 93

23 1.5 0.349 4096 8 100 100 465 67 1 0.262 4096 4 50 50 44

24 1.5 0.349 4096 8 200 200 1864 68 1 0.262 4096 4 100 100 165

25 1.5 0.349 262144 8 50 50 502 69 1 0.262 4096 4 200 200 727

26 1.5 0.349 262144 8 100 100 2429 70 1 0.262 262144 4 50 50 185

27 1.5 0.349 262144 8 200 200 7972 71 1 0.262 262144 4 100 100 652

28 1 0.000 64 1 50 50 11 72 1 0.262 262144 4 200 200 2629

29 1 0.000 64 1 100 100 37 73 1 0.262 64 8 50 50 9

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 237

Table 3 shows results obtained by preprocessing the incoming rendering frame submitted by the user. As mentioned in Table 3 we have

considered Index, gloss, vCount, lightCount, width, height as the key factors for analysis of .blend rendering frame. We have applied a multiple

regression on the results obtained and derived a relational equation of rendering time i.e. Equation 1.

 Equation (1)

By using the equation 1 master calculates the total rendering time required by each node and the assigns the rendering job to a node with

minimum rendering time. To test the significance of the multivariate analysis we are using P test validation. Table 4 shows P values of the

multivariate analysis.

We are testing the hypothesis at significance level α= 0.05.

30 1 0.000 64 1 200 200 125 74 1 0.262 64 8 100 100 27

31 1 0.000 4096 1 50 50 56 75 1 0.262 64 8 200 200 92

32 1 0.000 4096 1 100 100 205 76 1 0.262 4096 8 50 50 63

33 1 0.000 4096 1 200 200 784 77 1 0.262 4096 8 100 100 169

34 1 0.000 262144 1 50 50 204 78 1 0.262 4096 8 200 200 613

35 1 0.000 262144 1 100 100 803 79 1 0.262 262144 8 50 50 165

36 1 0.000 262144 1 200 200 3212 80 1 0.262 262144 8 100 100 670

37 1 0.000 64 4 50 50 14 81 1 0.262 262144 8 200 200 2581

38 1 0.000 64 4 100 100 48

39 1 0.000 64 4 200 200 183

40 1 0.000 4096 4 50 50 85

41 1 0.000 4096 4 100 100 322

42 1 0.000 4096 4 200 200 1276

43 1 0.000 262144 4 50 50 327

44 1 0.000 262144 4 100 100 1317

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 238

β1 = Index, β2 =gloss, β3 =vCount, β4 =lightCount, β5 =width, β6 =height.

H0 : β1 = β2 = β3 = β4 = β5 = β6 =0.

Ha : β1 = β2 = β3 = β4 = β5 = β6 ≠ 0.

Table 4: P values of multivariate regression analysis

Attribute P-value

Intercept 0.000265

 Index 0.037411

 Gloss 0.029218

 vCount 1.23E-09

lightCount 0.049341

 Width 6.72E-09

 Height 0.029341

As all P values are smaller than α we accept the alternate hypothesis. This fact proves

that all these factors are significant in calculating the rendering time.

Figure 4: Comparison of Predicted Rendering Time and Actual Rendering Time

 Figure 4 shows the comparison of predicted rendering time and actual rendering time.

It is proven that our predictive model gives approximately same results as actual.

VI. CONCLUSION

In this research work we have presented a predictive dynamic load balancing

methodology for distributed rendering using lender 3D. We have considered CPU and RAM as

run time attributes for dynamic load balancing. Analytical regression method used in this work

does well for predictive rendering mechanism. Dynamic load balancing mechanism best suits for

the rendering work as it involves massive CPU and RAM intensive tasks

Futuristic Trends in Network & Communication Technologies

e-ISBN: 978-93-5747-384-2

IIP Proceedings, Volume 2, Book 19, Part 3, Chapter 2

PREDICTION BASED DYNAMIC LOAD BALANCING MODEL FOR DISTRIBUTED RENDERING

Copyright © 2022 Authors Page | 239

REFERENCES

[1] Carlos Gonzalez-Morcillo; Gerhard Weiss; David Vallejo; Luis Jimenez-Linares; Jose Jesus

Castro-Schez, A Multiagent Architecture For 3D Rendering Optimization, Applied Artificial

Intelligence: An International Journal ,2010, 24:4, pp.313-349.

[2] Thu D. Nguyen; Christopher Peery; and John Zahorjan; DDDDRRaW: A Prototype Toolkit for

Distributed Real-Time Rendering on Commodity Clusters, Proceedings of the International Parallel

and Distributed Processing Symposium (IPDPS), 2001, pp. 1-13.

[3] Steven Molnar, Michael Cox; David Ellsworth, Henry Fuchs; A Sorting Classification of

Parallel Rendering, IEEE Computer Graphics and Applications, 1994, 14(4), 23-32.

[4] S. See; H. Zhu; K. Y. Chan; L. Wang; W. Cai; DPBP: A Sort-First Parallel Rendering Algorithm

for Distributed Rendering Environments, In: Proceedings. International Conference on

Cyberworlds(CW), 2003, pp. 214, 2003

[5] R. Rangel-Kuoppa; C. Aviles-Cruz; D. Mould; Distributed 3D Rendering System in a Multi-

agent Platform Proceedings of the Fourth Mexican In: International Conference on Computer

Science, 2003.

[6] Huabing Zhu; Lizhe Wang; Chan Kai Yun; Wentong Cai; A Distributed Rendering Environment

for Massive Data on Computational Grids, In: Proceedings of the Third International Conference

on Peer-to-Peer Computing, 2003.

[7] Frederico Abraham; Waldemar Celes; Renato Cerqueira; Joao Luiz Campos; A load-balancing

strategy for sort-first distributed rendering, In: Proceedings of the XVII Brazilian Symposium on

Computer Graphics and Image Processing, 2004.

[8] Ali Sheharyar; Othmane Bouhali; A Framework for Creating a Distributed Rendering

Environment on the Compute Clusters, International Journal of Advanced Computer Science

and Applications, 2013, Vol. 4, No. 6, pp. 117-123.

[9] Tapus N.; Slusanschi E.; Popescu T.; (2002) Distributed Rendering Engine. In: Grigoras D.;

Nicolau A.; Toursel B.; Folliot B. (eds); Advanced Environments, Tools, and Applications for

Cluster Computing. IWCC. Lecture Notes in Computer Science, 2001, vol 2326. Springer,

Berlin, Heidelberg, pp.207-215.

[10] Erick Irawadi Alwi; Teguh Bharata Adji; Sujoko Sumaryono; Implementation and Performance

Analysis of MPI Cluster System in Distributed Rendering, International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences,2012, pp.225-229.

[11] Ruby Annette.J; Dr. Aisha Banu.W; Subash Chandran. P; Rendering-as-a-Service: Taxonomy

and Comparison, In: 2nd International Symposium on Big Data and Cloud Computing, Procedia

Computer Science 50, 2015, pp. 276 – 281.

[12] Akira Takeuchi; Fumihiko Ino; Kenichi Hagihara; An improved binary-swap compositing for

sort-last parallel rendering on distributed memory multiprocessors, Parallel Computing 29 2003,

pp.1745–1762.

[13] Jiaqi Wu; Huahu Xu; Design of 3D Rendering Platform based on cloud Computing, In: 4th

International Conference on Enterprise Systems, pp. 153-159, 2016.

[14] Cristian F. Perez-Monte; Mauricio D. Perez; Silvio Rizzi; Fabiana Piccoli; Cristian Luciano;

Modeling Frame Losses in a Parallel Alternate Frame Rendering System with a Computational

Best-effort Scheme, Computers and Graphics, 2016.

[15] Stefan Eilemann; Maxim Makhinya; Renato Pajarola; Equalizer: A Scalable Parallel Rendering

Framework, IEEE Transactions On Visualisation And Computer Graphics, 2009, Vol. 15, No. 3.

[16] Ganesh V. Patil; Dr. Santosh L. Deshpande; Distributed rendering system for 3D animations

with Blender, In: IEEE International Conference on Advances in Electronics, Communication

and Computer Technology,pp. 91-98, 2016.

[17] Ganesh V. Patil; Santosh L. Deshpande; Image optimisation using dynamic load balancing, Int.

J. Knowledge Engineering and Data Mining, 2018, Vol. 5, Nos. 1/2,pp. 68-89.

[18] Yafaray at www.yafaray.org (Accessed January 22, 2018).

