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Abstract 
 

Biomarkers, also known as biological 
markers, are biological indicators of the state 
of a person's biological system. Biomarkers 
can be used alone or in combination to assess 
an individual's state of health or disease. A 
"diagnostic biomarker" is an evaluating tool 
that can help the physician to determine, 
confirm, or detect the existence of a medical 
condition or disease of interest as well as to 
ascertain whether a victim has an identified 
disease subtype. These kinds of indicators 
will become more prevalent considerably as 
we enter the era of precision medicine. The 
phrase "monitoring biomarker" refers to a 
biomarker that is serially assessed for signs 
of exposure to a medical product or 
environmental agent, or to test the status of a 
disease or medical condition to determine the 
influence of a medical product or biological 
agent. As a result of exposure of patients to a 
medication prescribed by a physician or 
parameter such as environmental factor, 
"pharmacodynamic/response biomarkers" 
modify in concentration.  Both clinical 
practice and the initial phases of the 
development of methods may greatly gain 
from this particular type of biomarker. 
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I.  DIAGNOSTIC BIOMARKERS  
 

Breast cancer is the most widespread malignancy and responsible for the majority of 
cancer-related mortality in women all over the world, with an estimated 1.7 million incident 
cases including 521,900 deaths in 2012 [1]. Epidemiological study data has revealed that 
obesity, advanced maternal age at the time of the first birth, the use of estrogen and progestin, 
a lack of physical exercise, and alcohol usage are all linked to an elevated likelihood of breast 
cancer in women [2–5]. Some of these elements have an impact on patients' post-treatment 
prognoses as well. Genetic variables are crucial to the genesis of breast cancer since 
individuals with the same circumstances and family aggregation have varying lifetime risks 
[6, 7]. Gene markers for breast cancer susceptibility, such as BRCA1 and BRCA2, are often 
employed [8, 9]. Breast cancer is caused by DNA double-strand breaks, which are repaired 
by tumour suppressor genes. The human genome became unstable as a result of gene 
mutations, which also elevated the risk of breast cancer by about 21–40% in cases of 
hereditary breast cancer [10]. [11] developed a graphene-based electrochemical DNA sensor 
for the detection of BRCA1 using a modified glassy carbon electrode, hybridized target probe 
DNA, and reporter probe DNA in a sandwich configuration. This sensor was credible, 
reproducible, and sensitive; it was capable of identifying the BRCA1 gene even at amounts as 
low as 1 femtomolar. P53 mutations are seen in 30–35% of breast cancers [12]. For the 
purpose of exploring the p53 gene in detail, a DNA biosensor has been designed [13]. By 
serially injecting response elements (REs) over the active oligonucleotide probes, the 
affinities of REs and the p53 gene are shown. These tests show that the affinities of the 
ligands for the REs differed. A single strand binding protein biosensor was created in order to 
identify p53 lethal alterations in patients with breast tumors [14]. Breast cancer is found to be 
associated with exorbitant DNA damage, which is procreated by necrotic and apoptotic cells 
[15]. Breast cancer treatment information is provided by cell-free tumor DNA (cfDNA) 
detailed quantification, a novel non-invasive approach to diagnosis. cfDNA has been 
investigated as a breast cancer biomarker to demonstrate the correlation between cancer 
development and cfDNA concentration, despite the fact that the technology is not especially 
advanced. [16,17]. MicroRNAs a group of non-coding RNAs plays a remarkable role in 
controlling the expression of genes which are now transforming into reliable biological 
markers based on the hybridization principle and guanine oxidation [18]. Multiple types of 
electrochemical nanobiosensors have been used to look into the target miRNAs [19]. Despite 
having the highest sensitivity and specificity of any miRNA marker, MiR-21 has an 
assortment of shortcomings, notably sequence similarity to related RNAs, appearance in 
other cancers, and low serum levels. [20]. An acknowledged biomarker for advanced breast 
cancer, carbohydrate antigen 15-3 (CA15-3), has a relatively low sensitivity for early-stage 
breast cancer. The mucin MUC1 is detected by CA15-3, which has been widely utilized to 
identify recurrences and monitor therapy in metastatic breast cancer [21,22,23,24,25]. The 
typical secretory epithelium's apical membrane contains MUC1, which may be located 
anywhere along the membrane's outside surface. The clinical value of MUC1 measures is 
limited to measurements of CA15-3, which is liberated from the cell surface by proteolytic 
cleavage, despite the fact that MUC1 is expressed in both normal and malignant breast 
epithelium. About 30% of breast cancer patients had HER2 levels that were much higher than 
in healthy individuals. Human blood samples can be used to identify HER2, which has been 
utilized as a breast tumor related antigen [26]. Breast cancer patients often have HER2 levels 
of 15–75 ng/mL whereas healthy persons typically have values of 2–15 ng/mL [27]. Systemic 
HER2 levels have been found to be helpful for determining the best course of treatment, such 



Futuristic Trends in Biotechnology  
e-ISBN: 978-93-6252-490-4 

IIP Series, Volume 3, Book 12, Part 3, Chapter 1 
                             A DEEP DIVE IN TO BIOMARKERS, TYPES, ROLE IN THE DIAGNOSIS OF 

DISEASES AND IMPACT OF SAMPLE KIND ON SELECTION OF BIOMARKER 
 

Copyright © 2024 Authors                                                                                                                          Page | 41 

as delivering Herceptin to patients with HER2 positive breast cancers, and for monitoring 
disease recurrence and cancer progression [28]. Both disease-free survival and overall 
survival are dependent prognostic variables for HER2 serum levels, tumor size, nodal 
involvement, and tumor markers. 

 
1. Phosphoproteins as Biomarkers – Breast Cancer: Medical diagnostics has long sought 

to identify and track illnesses like cancer early through blood testing. Protein 
phosphorylation, an important post translational modification mechanism and one of the 
most significant and pervasive molecular regulatory processes, governs literally every 
aspect of cellular function [29, 30]. Thus, the status of phosphorylation processes may 
provide a window onto the progression of a disease [31]. Few phosphoproteins, 
nevertheless, have been created as disease indicators. However, only few phosphoproteins 
have been established as disease markers. Methods of collecting phosphoproteins from 
tissues confront substantial obstacles due to the invasive nature of tissue biopsy and the 
very unpredictable nature of protein phosphorylation throughout the occasionally difficult 
and drawn-out procedure of tissue biopsy. Furthermore, it is not feasible to evaluate the 
patient's response to therapy using tumor sample tissue. Developing phosphoproteins into 
biomarkers of disease from bio fluids is made much more complicated by the elevated 
levels of active phosphatases seen in blood. Despite certain highly abundant proteins 
making up over ninety-five percent of the total quantity in blood, very few 
phosphorylated proteins may be found in steady and measurable levels in plasma/serum. 
Due to their potential importance in tumor biology and metastasis, extracellular vesicles 
(EVs), such as microvesicles and exosomes, are currently being investigated to be 
attractive sources for the development of biomarkers for identifying signs of sickness [32, 
33, 34]. Mutations, active miRNAs, and signalling molecules with the capacity for 
propagation metastatically constitute only a few of the unique traits of the cargo 
generated by cancer cells [35, 36]. These properties make EVs essential to immune 
system regulation and intercellular communication. These EV-based markers of disease 
are an imminent possibility for early-stage cancer and other illnesses since the growing 
corpus of functional research has demonstrated strong proof that they may be observed 
long before the emergence of symptoms or physiological detection of a tumor [34, 37]. It 
is fascinating to learn that EVs are membrane-encapsulated nano- or microparticles that 
protect their internal contents from external proteases and other enzymes [38, 39, 40]. 
These features make phosphoproteins in EVs exceptionally stable in a bio fluid for a 
longer period of time and permit us to synthesize them for use in medical diagnostics. 
One could be able to obtain more precise real-time information on the biological 
processes of the organism and the progression of disease, especially in malignancies, by 
having the capacity to detect the genome output (active proteins, and in particular 
phosphoproteins). 

 
2. Biomarker Cerebrospinal Fluid Alpha-Synuclein in the Diagnosis of Parkinson's 

Disease: Currently, there are no specific biomarkers to confirm the presence of 
Parkinson's disease (PD). Alpha α-synuclein was found to be present in the cerebrospinal 
fluid (CSF) of patients with Parkinson's disease (PD), which is positive but leaves room 
for doubt. To explore how effectively CSF α-synuclein serves as a diagnostic biomarker 
of PD and if it can help differentiate Parkinson disease from other neurodegenerative 
disorders, an intensive literature search of all relevant publications looking for repeated 
CSF α-synuclein quantification methods in electronic databases was performed. was 
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carried out. An in-depth review and meta-analysis that was conducted by [41] included a 
total of 17 trials with 3311 patients. The quantity of CSF α-synuclein concentrations were 
significantly decreased in PD patients [weighted mean difference (WMD) 0.31; 95% CI, 
0.45, 0.16; p 0.0001] as well as Alzheimer's disease (AD) [WMD 0.15; 95% CI, 0.26, 
0.04; p 0.0001] compared with normal/neurological controls. Patients with Parkinson's 
disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA) were 
not significantly different from each other [WMD 0.05; 95% CI, 0.04, 0.13; p = 0.25]. 
CSF α-synuclein biomarker has showed a sensitivity and specificity of 0.88 (95% CI, 
0.84-0.91) and 0.40 (95% CI, 0.35-0.45) for the detection of Parkinson's disease (PD. 
Based on the CSF concentration of α-synuclein, the odds ratios for the diagnosis of 
Parkinson's disease were 1.41 (95% CI: 1.24-1.60) and 0.29 (95% CI: 0.15-0.56), 
respectively. The area under the curve (AUC) for the associated summary receiver 
operating characteristic (SROC) curve was 0.73. CSF α-synuclein could be considered as 
a biomarker for the diagnosis of Parkinson's disease [41]. 
 

3. microRNAs as Biomarkers in Heart Failure: Biomarkers offer an array application in 
heart failure. They play a significant role in the diagnosis of the ailment and are utilized 
to figure out the reason behind the cardiac failure. Multiple biomarkers may additionally 
be employed for foreseeing results and, in specific situations, to guide the choice, 
effectiveness, and outcome of medication. Finally, biomarkers could assist shed light on 
some pathophysiological mechanisms that explain heart failure [42]. MiRNAs are 
fascinating potential emerging biomarkers in heart failure due to the compelling proof 
tying them to both the beginning and progression of the disease as well as their long-
lasting presence in plasma. Circulating miRNAs have undergone extensive research as 
potential diagnostic biomarkers [43] despite the fact that B-type natriuretic peptide (BNP) 
and N-terminal pro-brain natriuretic peptide (NT-proBNP) are now beginning to be 
recognized as the gold-standard indicators for excluding and confirming the diagnosis of 
heart failure, respectively. However, in order to be employed as biomarkers for 
determining the presence of heart failure, they must either work better than natriuretic 
peptides or have an additional benefit. Natriuretic peptides have a high degree of 
sensitivity for the identification of heart failure, although there is still time for 
improvement. There have been a number of miRNAs suggested as prospective 
alternatives for heart failure diagnostic biomarkers [44, 45, 46, 47]. Circulating miRNAs 
were recently used in a few studies to help differentiate between those who encounter 
dyspnea from other reasons and those who have it because of heart failure.  In accordance 
with an investigation conducted by [48], the level of expression of the gene miR-423-5p 
differed across those suffering from heart failure, healthy individuals, and patients with 
various kinds of dyspnea. Acute heart failure is also linked to circulating miRNAs that are 
unevenly expressed, such as miR-499, which is highly expressed, and miR-103, miR-142-
3p, miR-30b, and miR-342-3p, which is weakly expressed [49, 50]. Patients with acute 
heart failure demonstrated lower levels of these miRNAs when compared with normal 
control subjects and patients who recently underwent a sudden flare-up of chronic 
obstructive pulmonary disease [51]. One of numerous miRNAs that were demonstrated to 
be substantially higher in the plasma of HCM individuals who did not exhibit heart failure 
symptoms was miR-29a, and it was the only miRNA to be associated with both LV 
hypertrophy and fibrosis [52]. The results obtained demonstrate that this miRNA may act 
as a diagnostic tool for the mechanisms involved in HCM remodeling. Additional 
evidence of miR-29a's specificity to HCM was provided by its ability to discriminate 
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between hypertrophic obstructive cardiomyopathy (HOCM), hypertrophic non-
obstructive cardiomyopathy (HNCM), senile amyloidosis, and aortic stenosis [53]. A 
significant link was identified between miR-29a and the size of the interventricular 
septum, a marker for conditions including fibrosis and hypertrophy. MiRNAs may be able 
to distinguish between heart failure with a preserved ejection fraction (HFpEF) and heart 
failure with a declining ejection fraction (HFrEF), according to recent studies. Only a 
small number of circulating miRNAs have been shown to have different levels in HFrEF 
and HFpEF by three investigations to date [49, 54, 55]. Diagnostically significant 
differences in miRNA expression between HFpEF and HFrEF can shed light on the 
unique genesis of each illness. 
 

II.  MONITORING BIOMARKER 
 

Hepatocellular carcinoma (HCC) is a most severe form of liver cancer that generally 
develops in conjunction with cirrhosis and chronic liver disease. It is the fourth cause of 
cancer-related mortality worldwide and the sixth greatest cause of cancer incidence [56]. 
While few patients with small, localized HCC may benefit from curative therapies, those who 
have substantial tumor burden, vascular invasion, or metastasis have a bleak prognosis and 
are managed with systemic therapy and supportive care. HCC biomarkers are necessary for 
early detection, prognostication, prediction, and monitoring of responses to therapy. The 
HCC biomarker that is now extensively employed is alpha-fetoprotein (AFP). The primary 
HCC screening method advised by leading societies [57, 58, 59] is biannual hepatic 
ultrasonography with or without serum AFP. In patients with HCC, AFP is employed as a 
prognostic and predictive biomarker. Increased tumor growth, portal vein thrombosis, waitlist 
abandonment for liver transplants, and post transplant recurrence have all been linked to 
elevated levels of AFP [60, 61]. Serum after a liver transplant and ramucirumab therapy, AFP 
is also a predictor of therapeutic response in HCC patients [62, 63]. However, because to its 
low sensitivity, AFP has limited utility as a biomarker for the early diagnosis of HCC. When 
combined with AFP, other protein-based blood tumor indicators including the AFP lectin 
fraction (AFP-L3) and des-y-carboxy prothrombin (DCP) have been demonstrated to enhance 
diagnostic efficacy [64]. Despite having been demonstrated to play diagnostic and prognostic 
roles in HCC, glipican-3 (GPC3) [65], cytokeratin 19 (CK19) [66], golgi protein 73 (GP73) 
[67], midkine [68], osteopontin [69], squamous cell carcinoma antigen (SCCA) [70], and 
annexin A2 [71] have not yet been widely incorporated into clinical practice. A liver biopsy 
enables molecular analysis of the tumor and direct sampling of the tumor tissue. It is an 
intrusive test, though, and there is a chance of bleeding as well as a worry about potential 
tumor seeding. Moreover, a single biopsy specimen containing a limited quantity of tumor 
tissue would not be indicative of the entire HCC tumor since HCCs demonstrate high inter- 
or intra-tumoral heterogeneity due to genetic abnormalities, transcriptional dysregulation, and 
epigenetic dysregulation [72]. Many "liquid biopsy" approaches have gained substantial 
traction in recent years as cutting-edge HCC indicators. Body fluid samples are taken during 
a liquid biopsy in order to gather crucial phenotypic, genomic, and transcriptomic data on the 
underlying tumor [73]. The four fundamental elements of liquid biopsies are circulating 
tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), and extracellular 
vesicles (EVs). CTCs are cancerous cells that move into the systemic circulation, either as 
metastases or from the original tumor, and were first identified in 1869 [74]. Due to the fact 
that they are a sample of the patient's living tumor cells, CTCs stand out from all other cancer 
biomarkers [75]. By detecting particular target gene alterations and predicting a patient's 
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response to or resistance to a certain medication, analysis of CTCs can assist direct treatment 
strategies.  

 
1. Biomarkers of Traumatic Brain Injury (TBI): Traumatic brain injury (TBI) is one of 

the significant causes of fatalities and disability worldwide, and it is becoming more 
common among the elderly due to sociodemographic changes [76, 77, 78]. TBI is 
comprised of two processes: the development of detrimental secondary injuries as a result 
of the distinctive traumatic impact at the site, that led to primary damage to the brain 
parenchyma and blood vessels [79], which have been defined by advancing cell death due 
to inflammation, impaired cerebral blood flow, and impaired metabolic function [80]. 
Proteins, some of which are extremely concentrated in the CNS, are either produced, 
released, or leaked by injured, damaged, or dying central nervous system cells [81]. These 
proteins can be measured in order to determine the degree of cellular damage. The 
purpose of specialist neurointensive care units (NICUs) that treat TBI patients who are 
unconscious is to identify, prevent, and treat these secondary insults in order to maximize 
brain recovery. In clinical practice, measuring these tissue-specific proteins (referred to as 
"biomarkers") may aid in the early diagnosis of secondary damage [82, 83]. S100B, a 
calcium-binding protein that is largely intracellular and found in mature, perivascular 
astrocytes, is the TBI biomarker that has been researched the most [84, 85]. The 
glycolytic enzyme neuron-specific enolase [86], the astrocytic cytoskeleton component 
glial fibrillary acidic protein [87], the ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) 
connected in the neuronal production of ubiquitin [88], and neurofilament light (NF-L) 
are additional brain-specific proteins that have been thoroughly investigated in TBI. Low 
serum levels of S100B have been experimentally shown to effectively rule out 
intracranial injury in patients with mild TBI and reduce the need for head computed 
tomography in these circumstances. S100B is currently employed locally as an early 
screening tool in the Scandinavian Guidelines for minor and moderate TBI [89]. The 
protein's extremely brief serum elimination half-life, however, has been mentioned as one 
of its drawbacks [90]. Therefore, delayed sampling may be unnecessarily comforting in 
patients with mild to moderate TBI who lack pathophysiological mechanisms to induce a 
sustained release in S100B, and this is reflected in the recommendations, which 
recommend a cut-off of 6 hours after trauma [91]. It is becoming more and more obvious 
that, in the absence of kinetic factors, a particular serum level is not very significant. How 
these proteins leave the damaged brain and enter the circulation is not entirely 
understood. Possible pathways include rupture of the blood-brain barrier (BBB) [92], 
release independent of BBB integrity [93], and travel through the recently identified 
glymphatic system [94]. Before being transported to the cerebral spinal fluid (CSF) [96] 
and/or serum, where samples are easiest to get, these proteins are presumably at first 
synthesized in the cerebral extracellular space, a site that is challenging to obtain 
frequently [95]. Numerous factors, including clearance, redistribution, protein stability, 
and ongoing discharge from the critically injured brain, may have an impact on the 
availability in serum [97]. Since the kidneys have been shown to completely eliminate the 
protein S100B, those who were with insufficient renal function may be affected [90, 99, 
100]. Given their higher sample sizes and the paucity of research on serum clearance for 
the other markers, liver metabolism is probably at play [101]. 
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III.   PHARMACODYNAMIC BIOMARKERS 
 

Multiple pharmacodynamic signals have been used to identify patients with interferon 
(IFN) treatment. There is not much evidence to support the use of soluble TRAIL, IP-10, and 
IL-1RA as pharmacodynamic markers following hypodermic (sc) IFN-1a intake on long-term 
therapy, despite the fact that some biomarkers, such as neopterin, 2′5 ′-oligoadenylate 
synthetase, and Myxovirus protein A (MxA), are widely recognized. Biomarker molecules 
(neopterin, 2′5′OAS, TRAIL, IP-10, IL-1RA) have been investigated in serum samples using 
affirmed assays. Serum samples from 448 REFLEX trial participants with clinically isolated 
syndrome (CIS) who received scIFNβ-1a 44g once (ow), three times weekly (tiw), or placebo 
were taken at baseline (month [M] 0), M6, M12 they came., M18 and M24. At M0 and M24, 
whole blood MxA gene expression was assessed. In an extension research reflection, 302 
people with CIS or individuals who later developed multiple sclerosis (MS) had their blood 
levels measured every six months for neopterin, IP-10, and TRAIL. The pharmacodynamic 
effect of each biomarker on adherence to scIFN-1a treatment was assessed using a linear 
mixed effects model with biomarker expression as the independent variable, biomarker 
expression at M0, treatment arm, sex, and time as fixed variables and subject as a random 
effect. Compared to M0, all examined biomarkers significantly increased 1.5–4-fold in 
response to scIFN-1a treatment. Over the 5-year monitoring period, upregulation vs M0 for 
each biomarker was sustained and dose-dependent. Patients who received placebo showed no 
changes, while those who received scIFN-1a 44µg showed intermediate or greater changes. 
The following pharmacodynamic indicators linked to scIFN-1a therapy were confirmed: 
neopterin, 2′5′OAS, MxA, IL-1RA, and – on long-term treatment – TRAIL and IP-10 [102]. 

 
IV.    ROLE OF METABOLOMICS IN BIOMARKER DISCOVERY 

 
The development of disease-modifying or prophylactic drugs relies heavily on the 

identification of pre-clinical disease biomarkers. The key to effective patient treatment and 
management is early recognition of the illness. Recent developments in new technologies 
have led to a surge in studies and activity around the identification of biomarkers. Metabolite 
changes in biofluids are indicators of physiological or pathological changes. Assessing 
metabolism in biological systems, both quantitatively and qualitatively, is central to the well-
established and rapidly growing scientific topic of metabolomics [ 103 , 104 , 105 , 106 ]. 
The metabolome serves as both the endpoint of the omics cascade and the closest point to the 
phenotype. As a result, metabolome profiling can be an effective method to identify reliable 
diagnostic markers to investigate unknown clinical disorders. Metabolomics is a highly 
effective method for elucidating metabolic pathways that can ultimately contribute to better 
treatment and diagnosis. It combines phenotype and metabolic signatures, two things that are 
crucial for biological function [107, 108]. It offers the potential to identify diagnostic markers 
for therapeutic targets and shed light on the pathophysiology of disease states. The predictive 
ability of metabolites, which was an advantage of this strategy, performed better in terms of 
sensitivity and specificity and may be useful for the identification of biomarkers in the future 
[109]. Moreover, metabolic profiling is very direct, precise and specific and should be 
equally useful in metabolic research programs. 
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V. METABOLOMICS IN DIAGNOSIS 
 

Effective treatment of the disease depends on early diagnosis. Identification of disease 
biomarkers is crucial for early diagnosis, classification, disease progression, prognostic 
assessment and therapy response. Monitoring the status of living organisms now relies 
heavily on the analysis of essential metabolites. To understand biochemical changes in linked 
disorders, metabolomics is a new analytical tool to determine metabolite profiles throughout 
the body [110]. It is more often used to identify biomarkers for evaluating risk and 
diagnosing illness [111]. Metabolomics is a relatively young topic in bioinformatics that uses 
the measurement of metabolite abundance for disease diagnosis and other medical reasons 
according to recent advances [112]. It shows promise for early diagnosis, expands treatment 
options, and identifies new metabolic pathways that can be targeted for disorders [113]. 
Pattern recognition techniques have dominated medical science due to the complexity and 
volume of data produced by state-of-the-art metabolomics, and may be suitable for some 
diagnostic medical applications. It is envisioned that the data obtained from metabolite 
profiling will enable the prescription of personalized drugs that treat the disease more 
effectively. Metabolome analysis has been used in a number of clinical researches as 
advances in analytical technology have made it possible to rapidly measure the amount of 
thousands of metabolites in any biological sample. The deployment of innovative 
metabolomics tools and associated bioinformatics research have put these goals into sharper 
focus. Metabolomics, a discipline that is still under development, has enormous potential for 
clarifying biological mechanisms and locating clinical biomarkers, helping initiatives in 
improving illness prevention and medical care.  

 
VI.   SAMPLE KIND IMPACTS ON BIOMARKER SELECTION 

 
Common diseases can be detected using different sample types and sampling 

circumstances. For example, urine or swabs can be used as methodologies to collect sample 
for various sexually transmitted diseases. However obtaining an adequate swab-based sample 
from male patients may be difficult or uncomfortable for STIs [114, 115]. Therefore, if swab 
sampling is not feasible for a particular demographic, a well-characterized biomarker may not 
be effective. In contrast, it is easy to collect urine from all patients in different contexts [116]. 
It is possible that biomarkers with great clinical sensitivity and specificity, but insufficient 
concentration to be detected by an efficient analytical approach, will not be helpful in all 
circumstances. For instance, when urine contains nucleic acid indicators for Chlamydia 
infection, the clinical concentration of Chlamydia gDNA is only 101 to 106 copies/ml [117]. 
The amount of Chlamydia gDNA will often be too low to detect if an assay can handle only 
100 µl of sample, making gDNA an unreliable biomarker for that test. Despite the fact that 
gDNA can be amplified, the amount of accessible biomarkers may be limited, which may 
hinder or restrict biomarker discovery. Collection of high sample volumes would be one way 
to get around this restriction, but there are limits to how much volume can be obtained 
without negatively impacting the patient, increasing the signal background, or making the 
detection assay significantly more difficult. . Moreover, certain situations call for invasive 
specimens, including tissue biopsies, which are unsuitable for non-trained users to collect. 
The biomarker of choice can be significantly affected by the type of sample used. 
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