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NON-STARCH POLYSACCHARIDES: OVERVIEW, 
CLASSIFICATION, METHODS FOR ESTIMATION OF 
NON-STARCH POLYSACCHARIDES AND THEIR 
PROPERTIES 

 

Abstract 
 
 Monosaccharide macromolecules 
joined by glycosidic linkages are known as 
polysaccharides. Non-glucan polysaccharides 
of the plant cell wall make up the majority of 
non-starch polysaccharides (NSP). They are a 
diverse category of polysaccharides that vary 
in size, structure, and water solubility. They 
are also referred to as hydrocolloids and 
disperse in water to create viscous 
dispersants or gels. These gels or dispersants 
alter colon absorption of nutrients and 
postprandial blood sugar levels by forming 
networks or films or by becoming viscouser. 
NSPs also have a variety of biological 
functions, including hypoglycemic, 
immunoregulatory, and antioxidant actions. 
Plant NSP concentration varies not only by 
species but also by genotype and cultivar 
within a given species. Additionally, the NSP 
content may be affected by the agronomic 
cultivation circumstances, which include 
environmental factors before harvesting and 
storage conditions following harvest. This 
chapter gives an outline of non-starch 
polysaccharide, its classification based on 
solubility and linkage, various methods for 
estimation of NSPs such as detergent 
method, chemical method, enzymatic 
method, gravimetric method and some 
properties it exhibits such as solubility, water 
binding capacity, viscosity. 
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I. INTRODUCTION 
 

 The carbohydrate fractions known as non - starch polysaccharides (NSPs) do not 
contain starch or free sugars. These polymeric carbohydrates differ from amylase and 
amylopectin in terms of content and structure. They are the structural equivalents in plants to 
the skeletal system in the animal realm. NSPs are high-molecular-weight pentose and hexose 
polymers with -links that range in molecular weight from 8000 to a million. The majority of 
cell wall polysaccharides are made up of NSPs, which are also closely related to other 
polysaccharides and non-carbohydrate materials including lignin and protein [1]. These non-
starch polysaccharides (NSPs) cannot be broken down by human endogenous enzymes. They 
disperse in water to create viscous dispersants or gels, also known as hydrocolloids, which 
affect intestinal nutrient absorption and postprandial blood glucose concentration by forming 
networks or films or by increasing viscosity [2]–[6]. NSPs also have a range of biological 
functions, including hypoglycemic, immunoregulatory, and antioxidant actions [3], [7]. For 
instance, xanthan gum slows down starch digestion by blocking glucoamylase in addition to 
absorbing heavy metals like lead, cadmium, and copper [3]. The main NSP found in cereal 
grains are cellulose, beta-glucan, arabinoxylans (pentosans), and xylans. Pectic 
polysaccharides are present in modest amounts in the stem and leaves. Only the hull and husk 
component of leguminous plants contains cellulose and xylans. Legumes have pectic 
polysaccharide in the cotyledon. Plant NSP concentration varies not only by species but also 
by genotype and cultivar within a given species. Additionally, the NSP content may be 
affected by the agronomic cultivation circumstances, such as environmental factors before 
harvest and storage conditions following harvest. 
 
II. CLASSIFICATION OF NON-STARCH POLYSACCHARIDES 

 
 With the exception of α-glucans (starch), a wide range of polysaccharide molecules 
are referred to as NSP. NSPs have been categorized using a variety of factors. Historically, 
the process for isolating and extracting polysaccharides constituted the basis for the 
classification. Cellulose is the residue left over after a series of alkaline extractions of cell 
wall elements and the portion of the residue that is solubilized by alkali and is known as 
hemicellulose. Different solubilities led to another classification. Three types of NSP are 
included in this classification: crude fiber (CF), neutral detergent fiber (NDF), and acid 
detergent fiber (ADF). Crude fiber are the residues of the plant material after acid and alkali 
extraction which can contain varying amounts of insoluble NSP. In contrast to ADF, which 
refers to a portion of insoluble NSP primarily but not exclusively made up of cellulose and 
lignin, NDF is made up of the insoluble fraction of NSP plus lignin [8].  
 

A more precise division of NSP into three major groups—cellulose, non-cellulosic 
polymers, and pectic polysaccharides—was suggested by Bailey (1973) (Table 1). Non-
cellulosic polymers include arabinoxylans, mixed-linked β-glucans, mannans, and 
xyloglucan, while pectic polysaccharides are polygalacturonic acids replaced with arabinan, 
galactan, and arabinogalactan. Another classification is based on the basis of solubility and 
linkage. Cellulose is not soluble in water as well as in alkali or dilute acids. On the other 
hand, non-cellulosic polymers and pectic polysaccharides are partially soluble in water [9]. β-
(1→4) glycosidic linkage backbones with β-(1→3) linkages are soluble or partially soluble in 
water whereas long sequences of β-(1→4) glycosidic unit are not soluble in water. 
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Table 1: Classification of Non-Starch Polysaccharide 

 
Category  Cellulose  Non-cellulosic polymers  Pectic polysaccharides  

Arabinoxylan
s  

Mixed 
link β-
glucan
s  

Mannans  Galactomannan
s  

Glucomannan
s  

Arabinan
s  

Galactans Arabinogalacta
ns (Type I) 

Arabinogalacta
ns (Type II) 

Monomeri
c Residue 

Glucose Arabinose 
and xylose 

Glucos
e 

Mannos
e 

Galactose 
and mannans 

Glucose 
and 
mannans 

ArabinoseGalactos
e 

Arabinose and 
galactose 

Arabinose and 
galactose 

Linkage  β-
(1→4) 

β-(1→4)-
linked xylose 
units 

β-
(1→3) 
and β-
(1→4) 

β-
(1→4) 

β-(1→4)-
linking 
mannan 
chains with 
α-(1→6)-
linked 
galactosyl 
side groups  

β-(1→4)-
linked 
mannan 
chain with 
intersperse
d glucose 
residues in 
the main 
chain 

α-
(1→5) 

β-
(1→4) 

β-(1→4) 
galactan 
backbone 
substituted with 
5-linked and 
terminal 
arabinose 

β-(1→3,6)-
linked galactose 
polymer 
associated with 
3- or 5- linked 
arabinose 
residue 

 Sources  Legume
s and 
most 
cereals 

Sorghum, 
wheat, oat, 
rye, barley, 
rice 

Barley
, oat 

Coffee 
seed 

Guar gum, 
locust bean 
gum 

Lilies, pulp 
of sugar 
beet 

Co-
product
s of 
cereals  

Pulp of 
sugar 
beet, 
sugar 
bean 
meal 

Grain legumes Cotyledon of 
rapeseed 

Adapted from [8]



Futuristic Trends in Agriculture Engineering & Food Sciences  
e-ISBN: 978-93-5747-931-8 

IIP Series, Volume 3, Book 15, Part 4, Chapter 2 
                        NON-STARCH POLYSACCHARIDES: OVERVIEW, CLASSIFICATION, METHODS  

FOR ESTIMATION OF NON-STARCH POLYSACCHARIDES AND THEIR PROPERTIES  
 

 
Copyright © 2024Authors                                                                                                               Page | 450 
 

1. Cellulose: Cellulose is known to be a complex polysaccharide made up of at least 3000 
or more linear unbranched chain of β-(1→4) linked D-glucose units. Due to the absence 
of the digestive tract enzyme cellulase in monogastric animals, this bond typically makes 
cellulose ingestible. About 33% of all vegetable components are composed of cellulose, 
which is the fundamental structural element of plant cell walls. It makes up more than 
half of all the carbon in vegetation, making it the most prevalent of all naturally produced 
organic compounds [8]. 
 

The amount of cellulose in whole grains varies depending on the species and is 
primarily a result of the husk and seed coat thickness. More cellulose in cells results in 
thicker, more robust cell walls. A well-filled grain should have a low cellulose to starch 
or any reserve polysaccharides ratio since seed endosperm cells consist of just thin cell 
walls [10]. 

 
The equatorial conformation of the residues of glucose enables the molecule 

adopt an extended and slightly stiff rod-like conformation since cellulose is a polymer 
made of straight chains that doesn't have coiling or branching. Numerous hydroxyl groups 
on the residues of glucose from a particular chain create bonds of hydrogen with oxygen 
molecules that are on the same or on an adjacent chain. This tightly holds the chains side 
by side. Cellulose is very insoluble in water due to the ability of the chains to stack up to 
create stronger microfibrils, nevertheless it can swell in excessive sodium hydroxide 
solutions. Cellulose is capable of being introduced into solution by using chemicals that 
disrupt hydrogen bonds, such as N-methylmorpholine N-oxide. Furthermore, through 
thermal and shear treatments, subsequently followed by alkaline peroxidation and 
shearing, cellulose-rich maize bran can be transformed into a cellulosic gel for use as a 
nutritional supplement [11]. In addition to water and matrix polysaccharides such (1, 3, 
4)-D-glucans, heteroxylans (arabinoxylans), and glucomannans, cellulose microfibrils 
may also interact with these substances [12]. 
 

2. Non-Cellulosic Polymers 
 

 Arabinoxylans: The polysaccharide arabinoxylan (AX), which is found in the cell 
walls of many cereals including oat, barley, corn, rice and wheat, has a linear 
backbone consisting of xylose units linked by arabinose units [13]. Despite these 
polysaccharides only make up a small portion of whole cereal grains, they play a 
significant role in plant cell walls. Arabinoxylans (60-70%) make up the majority of 
the thin walls that enclose the cells in the starchy endosperm and the layers of 
aleurone in the majority of cereals; the exceptions are the endosperm cell walls of rice 
(40%) and barley (20%) [11]. The pericarp and testa of wheat, in particular, contain a 
very high arabinoxylan content (64%) [14]. 

 
Wheat AXs have been found in endosperm (3–5% of the total endosperm), 

aleurone, and bran (60–70% of the total cell wall) [15], [16]. Since, they are attached 
to the cell walls by alkali-labile ester like cross linkages, the majority of the 
arabinoxylans in wheat grains are insoluble in water [17]. However, arabinoxylans 
that are not attached to the cell walls have the ability to generate extremely viscous 
solutions and can hold ten times their weight in water. Arabinoxylans can quickly 
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form a gel network under the influence of oxidative agents, such as H2O2/peroxidase, 
as the outcome of the restoration of cross-links [18]. Arabinoxylans that are fully 
cross-linked are capable of holding as much as 100 g of water/g of polymer [16]. AXs 
make up 10.9 to 26% of all bran fractions in the particular case of wheat bran [19]–
[22]. Barley AXs share the same fundamental makeup as wheat AXs, which are 
polysaccharides mostly made of xylose and arabinose. Though far less researched 
than AXs from barley or wheat, corn also serves as an ideal source of AXs [23]–[25]. 
AXs have been found in about 51% of maize bran, or 67% if residual starch is not 
taken into account [23]. Other researchers, however, have noted lower AX yields 
from corn bran (approximately 35–40%) [26].  

 
Cereals can have AXs extracted from them utilizing a variety of methods from 

various grain sections. Cereal brans, which account for between 10% and 25% of all 
bran, are the most prevalent source from which AXs are derived [19], [21], [22], [27]. 
Enzymatic treatments, chemical treatments, water treatments, mechanical treatments, 
or a combination of these procedures can all be used to extract AXs [16], [28]–[31]. 

 
 Mannans: The four types of mannans that are naturally occurring are linear mannan, 

glucomannan, galactomannan, and galactoglucomannan [32]. Linear chains of D-
mannose residues connected by β-1,4-glycosidic linkages make up linear mannan. 
The linear mannan backbone is water-insoluble like cellulose because of its similarity 
[33]. Contrarily, glucomannan is made up of D-mannose and D-glucose residues 
joined together by β-1,4-glycosidic linkages. Cereal grains have been shown to 
contain trace amounts of glucomannans. Mannose and glucose units make up these 
NSPs. In glucomannans, the M: G (mannose: glucose) ratio ranges from about 1.5:1 
to 4.2:1 [34]. Since, they are hydrophilic, glucomannans are very soluble in water 
[33]. On the other hand, galactomannans are made of linear chains of D-mannose 
residues that have had their galactose residues replaced by α-1,6-glycosidic linkages. 
Their mannose to galactose content ratios are different. The endosperm of the seeds of 
many dicotyledonous plants, particularly those belonging to the Leguminosae family, 
is where galactomannans are primarily found. The gums made from carob (27-33%), 
fenugreek seed (25.5-32.8%), and guar (28.6-34.6%) contain the highest 
concentrations of galactomannans and is also a contributor of the gum's viscosity and 
ability to form gels [32], [33]. Cereals' galactomannan content has not been 
documented. The most complicated mannans are galactoglucomannans, which have a 
glucomannan backbone with D-galactose replacements. According to reports, the 
molar ratio of the mannose, glucose, and galactose residues in galactoglucomannan is 
3:1:1. Depending on where it comes from of the polysaccharide, 
galactoglucomannans are able to be acetylated at the C-2 and C-3 positions of 
mannose residues to varying degrees [35].  

 
3. Pectic Polysaccharides: Galacturonic acid molecules are the building blocks of pectic 

polysaccharides. These molecules are connected by α-(1→4) glycosidic linkages, 
frequently with rhamnose residues attached, but they can also contain glucuronic acid, 
galactose, fucose, arabinose, or xylose. In grains of wheat, corn, and rice, pectic 
polysaccharides typically make about 0.24–0.25% of the total grain weight [36]. It is 
4.68% in quinoa grain and 2.41% in barley grain [37]. Two forms of pectins—high 
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methoxyl and low methoxyl—are characterized by the presence of certain carboxyl 
groups in the galacturonic acid chain as methyl esters. Protopectin is also found, as well 
[38]–[40]. Low methoxyl pectins have less than 50% methanol-esterified carboxyl 
groups, while high methoxyl pectins have more than 50% [41]. Among cereal grains, high 
methoxyl pectins make up 28.7–36.4% of the overall pectin content, while low methoxyl 
pectins make up 30.9–35.2%. Protopectins, which are water-insoluble pectic compounds, 
make up the rest of the pectin content (32.3–36.5%) [42]. 

  
III. METHODS USED FOR ESTIMATION OF NSPS 

 
1. Gravimetric Methods: After non-fiber materials have been chemically or enzymatically 

solubilized, gravimetric methods quantify the insoluble residue. Gravimetric techniques 
are simple to use and don't need any specialized tools [1]. 

 
 Crude Fiber Method: The crude fiber method is the oldest and most widely used 

method for fiber analysis. Since some of the structural polysaccharides such as 
cellulose and lignin can be solubilized, this approach can only measure a small 
portion of the fiber's constituents. The insoluble fraction is isolated using the crude 
fiber technique, which alternates between acid and alkaline digestion. In some parts of 
the world, as well as in the food sector, the crude fiber method is still in use. However, 
due to the loss of some insoluble polysaccharides, all soluble polysaccharides, some 
lignin, and the addition of some nitrogenous material to the residual residue, its utility 
is severely constrained. 

 
 Detergent Method: Van Soest and associates pioneered the application of detergents 

to dissolve protein in the 1960s. Although these techniques were initially created for 
pasture fiber, detergent techniques are now more frequently employed for concentrate 
feeds. Strong acid is used in the Acid Detergent Fiber (ADF) process, which was used 
for animal feeds. All polysaccharides are hydrolyzed safeguard cellulose and lignin, 
which are the only components in ADF. This method, like the crude fiber method, has 
limitations regarding its applicability to human nutrition because it excludes other cell 
wall polysaccharides. Van Soest created the Neutral Detergent Fiber (NDF) method, 
for assessing all insoluble cell wall material, in response to the requirement to define 
and include additional cell wall elements. This turned out to be a more accurate 
predictor of the dietary fiber content of animal meals than the crude fiber technique. 
The NDF approach started to be used in human nutrition in the 1970s, but its 
applicability was still constrained because it did not incorporate soluble fiber 
components or completely eliminate starch. The fiber that is insoluble in acid 
detergent (ADF) and neutral detergent (NDF) can be measured using the detergent 
method in a more detailed way. While ADF only measures cellulose and lignin, 
allowing for the determination of hemicellulose by difference, NDF measures 
hemicellulose, cellulose, and lignin. Since both water-soluble and water-insoluble 
NSP might be lost during the NDF process, starch and protein can contaminate the 
NDF residue, and hemicellulose may remain in the ADF fraction, this computation 
may not provide a precise measurement of NSP. The difference between total dietary 
fiber and NDF can be used to determine NSP. 
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2. Colorimetric Method: Strong acids that include orcinol, carbazole, and anthrone, which 
are generally selective for pentoses, uronic acid, and hexoses, respectively, cause 
carbohydrates to condense in a reaction. This reaction results in the production of 
spectrophotometrically measurable colored compounds. Methods were enhanced in the 
1950s by adding a number of extraction processes, followed by polysaccharide hydrolysis 
and monosaccharide component colorimetric analysis. Southgate noted that removing all 
of the starch was essential since any remaining starch would cause the amount of dietary 
fiber derived from glucose to be overestimated. The Fourth Edition of McCance and 
Widdowson's The Composition of Foods included the United Kingdom nutritional tables 
when the Southgate technique was adjusted for human nutrition in the 1970s. Southgate 
acknowledged that a colorimetric assay did not distinguish individual monosaccharides 
but suggested that gas chromatography (GC) or high-performance liquid chromatography 
(HPLC) be used because the method established significant information on 
monosaccharide groups (pentoses, uronic acids, and hexoses). Additionally, there were 
still issues with the removal of starch, which resulted in exaggerated values for numerous 
dietary products with high starch contents, including grains, legumes, and starchy 
vegetables. 

 
3. Chromatographic Method: There are numerous chromatographic techniques used to 

estimate NSPs. A method for measuring non-starch polysaccharides using Gas 
Chromatography that extends Southgate's work was published by Englyst and colleagues. 
The technique required more thorough starch removal and made it possible to identify the 
various monosaccharides that make up dietary fiber in processed foods. Additionally, it 
enabled the separation of soluble from insoluble polysaccharides and cellulose from non-
cellulosic polysaccharides. As a result, the approach offered a great deal of information 
about the polysaccharide components of diets for humans. The Englyst method is an 
upgraded version of McCance and Southgate's enzymatic-chemical approach for 
determining NSP. The enzyme completely breaks down starch, and NSP are calculated as 
the total of the component sugars liberated during acid hydrolysis.  Gas-liquid 
chromatography (GLC), high-performance liquid chromatography (HPLC), colorimetric 
analysis, can all be used to assess the presence of carbohydrates. Data for total NSP, 
soluble NSP, and insoluble NSP can be determined. Cellulose can also be evaluated 
independently with a modest modification to the procedure. With its colorimetric version, 
the Englyst method can determine total, soluble, and insoluble NSP in 8 hours, or in one 
and a half days when using chromatographic techniques. NSP is calculated using GLC as 
the total of neutral carbohydrates, while uronic acids are calculated independently. 
Neutral sugars and uronic acids are the components of NSP as measured by HPLC. 
Monosaccharides and oligosaccharides are two examples of individual sugars that can be 
separated using thin layer chromatography (TLC). It is most frequently used for 
oligosaccharides in the raffinose series, including raffinose, stachyose, verbascose, etc. 
The various sugars are recognized, recovered, and then estimated spectrophotometrically 
from the ethanol extract that contains a combination of sugars and is spotted on the TLC 
plate (cellulose coated). 

 
4. Enzymatic Method: The nineteenth century saw the invention of using enzymes to 

extract readily available carbohydrates by German researchers. In order to address issues 
with applying the approach to items with a high starch content, where the starch is not 
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fully solubilized, Schaller added the amylase treatment in the neutral detergent technique 
developed by Van Soest & Wine. Mongeau and Brassard modified the technique and 
created a quick gravimetric approach with great precision, but it had the drawback of 
being unable to entirely extract the starch and/or protein in some samples. The non-
enzymatic gravimetric method of Prosky and other more exact NSP analytical techniques, 
such as the enzymatic-chemical method, or Englyst method, have emerged as the primary 
methods for NSP assessment. Furda, Schweizer and Würsch, as well as Asp and 
Johansson separately created the first gravimetric techniques for measuring the soluble 
and insoluble parts of NSP. Together with DeVries, Prosky, and Harland, these writers 
created the first iteration of the AOAC's enzymatic gravimetric method. Later, the 
procedure was modified to work with both soluble and insoluble fractions before being 
made simpler by employing 4-morpholine-ethanesulfonic acid-TRIS buffer. The AOAC 
modified Prosky and Asp's approach. By enzymatically removing accessible starch and 
solubilizing and extracting a portion of the protein, the method calculates the overall 
amount of dietary fiber. The rest of the residue is then dried, weighed, and its crude 
protein and ash levels are adjusted. If there is at least 10% of fat present, a preliminary 
step is added to eliminate it. The procedure can be completed quickly and easily, and it 
has been mechanized to allow for the evaluation of many samples at once. Many nations 
have made it their official way of analyzing dietary fiber. This procedure used protease, 
amyloglucosidase, and thermostable amylase to break down the gelatinized material. 
Alcohol is used to precipitate the undigested fraction. With Nx6.25 and ash, the residue is 
corrected. The drawback of the AOAC method is that hydrolyzed byproducts stay in 
solution. Alcohol cannot dissolve the Na and Ca salts found in the samples and buffers, 
which results in an increase in ash. There exists a slight overestimation of polysaccharides 
at 525 °C due to the depletion of volatile components. Due to these issues, the process 
was altered to include urea-based dialysis, which forgoes the heat treatment and dialysis-
based byproduct removal. The method's fundamental component is the unique activity of 
a thermostable enzyme in an 8M urea solution. Southgate and Bach Knudsen modified an 
approach created by Asp for the analysis and characterisation of dietary polysaccharides 
groups for feed. 
 

IV. PROPERTIES OF NON-STARCH POLYSACCHARIDE 
 

 NSPs' fundamental characteristics include their solubility, ability to bind to water, 
ability to create very viscous solutions, and capacity to cross-link and lower surface tension 
[1].  
 
1. Solubility: The molecular structure of NSPs affects how soluble they are. Higher 

solubility is caused by any structural trait that prevents intermolecular interaction, such as 
molecular branching or the existence of carboxyl, sulfate, or phosphate groups [43]. The 
existence of linear chains within the molecule, high molar mass, and other common 
structural traits are examples of structural characteristics that encourage intermolecular 
interaction and cause poor solubility [44], [45]. 

 
AXs are often divided into two fractions: those that are soluble in water and 

those that are not. The degree and pattern of substitutions, the proportion of arabinose to 
xylose, and their molecular weight all affect how soluble AXs are in water. It has been 
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established that the AX chain's solubility decreases when arabinose residues are removed 
[46]. AXs that are insoluble in water are coupled to components of the cell wall such 
cellulose, lignin, or proteins [46], [47]. The surface of the cell wall contains loosely 
attached water-soluble AXs [17], [46]. AX is typically 30–40% [48] soluble in wheat 
flour, compared to 18–23% [49] soluble in whole-grain rye flour. AXs were 10–18.5% 
[50] soluble in grain of barley. It should be noted, nonetheless, that the observed 
variations in the AXs' calculated solubility may be the result of different extraction 
procedures, preparations with different compositions, or solubility measurement 
techniques [49], [50]. 

 
The ratio of tri-saccharide to tetra-saccharide units influences the solubility of β-

glucans; a smaller ratio indicates a higher solubility [51]. Since oat grains' β-glucans are 
more soluble in heated water than in cold one, food processing procedures that call for 
both heat as well as moisture are likely to do the same [52]. It has been demonstrated that 
baking bread increases the solubility of β-glucans as well [53]. However, it has been 
found that foods kept frozen for prolonged periods of time cause a reduction in the 
soluble capacity of β-glucans [54]. It was demonstrated that when the molecular weight of 
β-glucans decreased (from 2,200,000 g/mol to 400,000 g/mol), so did their solubility. 
Low molecular weight (120,000 g/mol) β-glucan molecules can, nevertheless, form 
insoluble clumps [55], [56]. Oat grain β-glucans are 27–78% soluble, whereas barley 
grain is 53–63% soluble [57], [58]. 

 
The degree to which mannose chains are replaced with galactose residues 

determines how soluble galactomannans are. The molecules are more soluble when there 
is a greater degree of substitution. Galactomannans, which have galactose residues linked 
to every mannose molecule, provide such a significant steric barrier that they disintegrate 
in cold water. In cold water, galactomannans, which have a galactose residue connected 
to every fourth mannose molecule, are difficult to dissolve, but in hot water, they dissolve 
with ease. The main reason galactomannan molecules are more soluble is that they 
contain more side chains, that maintain the primary mannose chains sufficiently apart. On 
the other hand, due to their lengthy sections of unsubstituted mannose units, 
galactomannans with less side chains (higher mannose-to-galactose ratio) are able to 
interact with other polysaccharides [59], [60]. Previous research studies have not 
provided information on the extent of solubility of galactomannans from cereal grains. 
However, a test of locust bean gum's solubility revealed a range of 62.7-82.7% [61]. 

 
The most common form in which arabinogalactans are extracted as NSPs is 

arabinogalactan peptide. About 92% of the polysaccharide is made up of arabinogalactan 
peptide, and the remaining 8% is made up of peptide [12]. There is no information on the 
solubility of arabinogalactans in cereal grains. 

 
Pectins' degree of polymerization, quantity, as well as distribution of carboxyl 

groups all affect how soluble they are. Pectin's solubility rises as its molar mass falls and 
the esterification of its carboxyl groups increases. pH and temperature of the solution 
have a definite impact on pectin solubility as well [62]–[64]. The soluble state of cereal 
pectins is yet to be established. 
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Although xyloglucans have the ability to dissolve in water, there is no information 
on how xyloglucans in cereal grains are soluble [65]. 

 
2. Water Binding Capacity: NSPs possess hydrophilic characteristics that allow them to 

bind to water. The ability to bind water is the result of interactions between water and 
NSP molecules that produce in bonds of hydrogen or dipole interactions [66], [67].  

 
Particularly the water-soluble AXs exhibit a great affinity to bind water [68]–[70]. 

In comparison to wheat flour with no inclusion of these polysaccharides, 11–12% more 
water was bound when water-soluble AXs in the range of 0.5–1.3% were added [70]. 
AXs that are water-soluble and made from wheat flour can bind, on average, 0.38 g of 
water per gram of dry basis [69], but AXs made from rye grains can bind, on average, 
1.58 g of water per gram [68]. Additionally, it has been demonstrated in other research 
that AXs from flour made from wheat are capable of binding even 15 g of water/g [71]. 
AX from wheat bran, which is cellulose-rich, may bind 13.3 to 16.13 g of water [72]. 

 
The amount of water bound by β-glucans from barley grain varied depending on 

the extraction technique, from 2.91 g/g d.b. employing enzymatic treatment to 3.79 g/g 
d.b. employing hot water extraction [73]. According to other research in the literature, 
barley grain's β-glucans have a water holding capacity of 6.1 to 6.74 g water per 1 g of β-
glucans [57]. The usage of additional barley grain kinds is likely what caused the large 
variances in the results that were achieved.  

 
It is important to keep in mind that the outcomes of water-binding capacity that 

have been determined are closely related to and significantly influenced by the ways in 
which NSPs are extracted, as well as by variations in the procedures employed to assess 
this parameter. 

 
3. Viscosity: The length of the molecule chains, their molar mass, the amount and sequence 

of arabinose substitution in the main chain (backbone), which is made up of xylose 
residues, and the presence of connected ferulic acid all affect how viscous water solutions 
of AXs are [46]. The soluble AXs come in two different varieties: arabinoxylan I and 
arabinoxylan II [74]. The first one has a series of xylose residues with over 50% replaced 
at the O-3 position by arabinose residues. Arabinoxylan II is made up of a series of xylose 
residues having 60–70% of their O-2 and O-3 locations replaced by arabinose residues 
[74]. Compared to arabinoxylan type I molecules, arabinoxylan type II molecules exhibit 
a greater association with viscosity. AXs' aqueous solutions' inherent viscosities range 
from 1.96 dL/g to 4.23 dL/g [75], [76]. 
 

Additionally, β-glucans have the power to make aqueous solutions viscous. 
According to the literature, the extraction technique, molar mass, temperature, solution 
pH, concentration, and aggregation capacity all have an impact on the viscosity of β-
glucans [44], [77]–[79]. Typically, -glucan water solutions have inherent viscosities that 
range from 0.28 dL/g to 7.2 dL/g [80], [81]. 

 
At relatively low concentrations, galactomannans can produce extremely viscous 

aqueous solutions that are only marginally influenced by pH, ion concentration, and 
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treatment with heat. Galactomannan solutions have high viscosity and are highly stable 
over a broad pH range (1–10.5), mostly because their molecules are neutral [59], [82]. 
Galactomannan aqueous solutions mentioned in the literature have inherent viscosities 
that range from 9.7 dL/g to 14.3 dL/g [83], [84]. 

 
The intrinsic viscosity of arabinogalactans in aqueous solutions ranged from 0.045 

to 0.062 dL/g [75]. 
 

The pH, molar mass and structure, ionic strength, and polymer content of pectin 
polysaccharides all affect their capacity to generate very viscous solutions. As the molar 
mass of pectins increases, so does their viscosity in aqueous solutions [85]. Additionally, 
pH has an impact on the viscosity of pectic polysaccharide solutions. This is because the 
electrical charge of polysaccharides influences a shift in the molecular structure of the 
chains of those molecules [86]. The electrostatic repellent forces between the pectin 
chains are weaker in an acidic environment due to the reduced dissociation of the 
carboxyl groups that are part of the galacturonic acid residues, and as a result, the 
viscosity of an aqueous solution of such polysaccharides will be higher than that of an 
aqueous solution of polysaccharides with a neutral or alkaline pH [87]. High-methylated 
pectic polysaccharides gels at acidic pH (3.6), whereas low-methylated pectic 
polysaccharides gel at a wide pH range (3.5-8.5) [88], [89]. Fruit-derived pectic 
polysaccharides have intrinsic viscosities that range from 0.64 dL/g to 5.9 dL/g in 
aqueous solutions [90], [91]. The viscosity of aqueous solutions of xyloglucans, pectic 
polysaccharides, and arabinogalactans, from cereal grains is not well-documented in the 
literature. 

 
4. Cross Linking: Nearby AX molecules can establish a covalent bond with ferulic acid 

residues under oxidizing circumstances and in the occurrence of free radicals, leading to 
cross-linking [92], [93]. The peroxidase/hydrogen peroxide systems (both of which exist 
natively in flour and yeast) or an enzyme called laccase are the two substances that are 
most frequently used to cross-link AX [93]. Monomeric ferulic acid is oxidized and 
transformed to the isomers of dehydrodiferulic acid or dehydrotriferulic acid during the 
enzymatic coupling reaction [94]. The molecular structure of AX, or their molar mass, the 
degree to which the xylan skeleton has been replaced by arabinose residues, and the 
amount and distribution of ferulic acid within the molecules all have an impact on how 
effectively they cross-link. More covalent cross-links are capable of being produced if 
there are more ferulic acid residues present in the polysaccharide backbone. It is 
estimated that the ferulic acid concentration of AX molecules derived from cereal grains 
ranges from 0.4 to 450 mg/100 g [31], [95]–[100]. Cross-linking produces NSPs with 
large molar masses and hence high viscosities [101]. Horseradish peroxidase and 
hydrogen peroxide cross-linked AX has a weight average molar mass that ranges from 
191,000 g/mol to 720,000 g/mol [97], [102]–[104], while laccase cross-linked AX has a 
weight average molar mass that ranges from 159,000 g/mol to 508,000 g/mol [105]–
[107]. 
 

By employing ethylene glycol diglycidyl ether (EDGE) in a mixture of 4% 
sodium hydroxide, β-glucans from euglenin cells and a strain of the bacteria Alcaligenes 
faecalis, kurdlan, were cross-linked to produce substances with higher hydrophilic 
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properties (better capacity to form a gel). By severing the hydrogen bonds between the 
molecules' chains, cross-linked β-glucans are produced, which results in the formation of 
new hydroxyl groups [108]. 

 
There are currently no reports on the cross-linking of pectic polysaccharides, 

arabinogalactans, or xyloglucans, of cereal grain origin. 
 

5. Surface Tension: Cohesive interactions among water molecules produce surface tension. 
The surface tension of water is reduced as a result of active surfactants' disruption of the 
interactions of cohesive forces between water molecules [109]. This is crucial since the 
adhesion of dough, food emulsions, and liquid foods to packaging, processing machinery, 
and leftover wastes results in large financial losses [110]. 
 

According to research, adding AX to water in concentrations ranging from 0.2% 
to 1.6% lowers its surface tension from 72 mN/m to roughly 52 mN/m [75]. 

 
Water's surface tension is somewhat decreased by β-glucans, but not significantly. 

The surface tension drop is more apparent at larger concentrations of β-glucans. Surface 
tension decreased by about 10 mN/m in the case of 1% β-glucans, but it decreased by less 
than 1 mN/m in the the existence of 0.5% β-glucans [111]. 

 
The surface tension of water dropped from 72 mN/m to 61 mN/m in the presence 

of 0.4-0.5% galactomannans derived from fenugreek seeds [112]. 
 
Surface tension was similarly reduced by pectin polysaccharides from orange peel 

and pigeon pea (likely arabinogalactan) [113]. Surface tension dropped from 72 mN/m to 
roughly 50 mN/m with the incorporation of 1.5% pigeon pea polysaccharides, and from 
72 mN/m to 53 mN/m with the inclusion of 1.5% citrus peel pectin [113]. 

 
There are no known effects of pectic polysaccharides, arabinogalactans, or 

xyloglucans, from cereal grains on water's surface tension. 
 

6. Molar Mass: In terms of molar mass, NSPs derived from natural origin are polydisperse, 
meaning that the size of their molecules varies [114].  
 

Size Exclusion Chromatography (SEC) is the primary method used to determine 
the weight average molar mass of cereal AX, which is typically between 197,800 and 
2,000,000 g/mol for rye, 176,000,000 and 381,000 g/mol for wheat, 276,000 and 
1,220,000 g/mol for barley grains, 244,000 and 491,000 g/mol for corn, and 24,400 and 
232,000 g/mol for rice 6, 7, 9, 76, 92, [27], [102], [115]–[118].  

 
Oat β-glucans have a molar mass ranging from 172,000 g/mol to 2,300,000 g/mol 

[77], [78], [119]–[125], while barley β-glucans have a molar mass ranging from 187,000 
g/mol to 2,340,000 g/mol [57], [126]–[129]. It is estimated that the weight average molar 
mass of β-glucans in wheat grain ranges from 487,000 to 635,000 g/mol, while it is 
970,000 g/mol in rye grain [122], [130], [131]. 
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It has not been possible to determine the molar mass of pectins, xyloglucans, and 
arabinogalactans from cereals. Galactomannans produced from fenugreek seeds are 
thought to have an average weight molar mass of 1,170,000–1,810,000 g/mol [112], 
[132], [133]. Arabinogalactans had an average molar mass of 16,000 g/mol in Mongolian 
larch and 141,000 g/mol in Polygonatum sibiricum rhizome [104], [134]. The weight 
average molar mass of xyloglucans in azuki bean seeds ranges from 98,000 to 420,000 
g/mol, while it is 480,000 to 2,400,000 g/mol in tamarind and Detarium senegalense 
seeds [65], [135], [136]. Fruit pectins' typical molar masses have been found to range 
from 61,000 g/mol to 247,000 g/mol [90], [137]. 

 
V. INFLUENCE OF NSP ON HUMAN BODY 

 
 As a result of their significant contribution to the quick movement of digestive 
contents, NSPs have a positive impact on how well the digestive system functions [138]. In 
addition, the fermentation of NSPs produces short-chain fatty acids (SCFAs), which have a 
number of health-promoting qualities, such as preventing or treating diarrhea and reducing 
the growth of pathogenic organisms [139], [140]. Because they influence the growth of 
bifidobacteria, or probiotic bacteria, in the colon, both AXs and β-glucans from cereal have a 
prebiotic impact [141], [142]. 
 

As immunomodulators, AXs and -glucans have an impact on both innate as well as 
acquired immunity [143]–[146]. Immune cells (including granulocytes, macrophages, 
monocytes, and natural killer cells) have pattern recognition receptors that can attach to -
glucan molecules [147]–[149]. They exhibit anticancer action as a result of this property 
[150], [151]. Furthermore, AX molecules with ferulic acid in their molecular structure might 
have antioxidant properties [152]. Clinical studies have shown that the therapeutic 
immunostimulatory characteristics of -glucans from fungal cell walls include antibacterial, 
anti-inflammatory, anti-tumor, and faster wound healing [153], [154]. NSPs show promise in 
the management of diabetes and obesity, two common disorders in contemporary society. 

 
AXs reduce postprandial levels of blood glucose, control insulin response, and 

promote the release of postprandial ghrelin, also known as "the hunger hormone" and 
produced by gastric cells [141], [155], [156]. Because AXs make aqueous solutions more 
viscous, bread that contains these polysaccharides in the baking process has a lower glycemic 
index [157]. 

 
 In both the pharmaceutical and food sectors, morel (Morchella esculenta) 
galactomannans have the potential to operate as an immunomodulator. 
 
VI. CONCLUSION 

 
 This chapter summarizes the overview of non-starch polysaccharides, different types 
of non-starch polysaccharides, different ways to estimate them and their various properties. 
This also gives an insight of influence of non-starch polysaccharides on human body. A lot of 
literature on starch polysaccharides have been reported but very less literatures on non-starch 
polysaccharides have been reported till now. So, there is a scope for non-starch 
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polysaccharides as they have some important physiochemical properties that can be used as a 
thickening, stabilizing, gelling and emulsifying agent in preparation of food products. 
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