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Abstract 

 

Accurate prediction of drug targets is 

essential for successful drug design and 

optimization in the drug discovery and 

development realm. Various mathematical 

models have been developed to aid in drug 

target prediction, incorporating different data 

types and techniques. One approach is to 

identify and quantify the protein pathway 

that is important to the development of 

diseases or affected by drug therapy with 

proteome data. This approach involves the 

construction of quantitative system 

pharmaceutical models of a disease scale that 

can predict the therapeutic or side effects of 

drugs. 

 

Another approach to drug target 

prediction is the pharmacokinetic and 

pharmacodynamic (PK/PD) profiling. The 

PK/PD approach involves the study of how 

drugs interact with their target proteins and 

the subsequent effects on pharmacokinetics 

and pharmacodynamics. By understanding 

the thermodynamic and kinetic information 

of drug- target interactions, researchers can 

gain insights into how drugs bind to their 

targets and how to optimize their efficacy 

and minimize potential side effects. These 

models rely on the integration of genomic, 

proteomic, and metabolomic data, allowing 

for a more comprehensive understanding of 

disease pathology and drug response. By 

incorporating large-scale data sets and using 

mathematical algorithms, these models can 

identify key mechanisms underlying disease 

pathology and predict potential therapeutic 

targets. Additionally, mathematical 

algorithms can also be used to predict the 

"drug target-likeness" of a protein. 

Furthermore, mathematical models can aid in 

predicting the binding affinity between drugs 
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I. INTRODUCTION 

Dynamic mathematical models play a crucial role in drug target prediction by 

providing a systematic framework to study the interactions between drugs and their targets 

within a biological system. These models include mathematical equations to simulate and 

predict the dynamics of interaction between drugs and targets, helping to identify and validate 

potential drugs. Dynamic mathematical models are being used to predict drug targets in a 

number of ways. One of the recommended ways is to use these mathematical models to 

stimulate drug binding to a receptor protein. This can be done by modeling the interactions 

between the drug and the receptor protein at the molecular level. Another way to account for a 

dynamic model of a biological system is a time-dependent variation in the parameters. These 

models are usually expressed by differential equations. 

 

Dynamic mathematical models are still under development, but they have the potential 

to revolutionize the way that drug targets are predicted. By providing a more detailed 

understanding of how drugs interact with receptors and signaling pathways, these models can 

help identify new drugs targeted for the most effective treatment of diseases. In this review 

chapter, some key aspects of dynamic mathematical models will be discussed in drug target 

analysis in various therapeutic system. 

 

1. Pharmacokinetic Models: In order to understand Pharmacokinetic models (PKs) clinical 

data must be analyzed in terms of ADME (absorption, distribution, metabolism, and 

excretion) of drugs with response to the body. These models consider factors such as drug 

concentration, tissue distribution, and clearance rates to predict how a drug interacts with 

its target over time. Pharmacokinetic models provide insights into drug exposure levels, 

optimal dosing regimens, and potential drug-drug interactions, aiding in target selection. 

Relative to dynamic systems, mathematical modeling (linear) takes account of both the 

drug administration and the body's response to it. Primarily, kinetic models estimate and 

depict the amount of drug 'D' from the solid form as a function of time t, or f=D(t). Since 

the underlying mechanism is mostly unclear in practice, semi-empirical equations using 

basic functions (exponentials, polynomials, etc.) have been proposed. Tonge has described 

a time-dependent target occupancy model which converts drug-target kinetics into a time-

dependent drug activity in the disease state. [1] Another approach is the pharmacokinetic 

model of drug-drug interactions that occurs when a drug alters the disposition (absorption, 

distribution, elimination) of a co-administered drug. Pharmacokinetics interactions are 

mediated by drug metabolizing enzymes and receptor molecules that control gene 

expression of proteins. [2] 

 Mathematical Models: Mathematical models play a crucial role in characterizing 

drug release from pharmaceutical formulations. These models provide insights into the 

mechanisms and kinetics of drug release, allowing for a better understanding of how 

drugs are released from various dosage forms. This information is essential in the 

development and optimization of pharmaceutical products. One commonly used 

mathematical model is the Peppas equation, also known as the power law. It describes 

the kinetics of drug release by considering factors such as formulation type, drug 

properties, and transport processes involved in drug release from a dosage form to a 

receiving body fluid. Mathematical models can also include purely mathematical 

descriptions unrelated to physical, chemical, or biological processes. These models 
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were developed through integral analysis of various factors. Several mathematical 

models have been proposed to describe the kinetics of drug release in pharmaceutics. 

These models comprise the Peppas equation or power law model, zero-order kinetics 

model, first-order kinetics model, Higuchi model, Hixson-Crowell model, Korsmeyer- 

Peppas model, and Hopfenberg model. Each has its own set of assumptions and 

mathematical equations employed to explain the drug release process. Here, 

summarize the six renowned models which have been studied in various papers. [3-5] 

 

 Zero-order model: 

 

D(t) = a+ct, ------------------{1}    [two parameters a and c] 

 

 First-Order Model: 

 

D(t) = D0 exp (kt/2.303),-------{2}   [two parameters D0 and k] 

 

 Higuchi Model (6): 

 

D(t) = k(t)
1/2

,-----------------{3}    [single free parameter k] 

 

 Hixson-Crowell Model [7]: 

 

D(t) = (a+ct)
3
,----------------{4}    [two parameters a and c] 

 

 Korsmeyer-Peppas Model (or power-law model) [8]: 

D(t) = (at)
n
,--------------------{5}    [two parameters a and n] 

 

 Hopfenberg Model for the n=1 flat Geometry [9]: 

D(t) = kt,-------------------------{6}    [single parameter k] 

These models provide a quantitative framework for understanding and predicting 

the release kinetics of drugs. By utilizing mathematical models, researchers can analyze 

and interpret drug release data to determine the underlying mechanisms and kinetics of 

release. This interaction plays a crucial role in determining the pharmacokinetic profile of 

drugs, as it can strongly affect important parameters such as clearance and volume of 

distribution. [10] The strength and characteristics of drug binding to various molecules, 

particularly serum albumin, are key factors that influence the availability and distribution 

of a drug within the body. Serum albumin is an abundant protein found in blood plasma 

that has high affinity for many drugs. Its binding capacity allows it to transport and 

distribute drugs throughout the circulatory system. The binding affinity between a drug 

and serum albumin determines how tightly they interact with each other. 

 

2. Pharmacodynamic Models: The Pharmacodynamic (PD) model defines the relationship 

between drug concentrations and effects on downstream biological pathways or targets. 

These models help in understanding the dose-response relationship, drug potency, and 
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drug efficacy. By simulating the drug-target interaction dynamics, pharmacodynamic 

models can predict the impact of different drug-target interactions on therapeutic outcomes 

and identify potential targets with desired effects. Hedges has done pioneering work on 

mechanistic PD models on antibacterial action. [11] He expounded the adsorption kinetics 

of a lethal amount of the bacterial toxin. The model consists of two parts, in the first part, 

the colicin istaken up by receptors, and after the completion of the second phase, the lethal 

outcome occurs. [12] 

 

Drug-target binding modelling is an integral element of drug discovery and 

development. This includes predicting and understanding the connection between a drug 

molecule and its proposed target, such as a protein or enzyme in the body. For the purpose 

of modeling drug-target binding, multiple techniques can be utilized, for example 

molecular docking, and molecular dynamics simulations. In particular, molecular docking 

is a computational technique used in drug development to predict the orientation and shape 

of a ligand in the active site of a protein. Another approach is to run a molecular dynamics 

simulation, which simulates the motion and behavior of atoms and molecules over time. 

By applying Newton's laws of motion and considering interatomic forces, MD simulations 

can provide insights into the dynamic behavior of drug-target complexes. 

 

Zou et al. [13] has described the (PK/PD) models have emerged as powerful tools 

in drug delivery research, offering a comprehensive understanding of drug dynamics and 

the body's response to the drug. In this review, they have demonstrated hypothetical 

minimal threshold value in relation to drug exposure-response relationship using primary 

data on PD models. Currently, modeling techniques are commonly applied to drug 

delivery systems and large modification molecules, such as liposome, nanoparticles and 

nanoemulsion. The integration of PK and PD models with statistical modeling allows for 

individual dose optimization, improving the efficacy of drug therapy. [14,15] 

 

3. Systems Biology Models: Systems biology (SB) models integrate molecular data, such as 

gene expression, protein-protein interactions, and signaling pathways, to create a holistic 

representation of the biological system. These models simulate the dynamic behavior of 

biological networks and enable the identification of key regulatory nodes or potential drug 

targets. Systems biology models provide insights into the complex interactions between 

drugs, targets, and cellular processes, aiding in target prediction and drug discovery. 

 

System biology models are crucial in pharmaceutical research for recognizing and 

authenticating possible drug targets. By utilizing computational and mathematical models, 

system biology tries to replicate and analyze the action of biological systems at a 

molecular level. These efforts enable researchers to build mechanistic connections between 

multiple individual molecules that form larger systems of cells, tissues, and organs. This 

integration of molecular data helps in generating predictive models of patho- physiological 

processes and anticipating intervention outcomes. SB models can analyze disease-

corrupted networks and identify key molecules or pathways that contribute to disease 

progression. 

 

In recent years, interest in computational and system biology has increased 

considerably, particularly in mathematical modeling and simulation. This approach 
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allows researchers to create models that capture the complex dynamics of molecular 

regulatory systems found within living organisms. By integrating information from various 

levels such as genetics, transcriptomics, proteomics, and metabolomics, these models 

provide valuable insights into the behavior of biological systems. The process of building 

these models typically follows a bottom-up approach. Researchers propose hypothetical 

networks of biochemical reactions between genes, proteins, and metabolites as a starting 

point. Here are some examples of SB models: 

 

 The Boolean Network of the Yeast Cell: This network was developed in the early 

1990s and uses a set of Boolean variables to encode the different stages of the cell 

cycle. The model was used to study the effects of mutations on the cell cycle and to 

identify potential drug targets. Recently, Kotiang and Eslami (2022) [15] devised a 

computational framework for combining Boolean networks and factor diagrams to 

study the global dynamical properties of biological systems. Furthermore, the 

mathematical formulation allows us to analyze the dynamics and behavior of error 

propagation in gene regulatory networks by performing a density evolution (DE) 

analysis. 

 

In 2004, Chen et al. presented a highly detailed nonlinear ordinary differential 

equations model that could illustrate the synthesis, degradation and modification of 

proteins in the cell-cycle pathway. This model accounted for key elements of the 

budding yeast cell-cycle control system witnessed in wild-type and more than one 

hundred mutants.[16] 

 

Zhou et al. described the logic operations performed by the enzymes. The 

enzyme logic systems and the bioelectrocatalytic interface were attained by pH 

Changes Due To Protonation. Molecular Computing Systems, Within The Purview Of 

unconventional computing, have seen much attention and have led to a quick 

development of molecules which can be managed by signals and are capable to do 

Boolean logic operations and basic arithmetic functions. [17] 

 

DNA-generated computer systems offer faster computing power than enzyme- 

generated logic systems. Nonetheless, they offer novel biosensing and bioactivation 

features that operate in a binary mode. Katz in 2018 has examined distinct kinds of 

enzyme logic gates demonstrated with designated enzymatic responses/cascades. By 

extending this research to include biomolecular systems, complex computational 

functions became much easier to execute than with synthetic molecules, thus 

enhancing their functional complexity. [18] 

 

 The metabolic network of Escherichia Coli: The model was used to study the effects 

of changes in nutrient availability on cell metabolism. The computer modeling of 

bacterial metabolism provides an optimistic method for anticipating variations in the 

microbial abilities and tactics used in the host relationship from strain to strain. By 

combining computational and experimental techniques, systems biology attempts to 

analyze the complexity of biological networks in a system-based manner, taking into 

account the interaction of cellular components and complex cellular behavior. [19] 
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Genome-scale biological networks have been shown to be beneficial in the 

decoding of high-throughput data and the formation of computational models. 

Mathematical models are created from network reconstructions, and contain variables, 

parameters, and equations to show the potential behavior of these networks. 

[20] Genome-scale metabolic models are advantageous for the investigation of cellular 

metabolism. These models have revolutionized the field of systems biology, 

elucidating cellular phenotypes and linking annotated genome sequences to 

physiological functions. One of the major applications of genome-scale metabolic 

reconstructions is in predicting and understanding cellular phenotypes. [21] 

 

4. Network-Based Models: Network-based models utilize network theory to represent the 

interactions between drug targets, genes, proteins, and other biological entities. These 

models provide a comprehensive framework for understanding the complex relationships 

and interactions within biological systems. By analyzing the intricate connections within 

these networks, network-based models can uncover important insights into the 

mechanisms of diseases and identify potential drug targets. In these models, biological 

entities are represented as nodes or vertices, and the interactions between them are 

represented as edges or links. The resulting network provides a graphical representation of 

the relationships and connections between different components of the system. [22,23] 

 

Network-based approaches can be created using various types of biological data, 

such as PPI (protein-protein interactions), gene regulatory networks, metabolic pathways, 

and drug-receptor interactions. By integrating and analyzing these data sets, researchers 

can gain insights into the structure and functional relationship between biological entity. 

These models can be used to study a variety of biological phenomena, including disease 

mechanisms, drug discovery, and biomarker identification. For example, in the context of 

drug discovery, network-based models can help identify potential drug targets by 

analyzing the connectivity and centrality of nodes in a network representing disease- 

related biological processes. Network analysis techniques, such as network topology 

analysis, clustering algorithms, and network propagation methods, can be applied to 

interpret the network structure and dynamics. These methods can identify key nodes or 

modules within the network that play crucial roles in the overall system behavior. [24] 

 

5. Machine Learning and Data-Driven Models: Machine learning and data-driven models 

have become invaluable tools in the field of biomedical research. These models leverage 

computational algorithms to analyze large-scale biological data, including genomic, 

proteomic, and clinical data. By training ML algorithms with annotated datasets, these 

models can find patterns, relationships, and associations within the data that can be used to 

predict the interactions between drugs and targets and prioritize potential targets for further 

experimental validation. [25] 

 

Machine learning approaches have gained popularity in drug discovery and 

modeling drug-target interactions. ML models can learn patterns and relationships from 

large datasets comprising known drug-target pairs and their experimental binding 

affinities. [26] By using a variety of ML algorithms such as random forests, support vector 

machines, and deep learning neural networks, predictive models can be built that estimate 

the binding affinity of new drug-target pairs. [27] Dynamic mathematical models in drug 

target prediction provide a quantitative framework for understanding the complex 
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interactions between drugs and their targets. By integrating biological knowledge, 

experimental data, and computational approaches, these models help guide the selection of 

potential drug targets, optimize drug discovery processes, and accelerate the development 

of new therapeutic interventions.[28] 

 

II. SURVEY: MATHEMATICAL MODELS IN DRUG TAREGT ANALYSIS 

Mathematical models are abstract representations of biological systems and allow us to 

understand biological behavior and its fundamental dynamics. [29] In many cases, the 

mathematical modeling of drug behavior is based only on the measured concentration-time 

profiles of drugs administered in plasma or blood. By integrating PK and PD models into 

statistical analysis, PK/PD analysis aims to better understand the relationship between drug 

exposure and therapeutic response. Mathematical modeling approaches link drug-dependent 

dynamics with downstream effects at different scales for various purposes, such as treating 

various diseases such as bacteria, viruses, tumors, hypertension and mental illness. Existing 

models require prospective validation given the complexity of the model, which can vary 

significantly depending on existing knowledge. 

 

The field of drug discovery has largely benefited from the inclusion of computational 

approaches along with traditional methods. Through the use of mathematical modeling and 

computational drug design approaches, the limitations of the traditional drug development 

process, including its high cost and time commitment, have been significantly alleviated. [30] 

Mathematical models are used not only in drug design, but also in some important scientific 

fields such as climate modeling, aerospace, space technology, manufacturing and design, 

seismics, environment, economics, materials research, water resources, drug design, 

population dynamics and combat and war problems, medicine and Biology. In the table-1 

below, various PK-PD profiles have been illustrated with drug-target implications. 

 

III. CONCLUSION 

The development of mechanistic pharmacodynamic modeling has revolutionized the 

field of drug action, allowing for a deeper understanding of the mechanisms underlying drug 

response. This approach, commonly referred to as systems pharmacology, combines the use of 

mathematical models with a clear biological interpretation to gain mechanistic insights into 

drug actions and their effects on the body. [39] Through the integration of pharmacokinetic 

and pharmacodynamic data, mechanistic PD modeling offers a comprehensive framework for 

studying drug-receptor binding and optimizing drug doses for various applications. A possible 

future mechanistic application of PD modeling is the development of antiviral drugs. By 

modeling the interactions between viral targets and potential antiviral compounds, researchers 

can gain insights into drug efficacy, identify optimal dosing regimens, and explore the 

potential for combination therapy to enhance antiviral activity. Furthermore, these models can 

also be applied to the development of antibiotics. Understanding antibiotic action mechanisms 

and their interactions with bacterial targets, mechanistic PK-PD models can guide the 

development of more effective drugs and optimize dosing strategies to combat antibiotic 

resistance. 
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Table 1: PK-PD Profiles with Drug-Target Implications 

 

S. 
No. 

Models Drug-target implications References 

1. Pharmacokinetic E2072-GCP-II Inhibitor. [31] 

2. Pharmacokinetic Nutlin-3a is an MDM2-p53 antagonist. [32] 

3. 

Pharmacokinetic and 

pharmacodynamic 

profiles 

Daiaza, and triazafluorenone series of 

metabotropic glutamate receptor 

antagonists. 

[33] 

 

4. 

 

Pharmacokinetic 

4-[3-aryl-2,2-dioxido-2,1,3- 

benzothiadiazol-1(3H)-yl]-1- 

(methylamino)butan-2-ols used 

as potent nor-epinephrine re-

uptake inhibitor. 

 

[34] 

5. 
Pharmacodynamic 

profiles 

Serotonin 4 receptor (5-HT(4)) agonists 

are potent neurotransmitter. 
[35] 

 
6. 

PK-PD models 
In-vitro anti fungal activity of 

fluconazole and caspofungin. 
[36] 

 

7. 

Pharmacodynamic 

profiles 
Dalbavancin. [37] 

 
8. 

Pharmacokinetic 

Anaplastic lymphoma kinase 

(ALK) inhibits the growth of non-

small-cell lung cancer (NSCLC). 

[38] 
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