NANO M_J OPEN MAP IN NANO TOPOLOGICAL SPACES

Abstract

In this paper we are going to establishing new class of function in Nano topological spaces named as Nano M_J -open map. The properties of Nano M_J -open map are explained. Also introduce Nano $-M_J$ closed map and discussed their properties. Finally introduce Nano M_J -homeomorphism and analyze their properties with examples.

Authors

Jackson. S

Assistant Professor P.G. and Research Department of Mathematics V. O. Chidambaram College Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu, India.

GnanaSelvam Jude. I

Research Scholar P.G. and Research Department of Mathematics V. O. Chidambaram College Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu, India.

I. INTRODUCTION

In the year 2013 a new branch of topology called Nano topology established by Lellis Thivagar[].Nano topology became the important branch in topology that uses in data analysing and many real life situation.He also defined some weaker form of Nano-open sets[2] such as Nano α -open sets, Nano semi-open sets and Nano pre-open sets. He also defined Nano-continuity[3] and Nano-homeomorphism. Jackson and Gnanaselvam jude defined Nano M_J open set using the operators Nscl and Nint. In this paper a new class of function named as Nano M_J-open map established and their properties are discussed.

II. PRELIMNERIES

On this paper, W_1, W_2 and W_3 are non empty ,finite universes; $P \subseteq W_1, Q \subseteq W_2$ and $S \subseteq W_3$; $W_1/R, W_2/R'$ and W_3/R'' are the families of equivalence relations R, R' and R'' respectively on W_1, W_2 and W_3 . $(W_1, \tau_R(P)), (W_2, \tau_{R'}(Q))$ And $(W_3, \tau_{R''}(S))$ are the *NTS* with repect to P, Q and S respectively. *Nano* $M_J O(W_1, P)$, *Nano* $M_J O(W_2, Q)$ and *Nano* $M_J O(W_3, S)$ are the *Nano* $M_J O(W_2, Q)$ and *S* respectively. *Nano* $M_J C(W_1, P)$, *Nano* $M_J closed$ with repect to P, Q and S respectively.

Definition 2.1 [2]: Take the universe W_1 be a nonempty finite set object and R is known as the indiscernibility relation and is an equivalence relation on W_1 . It is known that elements of the same equivalence class are indistinguishable from one another. The approximation space is the pair(W_1, R). Let $P \subseteq W_1$

- 1. The Lower approximation of *P* with respect to *R* is defined by $L_R(P) = \bigcup_{G \in U} \{R(P) : R(P) \subseteq P\}$
- 2. The upper approximation of P with respect to R is defined by $U_R(P) = \bigcup_{G \in U} \{R(P) : R(P) \cap P \neq \emptyset \}$
- 3. The boundary region of *X* with respect to *R* classified by $B_R(P) = U_R(P) L_R(P)$.

Proposition 2.2: [2]

As
$$(W_1, R)$$
 is an approximation space and $J_1, J_2 \subseteq W_1$,
 $L_R(J_1) \subseteq J_1 \subseteq U_R(J_1)$
 $L_R(\phi) = U_R(\phi) = \phi$ and $L_R(U) = U_R(U) = U$
 $U_R(J_1 \cup J_2) = U_R(J_1) \cup U_R(J_2)$
 $U_R(J_1 \cap J_2) \subseteq U_R(J_1) \cap U_R(J_2)$
 $L_R(J_1 \cup J_2) \supseteq L_R(J_1) \cup L_R(J_2)$
 $L_R(J_1) \subseteq L_R(J_2) = L_R(J_1) \cap L_R(J_2)$
 $U_R(J_1) \subseteq L_R(J_2)$ and $U_R(X) \subseteq U_R(J_2)$ whenever $J_1 \subseteq J_2$
 $U_R(J_1^c) = [L_R(J_1)]^c$ and $L_R(J_1^c) = [U_R(J_1)]^c$
 $U_RU_R(J_1) = U_RL_R(X) = U_R(J_1)$

Definition 2.3 [2]: Let W_1 be finite, non-empty universe of objects and R be an equivalence relation on W_1 . Let $P \subseteq U$. Let $\tau_R(P) = \{W_1, \varphi, L_R(P), U_R(P), B_R(P)\}$. Then $\tau_R(P)$ a topology on W_1 , called as the Nano topology with respect to P. Elements of the Nano topology are known as the Nano – open sets in W_1 and $(W_1, \tau_R(P))$ is called the Nano topological space (briefly NTS). $[\tau_R(P)]^c$ is called the Dual Nano topology on $\tau_R(P)$. Elements of $\tau_R c(P)$ are called as Nano – closed sets.

Remark 2.4 [2]: The basis for the *Nano topology* $\tau_R(P)$ with respect to *P* is given by $\beta_R(P) = \{U, L_R(P), B_R(P)\}.$

Definition 2.5 [2]: If $(W_1, \tau_R(P))$ is a *NTS* with respect to *P* where $P \subseteq W_1$ and if $S \subseteq W_1$ then the Nano interior of *S* is defined as the union of all *Nano* – open subsets of *S* and it is denoted as *Nint*(*S*). Nano interior is the largest *Nano* – open subset of *S*. The *Nano Closure* of *S* is defined as the intersection of all *Nano* – closed sets containing *S* and it is denoted by *Ncl*(*S*). It is the smallest *Nano* – closed set containing *S*.

Definition 2.6 [7]: A subset G of a NTS, G is called Nano M_j open if $G \subseteq (Nscl(Nint (G)))$. The collection of all Nano M_j open sets in (U,G) is denoted by $M_j O(U,G)$. The complement of Nano M_j open set is called a Nano M_j closed set. The collection of all Nano M_j closed sets in (U,G) is denoted by $M_j C(U,G)$.

Definition 2.7[3]: Let $(W_1, \tau_R(P))$ and $(W_2, \tau_{R'}(Q))$ be two *NTS*. Then a mapping $f: (W_1, \tau_R(P)) \rightarrow (W_2, \tau_{R'}(Q))$ is said to be

- 1. Nano continuous if $f^{-1}(M)$ is Nano open in W_1 for every Nano open set M in W_2 .
- 2. Nano α continuous if $f^{-1}(M)$ is Nano α open in W_1 for every Nano open set M in W_2 .
- 3. Nano pre continuous if $f^{-1}(M)$) is Nano pre open in W_1 for every Nano open set M in W_2 .
- 4. Nano semi continuous if $f^{-1}(M)$ is Nano semi open in W_1 for every Nano open set M in W_2 .
- 5. Nano M_j continuous if $f^{-1}(M)$ is Nano M_j open in W_1 for every Nano open set M in W_2 .

Definition 2.8[3]: A function $f: (W_1, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ is a *Nano – open map* if the image of every *Nano – open* set in W_1 is *Nano – open* in W_2 . The mapping f is said to be a *Nano – closed map* if the image of every *Nano – closed* set in W_1 is *Nano – closed* in W_2 .

Definition 2.9[3]: A function $f: (W_1, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ is said to be a *Nano homeomorphism* if

- 1. f is 1 1 and onto
- 2. *f* is Nano continuous
- 3. f is Nano open map

III. NANO $M_I - OPEN MAP$

Definition 3.1: The map $f: (W_1, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ is said to be Nano M_j – open map if the image of every Nano – open set in $(W_1, \tau_R(P))$ is Nano M_j open in $(W_2, \tau_R(Q))$.

Example 3.2: Let $W_1 = \{x, y, z, w\}$ with $U/R = \{\{x\}, \{y, z\}, \{w\}\}$ and $P = \{x, w\}$. Then the topology $\tau_R(P) = \{W_1, \varphi, \{x, w\}\}$. Let $W_2 = \{a, b, c, d\}$ with $W_2/R' = \{a\}, \{b, d\}, \{c\}\}$ and $Q = \{a, d\}$. Then the topology $\tau_R(Q) = \{W_2, \varphi, \{a\}, \{b, d\}, \{a, b, d\}\}$ and *Nano* $M_J O(W_2, Q) = \{W_2, \varphi, \{a\}, \{b, d\}, \{a, b, d\}\}$. Define $f: W_1 \to W_2$ as f(x) = b; f(y) = a; f(z) = c; f(w) = d, then $f\{x, w\} = \{b, d\}$. Therefore f is *Nano* $M_J - open$ map.

Remark 3.3: The composition of two Nano M_J – open maps need not be Nano M_J – open map as seen by the example below.

Example 3.4: Let $W_1 = \{a, b, c, d\}$ with $W_1/R = \{\{a, b, c\}, \{d\}\}$ and $P = \{a, c\}$. Then the topology $\tau_R(P) = \{W_1, \varphi, \{a, b, c\}\}$.Let $W_2 = \{a, b, c, d\}$ with $W_2/R' = \{\{a\}, \{b, c\}, \{d\}\}$ and $Q = \{b, c\}$. Then the topology $\tau_{R'}(Q) = \{W_2, \varphi, \{b, c\}\}$, Nano $M_I O(W_2, Q) = \{W_2, \varphi, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Let $W_3 = \{a, b, c, d\}$ with $W_3/R'' = \{\{a\}, \{d\}, \{b, c\}\}$ and $S = \{a, b, d\}$. Then the topology $\tau_{R''}(S) = Nano M_I O(W_3, S) = \{W_3, \varphi, \{a, d\}, \{b, c\}\}$.

Let $f: (W_1, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ and $g: (W_2, \tau_{R'}(Q)) \to (W_3, \tau_{R''}(S))$ be an identity maps then f and g are Nano M_J – open maps. But their composition is not Nano M_J – open map since image of the Nano – open set $\{a, b, c\}$ is not Nano M_J open in $(W_3, \tau_{R''}(S))$.

Remark 3.5: Image of a Nano M_j open set need not be a Nano M_j open set under a Nano M_j – open map.

Example 3.6: Let $W_1 = \{a, b, c, d\}$ with $W_1/R = \{\{a, d\}, \{b\}, \{c\}\}$ and $P = \{b, c\}$ then $\tau_R(P) = \{W_1, \varphi, \{b, c\}\}$ and Nano $M_J(W_1, P) = \{U, \varphi, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Let $W_2 = \{h, p, u, f\}$ with $W_2/R' = \{\{h, f\}, \{p\}, \{u\}\}\$ and $Q = \{p, f\}$ then $\tau_{R'}(Q) = Nano M_J O(W_2, Q) = \{W_2, \varphi, \{h, f\}, \{p\}, \{h, p, f\}\}$. Define $f: W_1 \to W_2$ as f(a) = p; f(b) = h; f(c) = f; f(d) = u. Then f is Nano M_J open map but the image of Nano M_J open sets $\{a, b, c\}, \{b, c, d\}$ is not Nano M_J open in $(W_2, \tau_{R'}(Q))$.

Theorem 3.7: Every Nano – open map is Nano M_l – open map.

Proof. Let $f: (W_1, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ be Nano – open map. Let *I* be Nano – open in the topological space $(W_1, \tau_R(P))$. Then the image of *I* under the map *f* is Nano – open in the topological space $(W_2, \tau_{R'}(Q))$. Since every Nano – open is Nano M_J open, *f* is Nano M_I – open map.

Remark 3.8: The coverse of the theorem 3.7 is not true.

Example 3.9: Let $W_1 = \{a, b, c, d\}$ with $W_1/R = \{\{a, b, c\}, \{d\}\}$ and $P = \{a, c\}$. Then the topology $\tau_R(P) = \{W_1, \varphi, \{a, b, c\}\}$. Let $W_2 = \{x, y, z, w\}$ with $W_2/R' = \{\{x\}, \{y\}, \{z, w\}\}$ and $Q = \{z, w\}$. Then the topology $\tau_{R'}(Q) = \{W_2, \varphi, \{z, w\}\}$ and *Nano* $M_1O(W_2, Q) = \{W_2, \varphi, \{z, w\}, \{y, z, w\}, \{x, z, w\}\}$. Define $f: W_1 \to W_2$ as f(a) = x; $f(b) = \{W_1, \varphi, \{z, w\}, \{z, w\}, \{z, w\}\}$.

z; f(c) = w; f(d) = y. Then f is Nano M_J – open map but not Nano – open map. Since the image of set $\{a, b, c\}$ is not Nano – open in $(W_J, \tau_R(P))$.

Theorem 3.10: Let $f: (W_I, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ be *Nano – open map* and $g: (W_2, \tau_{R'}(Q)) \to (W_3, \tau_{R''}(S))$ be *Nano M_J open map*. Then their composition is *Nano M_I – open map*.

Proof. Let I be Nano – open set in $(W_I, \tau_R(P))$. Then f(I) is Nano – open in $(W_2, \tau_{R'}(Q))$ and $(g \circ f)(I) = g(f(I))$ is Nano M_J open since g is Nano M_J – open map. Hence the composition is Nano M_I – open map.

Remark 3.11: Let $f:(W_I, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ be Nano M_J – open map and $g:(W_2, \tau_{R'}(Q)) \to (W_3, \tau_{R''}(S))$ be Nano – open map. Then their composition is not Nano M_I – open map.

Example 3.12: In example 3.4 f is Nano M_J – open map and g is Nano – open map but their composition is not Nano M_I – open map.

IV. NANO $M_I - CLOSED MAP$

Definition 4.1: The map $f: (W_I, \tau_R c(P)) \to (W_2, \tau_R c(Q))$ is said to be *Nano* M_J – closed map if the the image of every *Nano* – closed set in $(W_I, \tau_R c(P))$ is *Nano* M_J closed in $(W_2, \tau_R c(Q))$.

Example 4.2: Let $W_1 = \{x, y, z, w\}$ with $W_1/R = \{\{x\}, \{y, z\}, \{w\}\}$ and $P = \{x, w\}$. Then the topology $\tau_R c(P) = \{W_1, \varphi, \{y, z\}\}$. Let $W_2 = \{a, b, c, d\}$ with $W_2/R' = \{\{a\}, \{b, d\}, \{c\}\}$ and $Q = \{a, d\}$. Then the topology $\tau_{R'}(Q) = \{W_2, \varphi, \{a\}, \{b, d\}, \{a, b, d\}\}$ and *Nano* $M_1 C(W_2, Q) = \{W_2, \varphi, \{c\}, \{a, c\}, \{b, c, d\}\}$. Define $f: W_1 \to W_2$ as f(x) = b; f(y) = a; f(z) = c; f(w) = d, then f is *Nano* $M_1 - closed$ map.

Remark 4.3: The composition of two Nano M_j – closed maps need not be Nano M_j – closed map as seen by the example below.

Example 4.4: Let $W_I = \{a, b, c, d\}$ with $W_I/R = \{\{a, b, c\}, \{d\}\}$ and $P = \{a, c\}$. Then the topology $\tau_R(P) = \{W_I, \varphi, \{a, b, c\}\}, \tau_R c(P) = \{W_I, \varphi, \{d\}\}$. Let $W_2 = \{a, b, c, d\}$ with $W_2/R' = \{\{a\}, \{b, c\}, \{d\}\}$ and $Q = \{b, c\}$. Then the topology $\tau_{R'}c(Q) = \{W_2, \varphi, \{a, d\}\}$ and $Nano M_J C(W_2, Q) = \{W_2, \varphi, \{a\}, \{d\}, \{a, d\}\}$. Let $W_3 = \{a, b, c, d\}$ with $W_3/R'' = \{\{a\}, \{d\}, \{b, c\}\}$ and $S = \{a, b, d\}$. Then the topology $\tau_{R''}c(S) = Nano M_J C(W_3, S) = \{W_3, \varphi, \{a, d\}, \{b, c\}\}$. Let $f: (W_I, \tau_R c(P)) \rightarrow (W_2, \tau_{R''} c(Q))$ and $g: (W_2, \tau_{R''} c(Q)) \rightarrow (W_3, \tau_{R''} c(S))$ be an identity maps then f and g are $Nano M_J - closed$ maps. But their composition is not Nano $M_J - closed$ map since image of the Nano - closed set $\{d\}$ is not Nano M_J open in $(W_3, \tau_{R''}(S))$.

Remark 4.5: Image of a Nano M_j closed set need not be a Nano M_j closed set under a Nano M_j – closed map.

Example 4.6: Let $W_1 = \{a, b, c, d\}$ with $W_1/R = \{\{a, d\}, \{b\}, \{c\}\}\)$ and $P = \{b, c\}$ then $\tau_R c(P) = \{W_1, \varphi, \{a, d\}\}\)$ and $Nano M_1 C(W_1, P) = \{U, \varphi, \{a\}, \{d\}, \{a, d\}\}\}$. Let $W_2 = \{h, p, u, f\}$ with $W_2/R' = \{\{h, f\}, \{p\}, \{u\}\}\)$ and $Q = \{p, f\}$ then

 $\tau_{R'}c(Q) = Nano M_J C(W_2, Q) = \{W_2, \varphi, \{u\}, \{p, u\}, \{h, f, u\}\}.$ Define $f: W_I \to W_2$ as f(a) = p; f(b) = h; f(c) = f; f(d) = u. Then f is Nano M_J - closed map but the image of Nano M_I closed set $\{a\}$ is not Nano M_I closed in $(W_2, \tau_{R'}c(Q))$.

Theorem 4.7: Every Nano - closed map is Nano M_1 - closed map.

Proof: Let $f: (W_I, \tau_R c(P)) \to (W_2, \tau_{R'} c(Q))$ be Nano – closed map. Let I be Nano – closed in the topological space $(W_I, \tau_R(P))$. Then the image of I under the map f is Nano – closed in the topological space $(W_3, \tau_{R'}(Q))$. Since every Nano – closed is Nano M_J open, f is Nano M_J – closed map.

Remark 4.8: The coverse of the theorem 4.7 is not true.

Example 4.9: Let $W_I = \{a, b, c, d\}$ with $W_I/R = \{\{a, b, c\}, \{d\}\}$ and $P = \{a, c\}$. Then the topology $\tau_R c(X) = \{W_I, \varphi, \{d\}\}$. Let $W_2 = \{x, y, z, w\}$ with $W_2/R' = \{\{x\}, \{y\}, \{z, w\}\}$ and $Q = \{z, w\}$. Then the topology $\tau_{R'}c(Q) = \{W_2, \varphi, \{x, y\}\}$ and $Nano M_J C(W_2, Q) = \{W_2, \varphi, \{x, y\}, \{x\}, \{y\}\}$. Define $f: W_I \rightarrow W_2$ as f(a) = x; f(b) = z; f(c) = w; f(d) = y. Then f is Nano $M_J - closed$ map but not Nano - closed map. Since the image of set $\{d\}$ is not closed in $(W_I, \tau_R(P))$.

Theorem 4.10: Let $f: (W_I, \tau_R c(P)) \to (W_2, \tau_{R'} c(Q))$ be Nano – closed map and $g: (W_2, \tau_{R'} c(Q)) \to (W_3, \tau_{R''} c(S))$ be Nano M_J – closed map. Then their composition is Nano M_I – closed map.

Proof: Let *I* be Nano – closed set in $(W_I, \tau_R(P))$. Then f(I) is Nano – closed in $(W_2, \tau_{R'}(Q))$ and $(g \circ f)(I) = g(f(I))$ is Nano M_J closed since *g* is Nano M_I closed map. Hence the composition is Nano M_I – closed map.

Remark 4.11: Let $f: (W_I, \tau_R c(P)) \to (W_2, \tau_{R'} c(Q))$ be Nano M_J – closed map and $g: (W_2, \tau_{R'} c(Q)) \to (W_3, \tau_{R''} c(S))$ be Nano – closed map. Then their composition is not Nano M_I – closed map.

Example 4.12: In example 3.4 f is Nano M_f – closed map and g is Nano – closed map but their composition is not Nano M_f – closed map.

V. NANO M_I – HOMEOMORPHISM

Definition 5.1: A function $f: (W_I, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ is said to be *Nano* M_J – *homeomorphism* if f is *one* – *one* and *onto*, *Nano* M_J – *Continous* and *Nano* M_J – *open map*.

Example 5.2: Let $W_I = \{x, y, z, w\}$ with $W_I/R = \{\{x, w\}, \{y\}, \{z\}\}\)$ and $P = \{y, w\}$ then $\tau_R(P) = Nano M_J O(W_I, \tau_R(P)) = \{W_I, \varphi, \{y\}, \{x, w\}, \{x, y, w\}\}$. Let $W_2 = \{a, b, c, d\}$ with $W_2/R' = \{\{a, c\}, \{b\}, \{d\}\}\)$ and $Q = \{a, d\}$. Then the topology $\tau_R(Q) = Nano M_J O(W_2, Q) = \{W_2, \varphi, \{d\}, \{a, c\}, \{a, c, d\}\}$. Define $f: W_I \rightarrow W_2$ as f(x) = a; f(y) = d; f(z) = b; f(w) = c, then f is Nano M_J – open map , Nano M_J – Continous function and also f is one – one and onto.

Remark 5.3: A function $f: (W_I, \tau_R c(P)) \to (W_2, \tau_{R'} c(Q))$ is said to be Nano M_J – homeomorphism if f is one – one and onto, Namo M_J – Continuous and Nano M_J – closed map.

Theorem 5.4: Every Nano – homeomorphism is Nano M_1 – homeomorphism.

Proof: Let $f: (W_I, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ be a Nano – homeomorphism. Then f is one – one and onto, Nano – continous and Nano – open map. Since every Nano – continous is Nano M_J – Continous and every Nano – open map is Nano M_J – open map, f is Nano M_J – homeomorphism.

Theorem 5.5: Let $f: (W_I, \tau_R(P)) \to (W_2, \tau_{R'}(Q))$ be a bijective Nano M_J – Continuus function. Then the following are equivalent. (1) f is an Nano M_J – Open map. (2) f is an Nano M_I – homeomorphism.

(2) f is an Nano M_I – Closed map

Proof:

 $(1) \rightarrow (2)$

Let f is an Nano M_j Open map and given f is bijective and Nano M_j – Continous function. Then by definition, f is Nano M_j – homeomorphism. (2) \rightarrow (3)

Sice f is Nano M_J – homeomorphism, it is bijective, Nano M_J – Continous and Nano M_J – Open map. Let H be a Nano – Closed set in $(W_I, \tau_R(P))$. Then U - H is Nano Open in $(W_I, \tau_R(P))$ and f(U - H) is Nano M_J Open in $(W_2, \tau_{R'}(Q))$. f(U - H) = f(U) - f(H) = V - f(H) is Nano M_J open. Hence f(H) is Nano M_J Closed set in $(W_2, \tau_{R'}(Q))$. $(3) \to (1)$

Let *H* be Nano – Open set in $(W_I, \tau_R(P))$. Then f(U - H) is Nano M_J – Closed in $(W_2, \tau_{R'}(Q))$. (i.e) f(H) is Nano M_J Open in $(W_2, \tau_{R'}(Q))$. Therefore *f* is Nano M_J – Open map.

VI. CONCLUSION

In this paper we delivered a Nano M_J – open map and Nano M_J – closed map as a weaker form of function in Nano Toplogical spaces and also defined Nano M_J – homeomorphism and detailing thier properties with the suitable examples.

REFERENCES

- Levine, N., Semi-Open Sets and Semi-Continuity in Topological Spacee, Amer. Math. Monthly. 70 (1963), 36-41.
- [2] M.LellisThivagar and C.Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31-37.
- [3] LellisThivagar M and Carmel Richard, On Nano continuity, Mathematical Theory and Modeling, Vol3, No.7, 2013.

- [4] Nachiyar.T.R and Bhuvaneswari.K 2014, 'Nano generalized A-continuous and Nano A- generalized continuous functions in Nano Topological spaces', International Journal of Mathematics Trends and Technology, 14(2), (2014), pp.79-83.
- [5] Mashhour, A.S, Abd El-Monsef, M.E and El-Deeb, S.L 1982, 'On pre-continuous and weak pre-continuous mappings', Proc. Math. Phys. Soc. Egypt, 53, pp.47-53.
- [6] Mashhour, A.S., Hasanein, I.A and El-Deeb, S.N 1983, On α -continuous and α -open mappings, Acta Math. Hung, vol.41, pp.213-218.
- [7] Jackson S,Gnanaselvam jude I,Mariappan p, On Nano M_J open sets in Nano Topological Spaces. (communicated).
- [8] P.Karthuksankar, Nano Tottaly Semi Open Maps in Nano Topological Spaces, International Journal of Scientific Research & Engineering Trends Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X
- [9] M.Bhuvaneswari, N.Nagaveni, A Weaker Form of a Closed Map in Nano Topological Space, International Journal of Innovation in Science and Mathematics Volume 5, Issue 3, ISSN (Online): 2347–9051