
Futuristic Trends in Biotechnology 
e-ISBN: 978-93-6252-180-4 

IIP Series, Volume 3, Book 6, Part 6, Chapter 2 
  PHYTOREMEDIATION-REVIEW ON BIOTECHNOLOGICAL APPROACH FOR 

REMEDIATION OF EMERGING POLLUTANTS 
                             

 
Copyright © 2024 Authors                                                                                                                    Page | 183 

PHYTOREMEDIATION-REVIEW ON 
BIOTECHNOLOGICAL APPROACH FOR 
REMEDIATION OF  
EMERGING POLLUTANTS 
 
Abstract 
 

Exponential growth in human 
population, urbanization, and 
industrialization have led to a rise in 
environmental pollutants globally. These 
pollutants emerge as a result of the increase 
in human population as well as advancement 
in the use and application of agricultural 
chemical pesticides, medicinal drugs, 
personal care products (PPCPs), plastic 
polymers, and heavy metals. Although, the 
intent of this compound is to improve 
agricultural yields to ensure food and 
material supply to satiate the ever-growing 
need for a growing human population and 
also human health and better life in general. 
However, advancement in large-scale 
production of these compounds results in the 
generation and release of waste products to 
terrestrial and aquatic environments as a 
consequence of which this leads to 
devastating effects for the entire ecosystems. 
For addressing the environmental issue 
environmental-friendly and sustainable 
means of remediating contaminants is 
indispensable. To resolve this, biological 
strategy i.e. bioremediation (plants and 
microbes) can be utilized for removing this 
toxic material from the environment. 
However, extensive release of these 
pollutants which may be due to natural 
processes and human economic activity has a 
severe and challenging impact on the 
environment nowadays where leakage or 
accidental discharge of these hazardous 
contaminants are serious problems. The 
biodegradation capacity of the natural 
microbiome is insufficient in combating 
them. In this review, we will be focusing on 
the potential of plants and biotechnological 
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exploitation for the improvement of plant’s 
ability to tolerate different pollutants and 
phytoremediation efficiency and highlight 
future challenges. 
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I. INTRODUCTION 
 
The term "Phyto-" denotes plants, and "-remediation" signifies the reversal of 

damage. Therefore, phytoremediation refers to the use of plants for the remediation or 
cleanup of environmental pollutants. This approach involves the cultivation of plants in 
contaminated areas to either absorb or break down pollutants (1). It is often hailed as the 
"Green Revolution" in the realm of innovative cleanup technologies. Although the concept of 
using metal-accumulating plants to eliminate heavy metals and other compounds was first 
introduced in 1983, it has actually been practiced for the past 300 years in the treatment of 
wastewater discharges (69). 

 
Phytoremediation employs various mechanisms to remediate pollutants from the 

environment. Phytoremediation techniques can be categorized as follows: 
 

• Phytostabilization: This involves the use of plants to decrease the mobility of metals 
in the soil through processes like absorption and precipitation, thus reducing their 
bioavailability. 

• Phytoextraction: This process entails plants extracting metals from the soil and 
concentrating them within their roots and shoots. 

• Phytovolatilization: Contaminants are taken up by plants and subsequently released 
into the atmosphere through transpiration. 

• Phytodegradation: This refers to the degradation of organic pollutants into less toxic 
forms, either in the soil or within the plant's tissues (2-7). 
 
Phytoremediation, a natural biological process for degrading xenobiotic and 

recalcitrant compounds that accumulate in the environment is an emerging, eco-friendly 
green engineering phyto-technology where hyper-accumulator plants with their natural ability 
to remediate these pollutants are selected or are genetically engineered to improve their 
ability to tolerate as well as improve their ability to directly uptake pollutants from surface 
water, groundwater, soil, and sediments. Phytoremediation has received increased attention 
for sequestering and mineralizing organic and inorganic compounds present in contaminated 
soil which is of worldwide concern, and is applicable for a wide range of contaminants viz; 
heavy metals, radionuclides, organic compounds like chlorinated solvents, polycyclic 
aromatic hydrocarbons, pesticides/insecticides, explosive and surfactants, thus, prove to be an 
effective, economical and socially accepted technology (8-10). Conventional remediation 
technologies that use physiochemical and chemical methods are costly and difficult to 
implement, slow in the process, and emphasize separation rather than eliminating the 
hazardous substance from contaminated sites as a result of which causes a buildup of 
secondary pollutants damaging soil fertility that negatively impacts the agricultural 
environment (11,12). Because of their metabolic capacities, plants and microbes can both live 
in contaminated environments and break down contaminants [13, 14]. However, the natural 
processes of microbes and plants are unable to remove contamination caused by heavy metals 
like mercury. Heavy metals have carcinogenic effects and can cause DNA damage in humans 
and animals due to their mutagenic ability (15-17). Recalcitrant heavy metals area potential 
threat as they are nondegradable and stay in the soil for centuries and cleanup of heavy metal 
contaminated sites is obligatory to abate entry of toxic elements into the food chain. 
Development of genetically engineered plants by transfer or overexpression of detoxifying 
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genes or metal chelator genes into a candidate plant can improve the phytoremediation traits 
of hyperaccumulator plants (18-20), hence, could solve these problems. 

 
II.  TRANSGENIC APPROACH FOR BIOREMEDIATION- USE OF TRANSGENIC 

PLANTS 
 

Genetically engineered organisms offer environmentally friendly and cost-effective 
alternatives for managing and eliminating pollutants in contaminated sites. Within plant cells, 
there exist cellular and molecular mechanisms with the potential for detoxifying pollutants by 
either removing or converting them into biologically inactive forms. The concept of using 
hyper-accumulator plants for removing heavy metals and other compounds was introduced in 
1983 (22). Plants possess the ability to uptake pollutants from the soil through their roots and 
transport them to the above-ground parts (23). Some plants release compounds into their root 
zones, which can chelate metals, aiding in their solubilization and uptake (24), a process 
regulated by numerous genes. It is essential to introduce these genes responsible for pollutant 
mitigation into hyperaccumulator plants. For incorporating hyperaccumulation traits into fast-
growing, high-biomass plants, traditional breeding techniques such as plant hybridization are 
utilized (64). Somatic hybridization allows for the transfer of the metal hyperaccumulation 
trait to high biomass plants. Notably, somatic hybrids derived from T. caerulescens and B. 
napus, combining enhanced hyperaccumulation capabilities with increased biomass 
production (65), have demonstrated the capacity to accumulate substantial levels of Zn and 
Cd. Compared to traditional breeding, genetic engineering offers advantages in modifying 
plants with desirable traits for phytoremediation. Moreover, it enables the transfer of 
desirable genes from hyperaccumulator species to sexually incompatible plant species 
(66,67), showing promise in the field of phytoremediation. By employing Agrobacterium 
tumefaciens-mediated plant transformation, these genes can be introduced and expressed in 
recipient plants (25). Genes responsible for various metal-related processes, including uptake, 
removal, translocation, and bioaccumulation, have been successfully identified (26-28). 
Through the transfer or overexpression of these genes in candidate plants, transgenic plants 
with enhanced abilities to degrade xenobiotics and accumulate metals have been developed 
(29). Remarkably, transgenic plants have demonstrated the capability to degrade chlorinated 
solvents, explosives, and phenolic substances (30-32). For instance, transgenic cauliflower 
that incorporates the Yeast CUP1 gene accumulates cadmium levels 16-fold higher than 
unmodified cauliflower (33, 34). 

 
In addition to cadmium tolerance, two novel rice genes, HPP (heavy metal-associated 

plant protein) and HIPP (heavy metal-associated isoprenylated plant protein), have been 
identified, conferring tolerance to copper, zinc, cadmium, and manganese (33). The co-
expression of vacuolar proton pump (V-PPase) with a Na/proton antiporter (NHX1 
transporter) enhances copper tolerance and accumulation in transgenic tobacco (34). The 
expression of Cytochrome P450 genes in transgenic plants has the potential to remove 
pollutants from soil and water (35). Moreover, various genes, including the bacterial 
biphenylchlorophenyldioxygenase gene (bphC), CYP71A10, Mn peroxidase gene, 
pentaerythritoltetranitratereductase (onr) gene in tobacco, basic peroxidase (tpxl) gene in 
tomato plants, and Cytochrome P450 monoxygenase (XplA and XplB) gene in Arabidopsis 
thaliana, have been generated as potential tools for phytoremediation of hazardous 
contaminants (36-41). 
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Furthermore, the introduction of the bacterial merA gene into the roots of A. thaliana 
has enabled the absorption of toxic mercury ions and their conversion into less hazardous 
volatile mercury (42). Transgenic B. juncea, overexpressing c-glutamylcysteinesynthetase, 
has exhibited greater tolerance and accumulation of cadmium, chromium, copper, lead, and 
zinc compared to wild-type plants (43). 

 
Transgenic Arabidopsis plants were able to transport oxyanion arsenate to above 

ground levels, where it was subsequently reduced to arsenite and sequestered into thiol 
peptide complexes. This was achieved through the introduction of E. coli ArsC and γ-ECS 
genes (21). Heavy metal tolerance in plants is closely linked to the strength of their oxidative 
stress defense systems. Heavy metals can trigger the excessive production of reactive oxygen 
species (ROS), leading to oxidative stress. To bolster antioxidant activity, a common 
approach is to overexpress genes involved in the antioxidant machinery (68). Modifying 
oxidative stress-related enzymes can result in enhanced metal tolerance (44).The insertion of 
xenobiotic degradation genes into the root system of transgenic plants facilitates the 
degradation of pollutants in contaminated sites (45-46). By expressing ACC in transgenic 
plants, it was observed that ethylene levels were reduced (47). Phytotoxic nitroaromatic 
explosives, which are challenging for non-transgenic plants to deal with, can be more 
effectively remediated using transgenic plants when bacterial genes involved in their 
degradation are expressed (48). Reports indicate that metal transporter genes like ZAT and 
CAX-2 genes in transgenic plants enhance the accumulation of zinc, calcium, cadmium, and 
manganese (49,50). Altering oxidative stress-related enzymes can also lead to improved 
metal tolerance (51). Aluminium (Al) toxicity can inhibit root elongation (52-56). The 
introduction of the AtGR1 gene in transgenic plants resulted in more rapid root elongation, 
even under various concentrations of Al treatment. This suggests that AtGR1 gene expression 
alleviated Al-induced root growth inhibition by mitigating Al-induced oxidative stress, 
offering an effective approach to enhance Al tolerance (57). 

 
Identifying and introducing metal transporter genes that encode transporter molecules 

capable of enhancing the plant's capacity to absorb metal ions represent a promising approach 
in phytoremediation. Several plant metal transporters have been identified, including the 
Arabidopsis IRT1 gene, which encodes a protein regulating the uptake of iron and other 
metals (58), and the MRP1 gene, which encodes the Mg-ATPase transporter (59). Co-
expressing two bacterial genes, arsenatereductase (ArsC) and γ-glutamylcysteinesynthetase 
(γ-ECS), in Arabidopsis plants significantly increased arsenic tolerance compared to wild-
type plants or plants expressing γ-ECS or ArsC alone (60). Additionally, the overexpression 
of the YCF1 yeast protein in Arabidopsis thaliana enhanced tolerance and increased the 
accumulation of Cd and Pb (61). 

 
III.  PERSPECTIVE 

 
The existence of hazardous toxic substances in the environment has an excessive 

negative impact on the overall health of living organisms. The persistent nonbiodegradable 
nature of heavy metals could enter the food chain which might result in the rapid 
accumulation of these pollutants in living organisms through biomagnification (63). It also 
decreases soil richness altering nutrient cycling. Thus, efficient, environmental friendly and 
economical technologies are indispensible to promote detoxification in the recovery of 
affected biomes and for mitigation of pollutants from contaminated sites. Identification of 
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promising plant species and specific gene for detoxification and then transferring those genes 
to other species using genetic engineering tool can significantly enhanced the detoxification 
capabilities of hyperaccumulator plants as a result of which it can lead to more effective 
contaminated sites reclamation. Already existing scientific studies of several genes and the 
use of techniques for pollutant degradation provide hope for developing novel transgenic 
plants with improved tolerance to heavy metals and for detoxification or degradation of toxic 
substances into recipients with increased adaptability. Discovering novel genes that can break 
down new contaminants is an urgency to create new transgenic organisms that can remediate 
pollutants in a proficient manner as the industry continues to grow and there is an exponential 
increase in the amount of toxic material generated from these industries on a consistent basis. 
For the eco-rehabilitation of toxic recalcitrant substances, phytoremediation proves to be a 
promising technique. Further investigations must be carried out in this area to enhance our 
knowledge to identify genes and clarify metabolites and their mechanisms and their capacity 
to combat pollutants using modern scientific technology which can aid in discovering novel 
genes and metabolites for efficient phytoremediation of pollutants by transgenic hyper-
accumulator plants (62).Understanding the underlying mechanism of the intrinsic 
detoxification methods, phytoremediation using transgenic plants will provide environmental 
friendly alternative to conventional remediation methods. 
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