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EXPLORATION OF MODERN BIOREMEDIATION 
TECHNIQUES 
 
Abstract 
 

In the last few decades environmental 
pollution has emerged as one of the major 
challenges for humanity. Plants, bacteria, and fungi 
have the capacity to degrade and accumulate 
environmental pollution. Bioremediation is the 
process by which plants, bacteria, and fungi are 
employed to break the harmful chemical substances 
into smaller molecules, remove them from the soil 
or water, change, immobilize, and convert into a 
harmless form. The utilization, exploration and 
improvement in accumulation and degradation 
capacity of plants, bacteria and fungi can address 
the issues very efficiently for harvesting the 
harmful chemicals from the polluted site. We have 
discussed recent developments utilization of plants, 
bacteria, and fungi in their natural form for 
bioremediation which is a very cost-effective 
technique as well as other emerging tools such as 
use of engineered plants, engineered microbes, 
modern genetic engineering tools in 
bioremediation, and other in-situ and ex-situ 
techniques. 
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I. INTRODUCTION 
 

The production of chemicals has supported humans at various stages such as 
controlling disease, food security, and protection from harsh environments. Simultaneously 
these chemicals or their by-products have negative impacts (US-EPA. 2017). The scientific 
research and exploration have registered across 350000 chemicals and mixtures.  Over 50000 
chemicals are confidential and 70000 are not properly described (Wang et al., 2020). In the 
last few decades, the problem of chemical contaminants has adversely affected human health 
(Munzel et al., 2023, Rodriguez Eugenio, 2021). The contaminants have also affected the 
other living organisms such as nematodes beetles, pollinators, etc. The various contaminants 
such as chemical, radioactive, and persistent organic pollutants have caused health as well as 
environmental damage. (Brusseau, and Artiola, 2019, Ashraf., 2017). Pesticides, sugar, 
textile, paper, and pulp industries have produced various contaminants which are causing 
serious damage to human health and various ecological interactions of the ecosystem 
(Sargent et al., 2023). Chemical pollutants have the potential to become one of the largest 
environmental threats to humanity.  
 

Table 1: Pollutants, their Sources, and Harmful Effects on Human Health 

Sr. 
No. 

Pollutants Source Disease/Harmful Effects References 

1. Cadmium Soil Endothelial dysfunction and 
Atherosclerosis 

Munzel et al., 2023 

2. Lead Soil Multiple Non-
communicable Diseases 
(NCDs) and Cardiovascular 
diseases 

Nediani et al., 2019 

3. Gasoline 
and 
Benzene 

Soil Leukaemia Lin et al., 2022 

4. Mercury Soil Kidney and Liver damage Jyothi and Farook, 2020 

5. Arsenic Water Melanosis and Keratosis Safiuddin et al., 2011 

6. Chromium Water Gastric and Respiratory 
Cancer 

Suh et al., 2019 

7. Trihalomet
hane 

Water Brain and Bladder Cancer Zumel Marne et al., 2021 

8. Chlorine Water Bladder and Rectal Cancer Helte et al., 2023 

9. Nitrogen Water 
and 
Soil 

Oesophageal Cancer Yang et al., 2023 
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The word Bioremediation is derived from ‘Bio’ has Greek roots which means ‘Life’ 

and  the Latin word ‘remedium’ which means to correct or remedy. Bioremediation means 
the remedy from environmental problems with the help of living organisms (Nithya et al., 
2021). The biotics convert the harmful and toxic components into non-toxic components by 
degradation. In the era of large amounts of pollution with heavy metals, pesticides, industrial 
wastes, greenhouse gases, hydrocarbons, nuclear wastes and toxic chemicals, this field 
emerges to focus on sustainable development (Azubuike et al., 2016). Naturally many plants 
and microbes help to convert or reduce the toxic components by converting them into non-
toxic forms, but as the amount of toxicant increases with anthropogenic activities, the 
responsibility comes on the science, or specifically, bioengineering and other emerging fields 
to engineer those microbes and plants so they can withstand with the high amount of 
pollutants and to help us to eradicate it (Bibi et al., 2019). Bioremediation is a technique that 
basically focuses on wastewater treatment and soil pollution. Various types of bioremediation 
treatments to those hazardous chemicals result in the formation of methane, carbon dioxide 

10. Copper Water 
and 
Soil 

Methemoglobinemia, 
Hepatic necrosis 

Babuji et al., 2023 

11. Manganese Soil Neurological disorder and 
sexual dysfunction 

Rodriguez Eugenio, 2021 

12. Polycyclic 
Aromatics 
Hydrocarbo
ns (PAH) 

Soil Cataract, hemolysis Zungum and Imam, 2021 

13. Phthalates Soil Liver cancer and Testicular 
Atrophy 

Zhao et al., 2023 

14.. Radionucli
des 

Soil Lung cancer Timin et al., 2022 

15. Dichlorodi
phenyltrich
loroethane 
(DDT) 

Soil Neurotoxic, Carcinogenic, 
Immunotoxic and 
Reproductive effects 

Van den Berg, 2011 

16. Selenium Soil Brittle hair and nails, 
Gastrointestinal problems, 
Kidney and Liver cancer, 
Heart diseases and Nerve 
damage 

Steffan et al., 2018 

17. Zinc Soil Tachycardia, 
Hyperglycemia, 
Gastroduodenal corrosive 
injury 

Plum et al., 2010; 
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and water, which is useful in one or the other way (Hussain et al., 2022). Till date, few 
bacteria, fungi and plants are recorded for the process of bioremediation and still it is the area 
of research to add more information about the organisms which can help the nations to solve 
the problems of rising pollutants (Singh et al., 2021). The term phytoremediation is used for 
the plants as they can uptake certain heavy metals to reduce them in soil, still the crop or food 
plants cannot be used for the purpose, generally, ornamentals and certain weeds are useful so 
it cannot harm the living beings to a certain extent (Ansari, 2016). But during research, it 
should also be kept in mind that those weeds and ornamentals which are used for the 
remediation should not be used by the pollinators or other insects or if they are using it as 
food, it should be tested that pollutants are not passing to that trophic levels (Sardrood et al., 
2012). The landfill capping is the alternative technique which is used in which the 
contaminated soil is covered by other layers of soil which is not a permanent solution (Kumar 
et al., 2021). Bioremediation is somewhat a slow process as the biotics convert contaminants 
into some useful molecules and the process takes time, but recent advances in technologies 
are trying to improve the process and this can be the permanent solution for the increasing 
amount of hazardous components increasing in the environment (Kensa, 2011). Countries 
like the United States, Europe, etc. started using and also improving the techniques of 
bioremediation (Verma et al., 2021). The main aim of this article is to bring major issues 
related to the environment and its solution by recently advanced techniques of bioremediation 
in light. This will focus on the emerging techniques which can help in removing the toxicants 
permanently from nature with easy applications, cheapest costs and highly acceptable. 

 
II. IN SITU TECHNIQUES OF BIOREMEDIATION 

 
 In situ techniques involve the remediation of soil on the site of contamination with 

the help of alpha,beta and gamma bacterias, fungi and plants (Bokade et al., 2023). As 
compared to ex situ bioremediation, in situ bioremediation is cost effective and cheaper as 
transportation is not required for the treatment. Aerobic microbes are introduced in the soil 
and it helps to degrade the contaminants from the soil (Simarro et al., 2013). 
 
III.  PHYTOREMEDIATION 
 

Phytoremediation is a very popular technique where plants are used as accumulators 
where plants are using energy to remove contaminants from the soil. They are used as pumps 
for removing contaminants from soil and water.  Various process are can be adopted such as 
Phytotransformation (McCutcheon, and Schnoor, 2003, Gao et al., 2000, Caçador, and 
Duarte, 2015), Phytostabilization (Shackira, and Puthur, 2019, Galal et al., 2017), 
Phytovolatilization (Sakakibara et al., 2010), Phytoextraction (Bhargava et al., 2012), 
Rhizodegradation (Li et al., 2016) and Rhizofiltration (Dushenkov et al., 2012, Verma  et al., 
2006, Yadav et al., 2011, Bakshe and Jugade., 2023).  
 

Several plants have been reported for phytoremediation of aquatic ecosystem such as 
Eichhornia crassipes, Pistia stratiotes L, Wolffia, Salvinia auriculatais, Ceratophyllum 
demersum, Potamogeton Crispus, Vallisneria spiralis,  Phragmites australis, (Ali  et al., 
2020). Cyperus rotundus, Parthenium hysterophorus have been used for remediation of soil 
(Boruah et al., 2020). The transgenic plants have been produced by overexpression of the 
genes for enhancing the extraction capacities of the plants. The extraction potential for plants 
has been enhanced by overexpression of genes such as tobacco, rapeseed for Cd tolerance 
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(Misra and Gedamu 1989). The genes which are in biosynthetic pathways of metabolism of 
chemical compounds can be exploited from various other living beings which includes 
microorganism, fungus, plants, and animals. The sequences of codons are then incorporated 
into desired plants. Transgenic plants which can express mammalian P450s and the other 
enzymes are the efficient candidates for tolerance and phytoremediation of the chemicals of 
herbicides. Plants can also be engineered for the better absorption and detoxification of 
contamination. (Kawahigashi, 2009).  
 

Cell suspension culture has already been utilized for the production of secondary 
metabolites (Yue et al., 2016). Kagalkar et al., 2011 have reported cell culture of Blumea 
malcolmii Hook can play a significant role in the remediation of textile industries. It can 
decrease the parameters such as biological oxygen demand and chemical oxygen demand of 
effluent within 48 hours.  Malachite Green is one the dyes used in the textile industry. Study 
reports 93.41 percent decolorization. Cells of Blumea malcolmii Hook have tolerated and 
degraded higher concentrations of dyes. 
 
Table 2: The Phytoremediation Plants and the Hazardous Elements which they Accumulate 

 

Sr. 
No. 

Hazardous Element Accumulating Plants References 

1. Arsenic Holcus lanatus 
Pteris vittata 

Peer et al., 2006 
Wan et al., 2018 

2. Cadmium Helianthus annuus Ali et al., 2018 
Junior et al., 2015 

3. Lead Tithonia rotundifolia 
Mangifera indica 
Brassica oleracea 
Helianthus annuus 
Ocimum sanctum 

Collin et al., 2022 
 

4. Mercury Jatropha curcas Marrugo-Madrid et al.,. 2021 

5. Chromium Helianthus annuus 
Pennisetum sp. 
Portulaca oleraceae 

Bahadur et al., 2017 
Jia et al., 2022 
Kale et al., 2015 

6. Trihalomethane Medicago falcata Panchenko et al., 2017 

7. Copper Corchorus sp. Saleem et al., 2020 

8. Manganese Polygonum pubescens 
Jatropha curcas 
Vetiveria Zizanioides 

Yu et al., 2020 
Nero, 2021 
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Bioremediation by microbes is a very easy, cost-effective, sustainable, eco-friendly, 

and fast process as compared to plants (Alori, 2015). Research has found how microbes and 
metals interact and what kind of biochemical reactions are formed. Recently, the application 
of those microbes which are associated with plants. These microbes not only remediated the 
soil but also enhanced the growth of plants and were helpful for plant remediation (Saba et 
al., 2019). The soil Polycyclic Aromatics Hydrocarbons (PAH) was degrading by microbial-
associated phytoremediation, and the process of degradation was enhanced by the number of 
bacteria, their activity, and ergosterol content available to microbes (Garcia-Sanchez et al., 
2018). Microbial phytoremediation is a potent technique for the degradation of Total 
Petroleum Hydrocarbon (TPH), the petroleum-degrading bacteria and their enzymatic activity 
plays an important role in the remediation of oil-contaminated soil (Wang et al., 2022).  
 

The molecular mechanism of microbes for degrading soil pollutants discovered like 
the Trichoderma virens fungi remediated by glutathione transferase which is helpful for 
PAHs. Some endophytic bacterial species such as Pseudomonas sp. and Pantoea sp. reduce 
the toxic effect of petroleum pollutants. Two major genes of Pseudomonas such as CYP153 
and alkB increase the stress tolerance power and other genes nh, pan, phn helpful in 
microbial-associated phytoremediation process for PHAs and TPH (Rai et al., 2020). 
Cyanobacteria and other green algae work as biodegradation agents in farms against the toxic 
chemicals of fertilizers and pesticides (Basit et al., 2021). Phosphate solubilizing microbes 
(PSM) impact toxins more efficiently as compared to other conventional methods. PSM 
forms the microbial consortium with other bacteria and enhances the production of more 
chemicals which shows their effect on the remediation process such as phytostabilization and 
phytoextraction (Gupta and Kumar, 2017). Arbuscular mycorrhizal fungi (AMF) secrete the 
glomalin protein which forms the complex with metal and protects the plant from its adverse 
effects and overcomes the organic pollution from the soil (Aransiola et al., 2019).  
 
  

9. Polycyclic 
Aromatics 
Hydrocarbons 
(PAH) 

Phoenix sp. 
Juncus subsecundus 

Xiao et al., 2015 
Zhang et al., 2012 

10. Phthalates Helianthus annuus Mustafa et al., 2021 

11. Radionuclides Amaranthus 
retroflexus 
Vetiveria Zizanioides 

Yan et al., 2021 

12. Dichlorodiphenyltric
hloroethane (DDT) 

Ricinus communis Rissato et al., 2015 

13. Selenium Brassica sp. Dhillon and Banuelos, 2017 

14. Zinc Brassica napus Belouchrani, 2016 

15. Nickel Brassica napus 
Helianthus annuus 

Boros-Lajszner, 2021 
Majeed et al.., 2023 
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IV.  ENGINEERED MICROORGANISM FOR BIOREMEDIATION 
 

Microbes play an important role in biodegradation. It has the capability to reduce the 
toxicity of pollutants. Many different metabolic pathways and genetic approaches are 
discovered for an enzymatic reaction, but some xenobiotics are still not degraded by 
conventional metabolic pathways because of the lack of known metabolic pathways. It has no 
such information for the degradation of that type of contamination (Peper and Reineke, 
2000). Recombinant DNA technology and metabolic engineering are used to understand 
different metabolic pathways. Various biotechnological processes are used for xenobiotic 
remediation (Sanghvi et al., 2020). Genetically modified microbes have modified codons for 
different pollutants. The first genetically modified microbes were developed by the US EPA 
in 1996.  These bacteria produce more protein that enhances the metabolic pathways (Sharma 
et al., 2021). These cellular transporters enhance the absorption of As+3 and Hg. In E.coli 
bacteria glycerol facilitators (Homotetramer) increase the bioaccumulation by the uptake of 
Hg (Singh et al., 2010). Pseudomonas bacteria use the MerT/P, MerC, Merp, and MerF are 
importers for the absorption of Hg (Sone et al., 2013). During the metal stress in the plant, 
the phytochelatin synthetase gene is expressed and makes the PC synthetase. PC synthetase is 
a metal-binding cysteine-rich peptide that plays a crucial role in metal accumulation. This 
gene is isolated from the arabidopsis and introduced in E. coli for higher accumulation of 
heavy metals (Sauge-Merle et al., 2003). The mutualism between root hair and bacteria plays 
a vital role In rhizoremediation because the bacteria synthesise Toluene Ortho 
Monooxygenase (TOM) that is responsible for the degradation of trichloroethane and the 
plant provides the habitat and food for the growth of bacteria (wood, 2008).  
 

The metallothioneins expressing genetically engineered bacterias enhance the heavy 
metals accumulation (Fasani et al., 2018). Water, soil and sediments contamination with 
mercury can be cleared effectively with the help of genetically engineered E. coli strain 
JM109 (Priyadarshanee et al., 2022). Polyphosphate kinase and metallothioneins expressing 
transgenic bacteria are also effective for the removal of mercury (Sharma, 2021). Lindane 
and trichloroethylene are the highly toxic compounds for the human and genetically 
engineered bacterias are capable of removing it from  the environment (Rafeeq et al., 2023). 
Genetically engineered E. coli SE5000 strain is the best option to accumulate the nickel from 
the environment (Azad et al., 2014). Arsenite S-adenosylmethionine methyltransferase 
(arsM) gene from Rhodopseudomonas palustris engineered into E. coli. The arsM gene has 
capability of converting toxic methylated inorganic arsenic into its less toxic volatile 
Trimethylarsine (TMA) and proven as an effective way to remove arsenic from the 
contaminated soil. In genetically modified bacteria, the overexpression of nixA encoded 
membrane transport protein, Metallothionein (MT) protein and Glutathione S-transferase 
fusion protein (GST-MT) have the ability to accumulate large amounts of nickel (Kumar et 
al., 2013). Genetically engineered, Pseudomonas sp. LB400 and E. coli JM109 strains are 
effective on Polychlorinated Biphenyl (PCB) (Sintaha, 2013), Pseudomonas 
pseudoalcaligenes KF707-D2 and E. coli FM5/pKY287 can bioremediate Trichloroethylene 
(TCE) and toluene (Zhang et al., 2017) while  Pseudomonas sp. B13 strain is effective on 
mono/dichlorobenzoate (Menn et al., 1999). 
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Table 3: Bioremediation Microbes and the Element which they Degrade 
 

Sr. 
No. 

Hazardous Element Microbes References 

1. Arsenic Bacillus sp. 
Pseudomonas aeruginosa 

Akhtar et al., 2013 
Sher and Rehman, 2019 

2. Cadmium Caulobacter crescentus 
Escheria coli 
Moraxella sp. 
Ralstonia eutropha 
Mesorhizobium huakuii 
Pseudomonas fluorescens 
Pseudomonas putida 
Bacillus subtilis 

Azad et al., 2014 

3. Lead Mucor circinelloides 
Alcaligenes eutrophus 

Sun et al., 2017 
Hou et al., 2020 
Sevak et al., 2021 

4. Mercury Alcaligenes faecalis 
Bacillus pumilus 
Pseudomonas aeruginosa 
Brevibacterium iodinum 

Sarao and Kaur, 2021 

5. Chromium Nitrosomonas Naz et al., 2021 
Guo  et al., 2021 

6. Trihalomethane Escheria coli 
Pseudomonas sp. 

Zamule et al., 2021 

7. Copper Pseudomonas stutzeri 
Escheria coli 

Palanivel, 2020 
Nurlaila et al., 2021 

8. Manganese Providencia sp. Wu et al., 2022 

9. Polycyclic 
Aromatics 
Hydrocarbons 
(PAH) 

Pseudomonas 
Acromobacter 
Acinetobacter 
Flavobacterium 

Abatenh et al., 2017 

10. Phthalates Gordonia sp. 
Singulisphera sp. 
Sphingobacterium sp. 
Brevundimonas sp. 
Dyella sp. 

Kong et al., 2019 
Song et al., 2019 
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1. Bioventing: Bioventing is a process in which the organic pollutants of water are degraded 

with the help of microorganisms. The archaea and algae increase this process, provide the 
appropriate airflow, and maintain O2 levels and nutrients (Yadav et al., 2021). This 
process increases the microbial population and enhances the biological activity for the 
removal of oil pollutants and hydrocarbons from the soil. It stimulates hydrocarbon 
degradation and is the first technique applied on a large scale (United States EPA, 2020; 
Zouboulis et al., 2020). This technique is commercially useful for the treatment of 
polluted soil, and the rate of oxygen flow plays a crucial role in the biodegradation of 
organic components  (Doudu et al., 2022).  

 
2. Bioattenuation: The process of natural attenuation enhances microbial activity by adding 

nutrients and microbes. These techniques reduce the toxicity of contamination by the help 
of aerobic and anaerobic biodegradation, volatilization, and transformation of 
contamination (Vasquez-Murrieta, 2016). The chlorinated organic compound is one of the 
major pollutants of water that is secreted by industries, Perchloroethane (PCE) enhances 
the dechlorination of vinyl chloride to ethene. This process is facilitated by the microbial 
consortium (Distefano, 1999). Acid mine drainage (AMD) acts as a pollutant of soil and 
water, which decreases agricultural practices. This type of pollutant is removed by the 
bio-attenuation process (Anekwe and Isa, 20220). Paint industries and urban areas efflux 
the water waste which is harmful to land water. Bioattenuation by fungi and bacteria such 
as Saccharomyces, Penicillium, Aspergillus, Rhodotorula, Bacillus, Staphylococcus, and 
E.coli. Made slightly alkaline soil as compared to polluted soil which is acidic in nature. 
The alkaline pH of soil shows a reduction in heavy metal components and toxicity of soil 
pollutants (Chukwuma et al., 2022). 

 
3. Biosparging: Biosparging is the process of administration of air and nutrition into 

polluted sites. The air starts the aerobic activity and supports the bacteria growth. The 
bacterias in soil degrades the contamination. Kao et al., 2008 reveal that Biosparging 
increases Dissolved oxygen, NO3-, SO�²- and it decreases sulphide, and methane as well 
as it enhances heterotrophs and reduced anaerobes, and methanogen. About 75 % of 

11. Radionuclides Mycobacterium 
Rhodococcus 
Sphingomonas 
Flavobacterium 
Bacillus 
Alcaligenes 
Pseudomonas 

Thakare et al., 2021 
Francis and 
Nancharaiah, 2015 

12. Dichlorodiphenyltric
hloroethane (DDT) 

Sedum alfredii 
Pseudomonas sp. 

Zhu et al., 2012 
Wang et al., 2017 

13. Zinc Tricholoma lobynis 
Rhodobacter sphaeroides 

Ji et al., 2012 
Peng et al., 2018 

14. Nickel Caulobacter sp. 
Bacillus cereus 
Bacillus thuringiensis 

Naveed et al., 2020 
Zhu et al., 2016 
Chen et al., 2019 
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contamination has been removed from jet fuel-contaminated soil (Machackova et al., 
2012).  

 
V. EX SITU TECHNIQUES OF BIOREMEDIATION 
 

The process of transporting polluted soil from its site to the site of treatment is 
considered as ex-situ bioremediation. The ex-situ techniques are generally applicable to those 
soils where the pollution level is high and in deeper layers (Maitra, 2018). The contaminants 
are in very high amounts and thus have the risk of leaching to lower layers and the aerobic 
microbes are unable on-site to degrade the contaminants due to the absence of oxygen in 
deeper layers of soil. But during transporting soil, care should be taken so that contaminants 
are not introduced to other places during transportation (Paul et al., 2021). 
 
1. Bioaugmentation and Biostimulation: Biostimulation is the process in which the 

environment is modified to stimulate bacteria which are  capable of bioremediation.  
Chaudhary et al., 2021 have studied the effects of combinations of bioaugmentation and 
various biostimulation treatments on the remediation and bacterial diversity of diesel-
contaminated soil. The bacterial consortium has degraded 81.9% diesel degradation 60 
days in liquid media, Consortium bioaugmentation with  nutrients, zero-valent iron 
nanoparticles, nZVI have shown 99 percent of hydrocarbon (TPH) degradation. The study 
also concludes biostimulation alone is not adequate. Dehalococcus and Desulfuromonas 
sp. Containing PCE was used for the dechlorination of water with the help of 
bioaugmentation and biostimulation (Lendvay et al., 2003).  

 
2. Windrows: In windrow, ex-situ technique, the piled up contaminated soil is turned 

periodically and water is added to it for aeration and to speed up the process of 
remediation. Biotransformation, assimilation and mineralization, enhances the process by 
providing a suitable environment to the aerobic microbes for degradation activities (Patel 
et al., 2022). As compared to biopile, windrow is more effective for the removal of 
hydrocarbons from the soil (Azubuike et al., 2016; Sharma 2020). Enterobacteria and 
Pseudomonas are most effective bacterias for the removal of  polycyclic aromatic 
hydrocarbons from the coal tar contaminated soils (Lors et al., 2010). 

 
3. Biopile: The technique is the best suitable option for the low molecular weight volatiles 

and for the colder environments. Nutrients, aeration, leachate collection, irrigation and 
treatment bed system are the important steps for biopiling. Maintains pH and other 
required factors for the microorganisms to enhance the remediation (Tyagi and Kumar, 
2021). The saw dust, straw and wood chips are added to the soil and the warm air is 
blown at regular intervals to maintain optimum temperature and aeration in the soil. 
Alpha, beta and gamma proteobacteria are useful for biopiling and about 93% of total 
hydrocarbons are removed from the diesel contaminated soil, within one year (Bala et al., 
2022).  

 
4. Landfarming: The technique is also known as land treatment is applicable where the 

contaminants in soil are not able to degrade anaerobically and in deeper layers, oxygen is 
not present. The tilling of soil is done periodically to provide oxygen and nutrients to 
degrade the contaminants with the help of aerobic microbes. Polyethylene geomembrane 
and layers of sand are also used below the contaminated soil on the site of ex-situ 
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bioremediation to prevent leaching of hazardous substances (Rawe et al., 2006). The 
moisture content, nutrients and pH is maintained during processing, and the United States 
Environmental Protection Agency and Federal Remediation Technology Roundtable 
Agency considered it as the technique which prevents leaching to the other ground levels 
(Rubinos et al., 2007). The combination of earthworm enzyme extract, biosurfactants, 
nutrients, bulking and sorption agents removes about 53% of petroleum hydrocarbons in 
16 weeks whereas the combination of biosurfactants, nutrients and biochar eradicates 
about 23% total petroleum hydrocarbons (Brown et al., 2017).  

 
5. Limitations of Bioremediation: Bioremediation is only applicable to the contaminants 

which are biodegradable and also a time-consuming process (Kensa, 2011). Most of the 
humans are unaware about the harmless and harmful microbes and thus they avoid the 
microbic treatment as they consider microbes will be more harmful than the chemicals 
with which the soil is contaminated (Fernandez Pinas, 2014). The optimum temperature, 
aeration, nutrients, pH and other factors required for the removal of toxic substances 
should be maintained (Abatenh et al., 2017). Pilot or bench studies to full field 
application is difficult (Harekrushna and Kumar, 2012). 

 
VI.  CONCLUSION 
 

Remediation has received importance in various fields such as textile, dye, 
pharmaceuticals, rubber, plastics, food, fisheries, wood, soil,  water waste management. 
Other waste such as   heavy metals, hydrocarbons have got more attention in the last few 
decades. The degradation pathways need to be understood for the better remediation 
implementation. Biotechnological tools can be an important tool for the complete picture of 
remediation. The engineered plants can be utilised for remediation of specific pollutants The 
genomics, metabolomics, and proteomics have played significant solutions for 
bioremediation and improvements in remediation. Still there is more additional efforts 
required for the development of more cost effective, efficient and accurate bioremediation 
ways.   
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