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NON-STOP INTEGRAL FLOW IN LATERAL GAP 

DISTANCE LATTICE MODEL 
 

Abstract 

 

 The role of non-stop integral flow is 

studied in a lattice model by assuming the 

lateral gap among the lattice sites. The 

proposed model is investigated theoretically 

as well as numerically. In theoretical 

evaluation, we derived the stableness 

criterion and provided the relationship among 

sensitivity and other parameters. It’s far 

located that similarly to attention of the gap 

space, the non-stop time of flow reduces the 

congestion and the unstable region more 

reinforced via increasing the driver’s memory 

time step. 
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I. INTRODUCTION 

 

To expose the traffic problems, including the intrinsic mechanisms of traffic 

congestion, commuting delay, traffic accidents, and energy consumption, the modeling of 

traffic flow has attracted a widespread interest of researchers in recent years. Most of the 

traffic techniques especially recognize the reproducing of the flow-density-velocity 

relationship and the phase transition of traffic flow from congested region to free flow region 

involving various factors of traffic [1, 2, 3, 4, 5, 6, 7]. Also, in order to reveal the actual 

traffic conditions, a few research studies have been added to suppress the traffic congestion. 

These days, the lattice hydrodynamic model which was firstly proposed by Nagatani [8], 

stimulates a huge interest of many researchers. 

 

As we know, road conditions have a crucial role in traffic flow. Drivers tend to be 

more cautious and slow down when faced with obstacles on the road, such as restricted lanes, 

sharp curves, and rough road surfaces. Poor road conditions are a major cause of traffic jams. 

In this direction, car-following traffic flow models were proposed through [9, 10, 11] with the 

aid of assuming that vehicles travel in the center of the lane which can be stimulated directly 

by the only in front or behind and no passing is permitted on a single lane highway. By 

inspiring from Refs. [9, 10, 11], the impact of lateral gap has been also studied in lattice 

model [12] and it is determined that lateral separation performs a critical role in stabilizing 

the traffic flows in lattice fashions. 

 

In real traffic, driver usually observe at the following in addition to the previous 

vehicles at some point of driving on road. To deal with these phenomena, many lattice 

models [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] had been found within the literature. Currently, 

to show the role of historical traffic information, Wang and Ge [23] proposed a lattice model 

via accounting the "backward looking" and "flow integral effect" and it is observed that the 

stable region enhances efficiently with consideration of these factors. Motivated by this, Peng 

et al. [24] studied the flux difference memory integral effect in two-lane lattice version and 

it’s far encountered that lane changing performs a vital function in stabilizing traffic 

congestion. Vehicle continuous memory is useful in traffic modelling, and the effect is 

amplified in non-lane-based lattice models. However, the lateral separation distance of 

consecutive autos has not been examined in the driver’s continuous memory integral lattice 

model.  

 

In section 2, we explore the lateral separations gap between two consecutive autos and 

offer a lateral-gap-distance lattice model while considering the effect of flow memory 

integral. In Section 3, the model’s stability condition is established using linear stability 

theory. The numerical simulation is then completed in order to verify the analytic results, and 

the conclusion is stated in the concluding part. 

 

II. PROPOSED MODEL 

 

The lattice version of continuum model through considering the concept of car-following 

model is  

 

∂t si+s0(siνi−si-1νi-1) = 0,                                                                                         (1) 
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With the given flow evolution equation at site i  

 

∂t (siνi) = a[s0ν(si+1)−siνi].                                                                                               (2) 

 

Where a = 1/ τ is the sensitivity;    is the average density; V(.) is the optimal velocity 

function;    and    denote the density and velocity at site   at time    respectively. 

Furthermore, to include the lateral separation distance, Peng et al. [12] proposed a lattice 

hydrodynamic model as follows 

 

si(t +τ)−si(t)+τs0(siνi−si-1νi-1) = 0                                                                                        (3) 

 

si(t +τ)νi(t +τ) = s0V(si+1, si+2)+ωG(△Qi,i+1,△Qi,i+2)                                                            (4) 

 

Where ω is the reactive coefficient to the function G(.), △Qi,i+1 = si+1νi+1 −siνi, and 

△Qi,i+2 = si+2νi+2 −siνi are the relative flows among site i & i+1 and i & i+2, respectively. It’s 

far observed that the free region enhances with an increase in the lateral separation distance 

of lane width, and consequently, this element plays an important role in stabilizing the traffic 

flow.  

 

As we all know, a driver frequently observes traffic relevant data at time t and decides 

to change the vehicle’s speed at a later time; nevertheless, this movement can produce a delay 

that influences traffic. In this course, Gupta and Redhu [26] presented a hydrodynamics 

model for detecting relative flux for a two-lane system with a fixed delay and explored the 

effects of driver expectation on traffic flow. However, it is clear that the effect of continual 

memory has a greater impact on traffic flow than the fixed delay time, and this has been 

examined in many traffic flow models [23, 27]. In the literature, we studied that road width 

performs an essential role in stabilizing traffic congestion, and it will become more effective 

if the driver could have relative records of continuous memory. But, the effect of non-stop 

memory integral has not been studied until now. 

 

Here, we are offering a lattice model by accounting for persistent prior flux 

knowledge in terms of integration between the time [t −τ0, t] and the new evolution is 

 

 
 

 Where τ0 represents the historical integral time, ω is the corresponding coefficient, 

G(.) is given by 

 

H(△Qi,i+1(s),△Qi,i+2(s) = (1−  )△Qi,i+1(s)+   △Qi,i+2(s)                                                         (6) 

 

and 

 

V(si+1,si+2) = V[(1−  )si+1+  si+2]                                                                                           (7) 

 

 Where      
   

     
 is lateral separation distance, LSi is the lateral separation distance 

of between sites i and i+1 and LSmax is its maximum lateral distance. The term R tt−τ0 
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G(△Qi,i+1(s), △Qi,i+2(s))ds represents the continuous flux difference information. The 

modified velocity function for non-lane-based model is 

 

 
 

From Equations. (1) and (5) and eliminating νi, the equation of density is obtained as 

 

si(t +2τ)−si(t +τ)+τs
2

0[V(si+1, si+2)−V(si, si+1)]+τω[(1−  )(−si+1(t)+ 

si+1(t −τ0)+si(t)−si(t −τ0))+    (sj+2(t)+sj+2(t −τ0)+sj+1(t)−sj+1(t −τ0))] = 0                     (9) 

 

III. LINEAR STABILITY ANALYSIS 

 

 To look the effect of memory flow integral in the proposed model, we suppose the 

resulting steady-state solution of the homogeneous traffic flow is as follows: 

 

si(t) = s0, Vi(t) =V(s0).                                                                                                  (10) 

 

 where s0 and V(s0) represent the state of uniform traffic flow. Let ηi(t) be a small 

perturbation to the steady-state density on site i. Then, 

 

si(t) = s0+ηi(t).                                                                                                            (11) 

 

 
 

Figure 1: Parameterized phase diagram (s,a), for (a) ω = 0.1 and (b) ω = 0.3, respectively. 
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Figure 2: Space time evolution after time t = 20000 for (a)    = 0 , (b)    = 0.1, (c)    = 0.2, 

and (d)    = 0.3, for ω = 0.1. 

 

Putting this perturbed density profile into Eq. (9) and linearizing it, we get 

 

ηi(t +2τ)−ηi(t +τ)+τs
2

0V′(s0)[(1−  )(ηi+1−ηi(t))+    (ηi+2−ηi+1)]+ τω[(1−  )(−ηi+1(t)  

+ηi+1(t −τ0)+ηi(t)−ηi(t−τ0))+    (ηi+2(t)+ηi+2(t−τ0) +ηi+1(t)−ηi+1(t −τ0))] = 0                   (12) 
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Figure 3: Density profile at time t = 20300 for (a)   = 0 , (b)   = 0.1, (c)   = 0.2, and (d)   = 

0.3, respectively for ω = 0.1. 

 

Substituting ηi(t) = exp(ιkl+zt) in Eq. (12), we obtain 
 

 
 

 Inserting                  
 ... into Eq. (13), we will obtain the first-order and 

second-order terms of the coefficient    and (  )
2
, respectively, we get 

 

z1 = −s
2
0 V′(s0),                                                                                                           (14) 

 

 
 

 When z2 is less than zero, long-wavelength waves lead to instability in the uniform 

steady-state flow. Conversely, when z2 is greater than zero, the uniform flow attains stability. 

As a results, the "stability condition" for the "steady-state" is 
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The instability requirement for homogeneous traffic flow is as follows: 

 

 
 

 For ω = 0, and    = 0, the above instability criteria (Eq. 17) will match with 

Nagatani’s [8] model. 

 

 Figure 1 shows the phase diagram in the parameter space (s, a) for different values of 

  . The figure in Fig. 1(a) unmistakably demonstrates that as the value of    increases while 

keeping ω at 0.1, the amplitude of the neutral stability curves declines. A further increment in 

the value of ω, the region corresponding to stability widens with a change in the value of   . 

On comparing the results for ω = 01. and ω = 0.3, t is determined that as the value of 

increases, so does the stable region, which is further enhanced as the value of    increases. If 

we compare our result with the Peng et al. [25] model for ω = 0.1 it is concluded that the 

stable region is larger in the proposed model, which shows that the continuous delay of the 

flow integral plays an effective role in stabilizing the traffic flow. 

 

IV. NUMERICAL SIMULATION 

 

 In this portion, we applied periodic boundary conditions to run a numerical simulation 

to validate the theoretical conclusions. The following are the beginning conditions: 

 

si(1)=si(0)=

 
 
 

 
                 

   

  
 
 

 
  

       
 

 

             
 

 
  

  

 

 

 where, B is the initial disturbance, N is the total number of sites taken as 100 and 

other parameters are set as follows: B = 0.1, τ = 1/a. 
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Figure 4: Space time evolution after time t = 20000 for (a)    = 0 , (b)     = 0.1, (c)    = 0.2, 

and (d)    = 0.3, when ω = 0.3. 

 

 The dynamical changes of density vibration at time t = 20000s−20300s for numerous 

values of    when a = 1.7 and ω = 0.1 are shown in Fig. 2. The traffic congestion develops in 

the unstable zone which appears in "kinkantikink" of waves that arise at each position and 

travel in the backward fashion over time, as seen in Figs. 2(a)-(c). We enter the stable region 

when    = 0.3, and the density waves dissipate, and the traffic flow gets a bit more uniform. 

 



Futuristic Trends in Contemporary Mathematics 

e-ISBN: 978-93-6252-737-0 

IIP Series, Volume 3, Book 2, Part 5, Chapter 2  

NON-STOP INTEGRAL FLOW IN LATERAL GAP DISTANCE LATTICE MODEL 

 

Copyright © 2024 Authors                                                                                                                       Page | 138  

 
 

Figure 5: Density profile at time t = 20300 for (a)    = 0 , (b)    = 0.1, (c)    = 0.2, and (d) 

   = 0.3, respectively for ω = 0.3. 

 

 The density profile after a suitably long time t = 20300 is shown in Fig.3, which 

corresponds to the panel in Fig.2. The intensity of the kink-antikink density wave diminishes 

as the value of    grows, and the flow becomes uniform at    = 0.3. Figure 4 depicts the 

spatiotemporal pattern of density waves at time t = 20000s−20300s for various values of 

   when a = 1.52 and ω = 0.3. Figure 5 reveals the density profile at t = 20300, which aligns 

to the panel of Fig.4. In the unstable zone, the initial disturbance transforms into density 

motions, as seen in Fig.4 (a)-(c), and these fade away in the free flow region, as shown in Fig. 

4(d). The deviation occurs around the critical density in the crowded zone, as illustrated in 

Figs.5(a)-(c), and this deviation disappears in Fig. 5(d). Thus, we may assert that the lateral 

separation distance significantly contributes to the preservation of a stable traffic flow. 

 

 When the results for ω = 0.1 and ω = 0.3 are compared, it is concluded that the 

information of continuous memory integral plays a vital role in traffic flow theory, and its 

influence is more pronounced in non-lane-based lattice 

hydrodynamic models. 

 

V. CONCLUSION 
 

A non-lane-based lattice traffic flow model is proposed with consideration of the 

continuous flow integral effect. Through linear analysis, the condition of stability is derived 
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to analyze the traffic congestion region. Theoretical results are cross-checked by running a 

simulation with periodic boundary conditions. Our research aimed to understand the 

consequences of altering lateral separation distance while keeping ω constant on traffic flow. 

The outcome of our study indicates that the coefficient of flow integral effect contributes to 

the stabilization of traffic flow and should be integrated into traffic flow modeling. 
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