FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS

Abstract

Formulas for Strength of Materials" is a meticulously crafted reference guide that serves as an indispensable resource for students, engineers, and professionals seeking a deep understanding of the fundamental principles governing the behavior of materials under various loads and stresses. This comprehensive compendium offers a systematic collection of equations, equations, and insights, making it a valuable asset for anyone engaged in the design, analysis, and application of structural components in engineering and construction.

In this book, the author provides a wideranging selection of formulas, categorized by topic, including stress analysis, strain, deformation, and the mechanical properties of materials. Each formula is accompanied by clear explanations, practical examples, and relevant diagrams, enabling readers to grasp the underlying concepts and their real-world applications.

Formulas for Strength of Materials" is a valuable addition to the library of anyone involved in mechanical and civil engineering, providing a one-stop source for essential equations and insights that empower professionals and students to tackle challenges in structural design and analysis with confidence.

Keywords: Stress and Strain

Authors

Kailasam R M.E

Lecturer Department of Mechatronics Engineering PSG Polytechnic College Coimbatore.

Nirmal Kumar G M.E

Lecturer Department of Mechanical Engineering PSG Polytechnic College Coimbatore.

Rajesh Kannan B ,DME,(B.E) Instructor

Department of Mechanical Engineering PSG Polytechnic College Coimbatore.

I. SIMPLE STRESS AND STRAIN

1. SIMPLE STRESS AND STRAIN FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS

Stress(σ)	$\sigma = \frac{P}{A}$	Where, $\sigma = \text{stress in N/mm}^2$ P = Load in N $A = \text{Area in mm}^2$
Strain (e)	$e = \frac{\Delta L}{L}$	Where, e = strain $\Delta L = Change in length or elongation in mm$ L = Original length or gauge length in mm
Youngs modulus(E)	$E = \frac{\sigma}{e}$	Where, E= Youngs modulus or modulus of elasticity in N/mm ² $\sigma =$ stress in N/mm ² e = strain
Factor of safety(FoS)	$FOS = \frac{\sigma u}{\sigma}$	Where, $\sigma_u = Ultimate \text{ stress in N/mm}^2$ $\sigma = Working \text{ stress in N/mm}^2$
Area(A)	$A = \pi/4 \times d^{2}$ $A = \pi/4 \times (D^{2} - d^{2})$ $A = b \times t$	Where, A=area in mm ² D= Major diameter or outer diameter in mm d= Minor diameter or inner diameter in mm b= breadth or wide in mm t= Thickness in mm

2. UTM (TENSILE TEST)

Yield Stress(o y)	$\sigma y = \frac{Py}{A}$	Where, σ_y = Yield stress in N/mm ²
	11	P _y = Yield Load in N A=Area in mm ²
Ultimate Stress(σu)	$\sigma u = \frac{Pu}{A}$	Where, σ_u = Ultimate stress in N/mm ² P_u = Ultimate Load in N A=Area in mm ²

Breaking Stress(σB)	$\sigma B = \frac{Pb}{A}$	$\label{eq:stress} \left \begin{array}{c} \text{Where,} \\ \sigma_B = & \text{Breaking stress} \\ \text{in N/mm}^2 \\ P_B = & \text{Breaking Load} \\ \text{in N} \\ & A = \text{Area in mm}^2 \end{array} \right $
% of Elongation (%∆L)	$\%\Delta L = \frac{(LF - LI)}{LI} \times 100$	Where, L_F = Final length in mm L_I = Initial length in mm
% of Reduction area (%∆A)	$\%\Delta A = \frac{A - a}{A} \times 100$	Where, A= Initial area in mm ² a= Final area or area of neck in mm ²

3. VOLUMETRIC STRAIN

Volumetric strain (e _v)	$ev = \Delta V/V$ = $elin \times (1 - 2 \times 1/m)$	Where, $e_v = Volumetric strain$ $\Delta V = Change in volume in mm^3$ $V = Original volume in mm^3$ 1/m = Poisson's ratio $e_{lin} = Linear strain$
Volume (V) $V = 4 \times I$ Where, A		Where, A= Area in mm2 L= Length in mm
Poisson's ratio (1/m)	1/m = eLat / elin	Where, e_{Lat} = Linear strain e_{Lin} = Linear strain or Longitudinal strain
Lateral strain (e_{Lat}) $eLat$ $= \Delta d/d (or) \Delta b$ $/b (or) \Delta t/t$ $d=$ Original diameter in $\Delta b =$ Change in breadth or $\Delta t =$ Change in thickness		Where, Δd = Change in diameter in mm d= Original diameter in mm Δb = Change in breadth or width in mm b= Original breadth or width in mm Δt = Change in thickness in mm t = Original thickness in mm
Linear strain (e _{Lin)}	$eLin = \Delta L/L$	Where, ΔL= Change in length or elongation in mm L=Original length or gauge length in mm

Young's modulus (E)	Bulk modulus (K)	Rigidity modulus (C or N or G)		
$E = \frac{\sigma}{e}$	$K = \frac{\sigma d}{eV}$	$C = N = G = \frac{\sigma S}{eS}$		
Where, E= Youngs modulus or modulus of elasticity in N/mm ²	Where, K= Bulk modulus or in N/mm ²	Where, C=N=G=Modulus of rigidity or shear modulus in N/mm ² e _s = Shear strain		
$\sigma = \text{stress in N/mm}^2$ e = strain	σ_d = Direct stress in N/mm ² e_V = Volumetric strain			
Relationship between E,G,K				
$E = 2G \times (1 + 1/m)$ $E = 3K \times (1 - 2 \times 1/m)$ E = 9KG / (3K + G)				

4. ELASTIC CONSTANTS (E,G &K)

5. OMPOSITE BAR

Condition (i)	$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$ $\mathbf{P} = \sigma_1 \mathbf{A}_1 + \sigma_2 \mathbf{A}_2$	Where, P=Total load acting on the composite in N σ_1 =Stress induced in Material -1 σ_2 =Stress induced in Material -2 A_1 = Mareial-1 cross sectional area in mm ² A_2 = Mareial-2 cross sectional area in mm ²
Condition (ii)	e1 = e2 $\sigma 1/E1 = \sigma 2/E2$	Where, σ_1 =Stress induced in Material -1 σ_2 =Stress induced in Material -2 E_1 = Young's modulus of Material -1 E_2 = Young's modulus of Material -2

II. SHEAR FORCE AND BENDING MOMENT DIAGRAM

1. DIAGRAM SHORT CUT (SFD AND BMD)

LOAD	SFD	BMD
Point	Horizontal	Inclination
U.D.L	Inclination	Parabola
U.V.L	Parabola	Parabola

BEAM	LOAD	SFC	BMC
Cantilever, Simply supported	Point	W	W×D
Cantilever, Simply supported	U.D.L	W×D	$W \times D \times (D/2+G)$
Cantilever, Simply supported	U.V.L	1/2bh	Or $\frac{\frac{1}{2} \times bh \times \left(\frac{1}{3} \times d + G\right)}{\frac{1}{2} \times bh \times \left(\frac{2}{3} \times d + G\right)}$
Where, W= Load in N or KN, D= Distance in m or mm, G= Gap in m or mm			

2. CALCULATIONS (SFC AND BMC)

3. THEORY OF SIMPLE BENDING

		Where,
		M=Bending moment or moment of
		resistance in N-mm
	Μ σb Ε	I= Moment of in inertia in mm ⁴
Bending equation	$\frac{m}{L} = \frac{00}{L} = \frac{L}{D}$	$\sigma_{\rm b}$ = Bending stress in N/mm ²
	I Y K	y= Distance in mm
		E= Youngs modulus or modulus of
		elasticity in N/mm ²
		R= Radius of curvature in mm

BEAM	LOAD	BENDING MOMENT (M)
Cantilever	Point	WL
Cantilever	U.D.L	$\frac{WL^2}{2}$
Simply supported	Point	$\frac{WL}{4}$
Simply supported	U.D.L	$\frac{WL^2}{8}$

Futuristic Trends in Mechanical Engineering e-ISBN: 978-93-5747-622-5 IIP Series, Volume 3, Book 2 , Part 3,Chapter 1 FORMULAE HAND BOOK FOR STRENGTH OF MATERIALS

BEAM SECTION	MOMENT OF INERTIA (I)	DISTANCE (y)	SECTION MODULUS (Z=I/y))
Solid circular	$\frac{\pi}{64} \times d^{4}$	d/2	$\pi/32 \times d^3$
Hollow circular	$\frac{\pi}{64} \times (D^{\wedge}4 - d^{\wedge}4)$	D/2	$\pi/32 \times (D^4 - d^4)/D$
Rectangular	$\frac{bd^{3}}{12}$	d/2	bd ² /6
Square or cube	$\frac{a^{4}}{12}$	a/2	a ³ /6

4. TORSION

Torsional T/J= f_S / Equation R=C θ /L	Where, T=Torque or twisting moment in N-mm J= Polar Moment of in inertia in mm ⁴ $f_S = $ Shear stress in N/mm ² R= Radius in mm C=N=G=Modulus of rigidity or shear modulus in N/mm ² θ = Angle of twist in radians
--	---

		** *4		
Power(P)	$P=2\pi NT/(60\times 10^3)$	Where,		
		P= Power in Watts		
		T=Torque or twisting moment in N-mm		
		N=Speed in Rpm		
		θ = Angle of twist in radians		
		Where,		
	$T=\pi/16\times f_s\times d^3$	T=Torque or twisting moment in N-mm		
	For solid shaft	$f_s = $ Shear stress in N/mm ²		
		d= Diameter in mm		
Torque(T)		Where,		
	T=π/16×f _s ×(D ⁴ - d ⁴ /D) For Hollow shaft	T=Torque or twisting moment in N-mm		
		$f_s = $ Shear stress in N/mm ²		
		D=Major diameter in mm		
		d= Minor Diameter in mm		
	$J=\pi/32\times d^4$	Where,		
Polar	For solid shaft	J=Polar moment of inertia moment in N-mm		
	For some shall	d= Diameter in mm		
moment		Where,		
of inertia	$J=\pi/32\times(D^4-d^4)$	J=Polar moment of inertia moment in N-mm		
(J)	For Hollow shaft	D=Major diameter in mm		
		d= Diameter in mm		
Radius	R=d/2 For solid shaft	Where,		
	D-D/2 For Hollow	d= Diameter in mm		
(R)	R=D/2 For Hollow	D=Major diameter in mm		

5. GEOMETRICAL SECTIONS

Centroid	$\bar{X} = \frac{a1x1 + a2x2 + a3x3}{a1 + a2 + a3}$ $\bar{Y} = \frac{a1y1 + a2y2 + a3y3}{a1 + a2 + a3}$	Where, $a_1 = \text{Section 1 area in mm}^2$ $a_2 = \text{Section 2 area in mm}^2$ $a_3 = \text{Section 3 area in mm}^2$
Moment of inertia	$\begin{split} &I_{xx} = b_1 d_1^{3} / 12 + b_2 d_2^{3} / 12 + b_3 d_3^{3} / 12 + a_1 \times (\overline{y} - y_1)^2 + \\ &a_2 \times (\overline{y} - y_2)^2 + a_3 \times (\overline{y} - y_3)^2 \\ &I_{yy} = d_1 b_1^{3} / 12 + d_2 b_2^{3} / 12 + d_3 b_3^{3} / 12 + a_1 \times (\overline{x} - x_1)^2 + a_2 \times (\overline{x} - x_2)^2 + a_3 \times (\overline{x} - x_3)^2 \end{split}$	
Radius of gyration	$Kxx = \sqrt{\frac{Ixx}{A}}$ $Kyy = \sqrt{\frac{Iyy}{A}}$ $A = a1 + a2 + a3$	

III. CYLINDER AND SPHERICAL SHELLS

1. Cylindrical shell

HoopstressorCircumferential stress (σ1)	$\sigma 1 = \frac{Pd}{4t}$	
Longitudinal Stress (₅₂)	$\sigma 2 = \frac{Pd}{2t}$	Where,
Maximum shear stress(τ)	$\tau = \frac{Pd}{8t}$	P= Internal Pressure in N/mm ²
Circumferential strain (e ₁)	$e1 = \frac{\Delta d}{d} = \frac{\sigma 1}{E} \times \left(1 - \frac{1}{2} \times \frac{1}{m}\right)$	d= Internal diameter in mm t=Thickness of the cylinder in mm Δd = Change in diameter in mm
Longitudinal strain (e ₂)	$e2 = \frac{\Delta L}{L} = \frac{\sigma 1}{E} \times \left(\frac{1}{2} - \frac{1}{m}\right)$	ΔL = Change in length in mm E= Young's modulus in N/mm ²
Volumetric Strain(e _v)	$ev = \frac{\Delta V}{V} = e^2 + 2e^1$ $V = A \times L$ $A = \pi/4 \times d^2$	1/m= Poisson's ratio

2. Spherical shell

Hoop stress or Circumferential stress (σ ₁)	$\sigma 1 = \frac{Pd}{4t}$	Where, P= Internal Pressure in	
Circumferential strain (e ₁)	$e1 = \frac{\Delta d}{d} = \frac{\sigma 1}{E} \times \left(1 - \frac{1}{m}\right)$	N/mm^2 d= Internal diameter in mm	
Volumetric Strain(e _v)	$\Delta V = 3e1 \times V$ $V = \pi/6 \times d^{3}$	t=Thickness of the cylinder in mm Δd = Change in diameter in mm E= Young's modulus in N/mm ² 1/m= Poisson's ratio	

IV. SLOPE AND DEFLECTION OF THE BEAM

1. Double Integration Method

Beam	Load	Slope (θ)	Deflection (y)
Cantilever	Point load at free end	WL^2	WL^3
		2EI	<u>3EI</u>
Cantilever	Point load apart from fixed and free end	$\frac{Wa^2}{2EI}$	$\frac{Wa^3}{3EI} + \frac{Wa^2}{2EI} \times (L-a)$
Cantilever	UDL distributed at entire	WL^3	WL^4
	length	6EI	<u>8EI</u>
Cantilever	UDL distributed from fixed	Wa^3	$\frac{\overline{8EI}}{\frac{Wa^4}{8EI} + \frac{Wa^3}{6EI} \times (L-a)}$
	end to "a" distance	6EI	$\frac{1}{8EI} + \frac{1}{6EI} \times (L-d)$
Simply	Point load at mid span	WL^2	WL^3
supported		16 <i>EI</i>	$\overline{48EI}$
Simply	UDL distributed at entire	$\overline{WL^3}$	$5WL^4$
Supported	length	$\overline{24EI}$	<u>384<i>EI</i></u>