LOCAL ISOLATE DOMINATION IN GRAPHS

Abstract

Author

In this Communication a new S.V. Padmavathi parameter called Local Domination in graphs is defined and Studied. A Dominating Set S is a Local Dominating set iff for each u in S, < Madurai, Tamil Nadu, India N(u) > has an isolate.

AMS Subject Code: 05C69

Keywords: Dominating Set, Isolate Dominating Set, Local Isolate Dominating Set, Local Isolate Domination Number.

Isolate P.G and Research Department of Mathematics Saraswathi Narayanan College svsripadhma@gmail.com

I. INTRODUCTION

Throughout this paper, Simple Finite Graphs without loops and multiple edges are considered. For terminologies and notations refer Chartrand And Lesniak[3]. Domination and related topics are dealt in [1, 4, 5, 6].

A subset S of the vertex set V(G) is a Dominating set if each vertex in the set $V \setminus S$ is adjacent to a vertex in S. Minimum cardinality of a minimal dominating set is the Domination number of a Graph denoted by $\gamma(G)$.

It is an isolate dominating set if the induced graph<S> contains an isolate and is introduced and studied in [7].

A Dominating set S is called a Doubly Isolate Dominating set if both the induced graphs < S > and $< V \setminus S >$ have isolates. Doubly Isolate Dominating set is introduced and studied in [2].

Also when the concept of Isolate Dominating set is localized to the Neighbour set we arrive at a new variant called Local Isolate Dominationin Graphs. This motivated us to define a new parameter that is introduced and studied in this communication.

II. PRELIMINARY RESULTS

Theorem 2.1: "For a Graph G with order at least 3, $\Delta(G) = n-1$ and minimum degree at least 2, G has no Local Isolate Dominating Set."

Proof: From the hypothesis we observe that G is a graph without isolates and with Domination number as one and hence this dominating set is not a Local Isolate Dominating set of G. "Suppose S is any dominating set of G and $S \setminus \{v\} \neq \phi$ where $\{v\}$ is a full degree vertex of G.Now for each u in $\{S \setminus \{v\}\}$ the induced graph < N(u) > has no isolated vertex. Hence S is not a Local Isolate Dominating Set of G.

Corollary 2.2: "The Local Isolate Dominating Set Does Not Exist For The Following Graphs:

- Complete Graph K_n.
- Wheel Graph W_n.
- Fan Graph F_n."

Observation 2.3: "The Local Isolate Dominating Set Does Not Exist For Complete r-Partite $K_{n1,n2,...nr}$, $r \ge 3$ Graph."

III.MAIN RESULTS

Proposition 3.1

1. For the Paths P_n and the Cycles C_n we have $\gamma_{lo}(P_n) = \gamma_{lo}(C_n) = \left|\frac{n}{3}\right|, \Gamma_{lo}(P_n) = \left|\frac{n}{2}\right|$ and

$$\Gamma_{lo}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor$$

2. If G is a Graph of Order n, Then $(G^+) = \Gamma_{lo}(G^+) = n$, Where G+ is the Graph that was produced from G by attaching at each of G's vertex's e Edges."

Proof

1. "Obviously $\gamma_{lo}(P_4) = 2$ and when $n \neq 4$, any γ -set of P_n is a local isolate dominating set as well, so that $\gamma_{lo}(P_n) \leq \gamma(P_n)$." Every Local Isolate D dominating set is a dominating set

so
$$\gamma(P_n) \le \gamma_{lo}(P_n)$$
 thus $\gamma_{lo}(P_n) = \gamma(P_n)$ and so $\gamma_{lo}(P_n) = \left\lceil \frac{n}{3} \right\rceil$ as $\gamma(P_n) \left\lceil \frac{n}{3} \right\rceil$. Now if $P_n =$

 $\{v_1, v_2, v_3, \dots, v_n\}$ then the set $s = \left\{v_{2i-1} \setminus 1 \le i \le \left\lceil \frac{n}{2} \right\rceil\right\}$ is a minimal isolate dominating set so

that $\Gamma_{lo}(P_n) \ge \left| \frac{n}{2} \right|$. Additionally, since any set that contains more than vertices of Pn is

no longer able to be a minimal isolation dominating, we have $\Gamma_{lo}(P_n) = \left\lceil \frac{n}{2} \right\rceil$. Similar to

this, one may prove $\gamma_{lo}(C_n) = \left\lceil \frac{n}{3} \right\rceil$ and $\Gamma_{lo}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor$

2. Each pendant vertex is required to be present in any minimal isolate-dominating set S of G+ or one of its neighbours, in order to have at least n vertices. "Further, if |S| > n, S must consequently include a pendant vertex along with its support and so $S - \{v\}$, where v is the support, is an isolate dominating set of G^+ , a contradiction to the minimality of S." Hence |S| = n.

Theorem 3.2: "For a Graph G of order at least 2, $\gamma_{lo}(G)=1$ iff there exists a pair u,vin V(G), deg_G(u) = 1 and deg_G(v) =n-1."

Proof: Let G be a graph with $n\geq 2$. Suppose $\gamma_{lo}(G)=1$. Let $S=\{v\}$ be a Local Isolate Dominating set of G. "Since S is a dominating set and $|V(G)\setminus S|=n-1$, $\deg_G(v)=n-1$." Also since S is a γ_{lo} -set of G, $\langle n(v) \rangle$ has an isolate vertex, say u. Therefore u is a pendent vertex of G. Hence $\deg_G(u)=1$. Conversely, $\{V\}$ is a dominant set of G since there is a vertex v with $\deg_G(v)=n$. Since " $\deg_G(u)=1$, u is a isolate vertex in $\langle n(v) \rangle$ ", thus $\gamma_{lo}(G)=1$.

Corollary 3.3: "For a Star Graph S_n with $n \ge 2$, $\gamma_{lo}(S_n) = 1$."

Theorem 3.4: "If G is a Tree with $n \ge 2$ then G has a Local Isolate Dominating Set."

Proof: Let G be a Tree of Order $n \ge 2$ and S be any Dominating Set of G. "Suppose G has no Local Isolate Dominating Set, there exist a vertex $v \in S$, and $\langle n(v) \rangle$ has no isolate vertex." Thus $\langle n(v) \rangle$ is a connected Graph. This implies $\langle n[v] \rangle$ contains a cycle, which contradicts that G is a Tree. Therefore G has a Local Isolate Dominating Set.

Corollary 3.5: "For any Tree T, $\gamma(T) = \gamma_0(T) = \gamma_{lo}(T)$ ".

Theorem 3.6: "Let S be any Local Isolate Dominating Set of a Graph G and $U \in S$. Then there exist a vertex $v \in V(G)$ such that $uv \in E(G)$ and $N(U) \cap N(V) = \phi$."

Theorem 3.7: "For a Complete bipartite Graph $K_{m,n}$, $\gamma_{lo}(K_{m,n})=2$, $m \ge 2$, $n \ge 2$."

Theorem 3.8: "A Local isolate dominating set S of a graph G is minimal iff it is 1-minimal."

Proof: "Let S be a 1-minimal Local Isolate Dominating Set of a graph G. Suppose there exists a S' \subset S that is also a Local Isolated Dominating Set of G, then for all v in S', $\langle n(v) \rangle$ has an isolate vertex". Since S' is a Dominating Set, for all vertex in u in S \setminus S' is adjacent to at least one vertex in S'and either u is an isolate vertex in $\langle n(v) \rangle$, v \in S' or $\langle n(v) \rangle$ has an isolated vertex in V \setminus S.

Case (i): u is an isolate vertex in $\langle n(v) \rangle$, $v \in S'$ then $S \setminus \{v\}$ is Local Isolate Dominating Set of G which contradicts the "1-minimality of S".

Case (ii): <n(v)>has an isolated vertex in $V \setminus S$. Let $w \in <n(v)>$ be isolate vertex in $V \setminus S$ then $S \setminus \{u\}$ is Local Isolate Dominating Set of G which contradicts the 1-minimality of S. Hence S is minimal. Converse is obvious.

Theorem 3.9 "A Local Isolate Dominating Set S of a Graph G is Minimal iff every vertex in S has a Private Neighbor with respect to S."

Corollary 3.10 "A minimal Local Isolate Dominating Set S of a Graph G is also a minimal Dominating Set of a Graph G."

IV. JOIN OF GRAPHS

Observation 4.1 "Let G and H be any two Graphs of order m , $n \ge 3$ with isolate vertex and S be a Local Isolate Dominating Set of G+H. Then $S \cap V(G) \neq \#$ and $S \cap V(H) \neq \phi$."

Theorem 4.2 "Let G and H be any two Graphs. Then S a subset of V(G+H) is a Local Isolate Dominating Set of G+H iff G and H have isolated vertices."

Proof "Let G and H be any two Graphs and S \subseteq V(G+H) be a Local Isolate Dominating Set of G+H." Suppose G and H have no isolated vertex then for each u \in S, < n(u)>is connected, which is a contradiction. Therefore there are isolated vertex in both G and H.

Conversely, U and V be isolated vertices of G and H respectively, "Then $S=\{u,v\}$ is a Dominating Set of G + H and also $n(u) \ge V(H)$ and $n(v) \ge V(G)$." Thus < n(u) > and < n(v) > have isolated vertex. Therefore "S is a Local Isolate Dominating Set of G+H."

Corollary 4.3 "Let G and H be any Graphs with isolated vertex, Then $\gamma_{lo}(G+H) \leq 2$."

Proof: "Let G and H be Graphs with isolated vertex." Suppose either $G=K_1$ or $H=K_1$ or $G=H=K_1$ Then Clearly, $\gamma_{lo}(G + H) = 1$. Suppose $G \neq K_1$ and $H \neq K_1$, by the theorem 4.2, $\gamma_{lo}(G + H) = 2$. Thus $\gamma_{lo}(G + H) \leq 2$.

REFERENCE

- [1] Benjier H. Arriola, Isolate Domination In The Join And Corona Of Graphs, Appl.Math.Sci.9(2015)1543-1549.
- [2] Benjier H. Arriola, Doubly Isolate DominationIn Graphs, International Journal Of Mathematical Analysis, Vol. 9, 2015, No. 57, 27932798.
- [3] G. Chartrand, Lesniak, Graphs And Digraphs, Fourthed., Crcpress, Boca Raton, 2005.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination In Graphs: Advanced topics, Marcel Dekker, Newyork, 1998.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals Of Domination In Graphs, Marcel Dekker, New York, 1998.
- [6] S.T. Hedetneimi, R. Laskar(Eds.), Topics In Domination In Graphs, Discrete Math. 86 (1990).
- [7] I. Sahulhamid, S. Balamurugan, Isolate DominationIn Graphs, Arab.J.Math Sci22 (2016) 232-241.