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I. INTRODUCTION 

 

Throughout this paper , Simple Finite Graphs without loops and multiple edges are 

considered. For terminologies and notations  refer Chartrand  And Lesniak[3]. Domination 

and related topics are dealt in  [1 , 4, 5, 6]. 

 

A subset S of the vertex set V(G) is a Dominating set if each vertex in the set V \ S  is 

adjacent to a vertex in S. Minimum cardinality of a minimal dominating set is the Domination 

number of a Graph denoted by(G). 

 

It is an isolate dominating set if the induced graph<S> contains an isolate and is 

introduced  and studied in [7]. 

 

A Dominating set S is called a Doubly Isolate Dominating set if  both the induced 

graphs < S > and < V \ S > have isolates. Doubly Isolate Dominating set is introduced and 

studied in [2]. 

 

Also when the concept of Isolate Dominating set is localized to the Neighbour set 

we arrive at a new variant called Local Isolate Dominationin Graphs. This motivated us 

to define a new parameter that is introduced and studied in this communication.  

 

II. PRELIMINARY RESULTS 

 

Theorem 2.1: “For a Graph G with order atleast 3, ∆(G)= n−1 and minimum degree 

atleast 2, G has no Local Isolate Dominating Set.” 

 

Proof: From the hypothesis we observe that G is a graph without isolates and with 

Domination number as one and hence this dominating set is not a Local Isolate Dominating 

set of G.  “Suppose S is any dominating set of G  and S \ {v} ≠  where {v} is a full degree 

vertex of G.Now for each  u in {S \ {v}} the induced graph < N(u) >  has no isolated vertex. 

Hence S is not a Local Isolate Dominating Set of G. 

 

Corollary 2.2: “The Local Isolate Dominating Set Does Not Exist For The Following 

Graphs: 

 

 Complete Graph Kn. 

 Wheel Graph Wn. 

 Fan Graph Fn.” 

 

Observation 2.3: “The Local Isolate Dominating Set Does Not Exist For Complete r-

Partite Kn1,n2,…nr, r ≥ 3 Graph.” 
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III. MAIN RESULTS 

 

Proposition 3.1 

1. For the Paths Pn and the Cycles Cn we have 
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2. If G is a Graph of Order n, Then (𝐺+)= Γ𝑙o(𝐺
+)=𝑛, Where G+ is the Graph that was 

produced from G by attaching at each of G's  vertex's e Edges.” 

 

Proof 

 

1. “Obviously 2)( 4 Plo and when n≠4, any -set of Pn is a local isolate dominating set as 

well, so that )()( nnlo PP   .” Every Local Isolate D dominating set is a dominating set 

so )()( nlon PP    thus )()( nnlo PP   and so 
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no longer able to be a minimal isolation dominating, we have .
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2. Each pendant vertex is required to be present in any minimal isolate-dominating set S of 

G+ or one of its neighbours, in order to have at least n vertices. “Further, if |𝑆|>𝑛, S must 

consequently include a pendant vertex along with its support and so 𝑆−{𝑣}, where v is the 

support, is an isolate dominating set of 𝐺+
,a contradiction to the minimality of S.” Hence  

|𝑆|=𝑛. 

 

Theorem 3.2: “For a Graph G of order at least 2, γlo(G)=1 iff there exists  a pair 

u,vin V(G), degG(u) = 1 and degG(v) =n−1.” 

 

Proof: Let G be a graph with n≥2. Suppose γlo(G)=1. Let S={v} be a Local Isolate 

Dominating set of G. “Since S is a dominating set and |V(G)\ S|=n−1, degG(v)=n−1.” Also 

since S is a γlo-set of G, <n(v) > has an isolate vertex, say u. Therefore u is a pendent 

vertex of G. Hence degG(u)=1. Conversely, {V} is a dominant set of G since there is a 

vertex v with degG(v)=n. Since “degG(u)=1, u is a isolate vertex in <n(v)>”, thus 

γlo(G)=1. 

 

Corollary 3.3: “For a Star Graph Sn with n≥2,  lo(Sn) = 1.” 

 

Theorem 3.4: “If G is a Tree with n ≥ 2 then G has a Local Isolate Dominating Set.” 
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Proof: Let G be a Tree of Order n ≥2 and S be any Dominating Set of G. “Suppose 

G has no Local Isolate Dominating Set, there exist a vertex v ∈S, and < n(v)>has no 

isolate vertex.” Thus <n(v)> is a connected Graph. This implies < n[v] > contains 

a cycle, which contradicts that G is a Tree. Therefore G has a Local Isolate 

Dominating Set. 

 

Corollary 3.5: “For any Tree T, (T)=o(T)=lo(T)”. 

 

Theorem 3.6: “Let S be any Local Isolate Dominating Set of a Graph G and U ∈ S. 

Then there exist a vertex v ∈ V (G) such that uv ∈ E (G) and N (U) ∩ N (V) = .” 

 

Theorem 3.7: “For a Complete bipartite Graph Km,n , lo(Km,n)=2, m ≥2, n ≥2.” 

 

Theorem 3.8: “A Local isolate dominating set S of a graph G  is minimal iff it is  1-

minimal.” 

 

Proof: “Let S be a 1-minimal Local Isolate Dominating Set of a graph G. Suppose there 

exists a  S’ S that is also a Local Isolated Dominating Set of G, then for all v in S’, 

<n(v) >has an isolate vertex”. Since S’ is a Dominating Set, for all vertex in u in S \ 

S’ is adjacent to at least one vertex in S’and either u is an isolate vertex in <n(v)>,v 

∈ S’ or <n(v) >has an isolated vertex in V \ S. 

 

Case (i): u is an isolate vertex in <n(v)>, v∈ S’ then S\{v} is Local Isolate 

Dominating Set of G which contradicts the “1-minimality of S”. 

  

Case (ii): <n(v)>has an isolated vertex in V \ S. Let w∈<n(v)>be isolate vertex in V 

\ S then S \{u} is Local Isolate Dominating Set of G which contradicts the 1-minimality 

of S. Hence S is  minimal. Converse is obvious. 

 

Theorem 3.9 “A Local Isolate Dominating Set S of a Graph G is Minimal iff every 

vertex in S has a Private Neighbor with respect to S.” 

 

Corollary 3.10 “A minimal Local Isolate Dominating Set S of a Graph G is also a 

minimal Dominating Set of a Graph G.” 

 

IV. JOIN OF  GRAPHS 

 

Observation 4.1 “Let G and H be any two Graphs of order m , n ≥3 with isolate 

vertex and S be a Local Isolate Dominating Set of G+H. Then S∩V(G)  ≠    ≠  and S∩V(H) 

≠ .” 

 

Theorem 4.2 “Let G and H be any two Graphs. Then S a subset of V(G+H) is a 

Local Isolate Dominating Set of G+H iff G and H have isolated vertices.”  

 

Proof “Let G and H be any two Graphs and S ⊆V(G+H) be a Local Isolate 

Dominating Set of G+H.” Suppose G and H have no isolated vertex then for each u 

∈ S, < n(u)>is connected, which is a contradiction. Therefore there are isolated 

vertex in both G and H. 
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 Conversely, U and V be isolated vertices of G and H respectively, “Then 

S={u,v} is a Dominating Set of G + H and also n(u) ≥V(H) and n(v)≥V(G).” 

Thus <n(u)> and < n(v)> have isolated vertex. 

Therefore “S is a Local Isolate Dominating Set of G+H.” 

 

Corollary 4.3 “Let G and H  be any Graphs with isolated vertex, Then lo(G+H)≤2.” 

 

Proof: “Let G and H be Graphs with isolated vertex.” Suppose either G=K1 or H= 

K1or G= H= K1 Then Clearly, lo(G +H) = 1. Suppose G≠K1 and H ≠ K1, by the 

theorem 4.2, lo(G +H) = 2. Thus lo(G +H)≤ 2. 
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