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A SURVEY ON DIGITAL TWINS TO TRACK FOOD 

QUALITY 
 

Abstract 

 

Making materials into finished items 

is extremely complex due to the multiple 

chemo-physical, biological, and physical 

properties that must be controlled all 

through the food production cycle. 

Production must also modify processes to 

account for the ingredients’ variability, for 

instance when the raw materials quality 

materials varies seasonally. ”Digital twins” 

are a modelling, simulation, and 

optimization method that may be used for a 

variety of processes in the context of 

Industry 

 

The concept of a ”digital food twin” 

and how it can benefit the food business are 

described in this vision paper. A digital  

twin must consider not just the processing 

steps as well as the biochemical, physical, 

or microbiological elements that affect the 

meal by themselves because the raw 

components can vary. after processing is 

complete. Using a method known as food 

processing modelling and simulation, we 

will demonstrate a hybrid modelling 

technique in this study that integrates the 

traditional model and simulation of the 

physical and biochemical elements of food. 

a machine learning-based, data-driven 

technique that analyzes the data. This study 

offers a conceptual framework for our idea 

of     a digital twin based on wearable 

gadget technology and artificial intelligence 

that is understood. Four separate case 

examples are used to discuss the 

possibilities, and open research projects are 

derived. 
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I. INTRODUCTION 

 

The suppliers and agri-food production lines are currently not moving quickly enough 

to meet the goals for sustainable development. They fall short of their most basic goal of 

providing nutritious food to a growing global population, leaving 940 million of people 

undernourished. They broke some of the alleged limitations of the earth, were expensive and 

polluting, and failed on a number of other fronts as well [1]. 

 

A common solution is transformation through improve- ments in digital technology 

[2], [3]. Such recommendations strongly favor computer-enabled technologies, including em- 

bedded systems, intelligent sensors, and artificial intelligence (AI). Here, despite its potency 

and expanding adoption across industrial domains, we examine this same potential of the 

digital twin (DT) technology, that has not yet been consid- ered for boosting the sustainable 

development of the agro - based sector, particularly across mitigating malnutrition and 

undernutrition, reducing greenhouse gas (GHG) emissions, and attempting to prevent food 

waste. The factors that could hinder the virtual agrifood supply chain from reaching their full 

potential are then discussed, both enabling and obstructing factors. 

 

With the growth and digitization of the industry toward Industry 4.0, the concept of 

creating digital copies of phys- ical equivalents hit  the  market.  [4].  The  food  business  is  

of particular relevance since it necessitates a high level of resource efficiency [5]. 

Agricultural systems have evolved over time alongside technological developments, enabling 

growth in productivity, product diversification, food stock resilience, and international trade. 

However, despite these advancements, food systems continue to face impossibly severe 

challenges on a global scale. Changing climate, the requirement to feed an growing 

worldwide population, and increasing global food waste are just a few of the problems that 

pose a severe danger to today’s food systems. Additionally, societal demands for increased 

food sustainability, traceability, and provenance are rising chains of virtualized agri-food 

value [6]. 

 

A key element of Industry 4.0 is the digital twin, a digital version of a process or 

product created with data received     by sensors to enable simulation or actual evaluations of 

a production status [4], [7]. The use  of  digital  twins  inside  the food industry appears useful 

for a  variety  of  reasons.  The COVID-19 epidemic brought to light the food supply’s 

vulnerability [8]. Food manufacturing techniques must allow for significant levels of 

adaptability and flexibility [9]. Differ- ent input material quality levels also have an impact 

on the quality of the final output. A change in production process parameters is necessary, 

especially when seasonal variations affect the quality of raw materials. A virtual model of an 

existing product could streamline the introduction procedures of new items. An ego software 

system uses the digital twin   as its knowledge base and may learn the correct production 

process parameters [10]. In contrast to related technologies    of the manufacturing of material 

items, food production has extra unique requirements [11]. These can’t just rely on the 

processing steps because raw materials can vary greatly, thus they must also take into 

consideration the food’s biochemical, mechanical, or (micro)biological properties. The 

software can also be used to create an extensive digital supply chain that combines real-time 

and real-world data, allowing the supply chain to respond to unforeseen occurrences and 

uncertainties. 
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II. HISTORY 

  

1. Food Distribution: A distribution group is a network of individuals arranged around 

procedures and processes with the purpose of supply- ing the market with goods or 

services in order to satisfy a par- ticular consumer demand. For sustainability-related 

reasons, this network takes into account user feedback and supply- chain elements such 

material recycling [15]. The participants in this network are linked by procedures and 

deeds that result in value in the form of finished commodities or services. [14]. The 

manufacturing and conversion of raw resources into food items, in addition to their retail 

and consumption, are all part of food distribution in the same meaning [13]. Due to the 

complexities of manufacturing, managing, and shipping food goods, food distribution do 

differ greatly from other networks [16]. 

 

We focus on creating a simple, linear, and organized system for distributing meals 

despite the fact that it  is  crucial  to  take into account not just predefined but also the 

completely irrelevant and supplementary tends to flow that are enclosed within the food 

distribution because these are chances to reduce food waste and loss through recycling 

and reuse [12]. Since the focus of this survey is on specific food distribution activities that 

appear the same in both a simple food distribu- tion and a circular view, this is sufficient. 

An illustration of the food distribution and the key players to whom the digital twin 

services will be assigned is shown in Fig. 1. Food is  often distributed in a cycle that 

begins with production on an agricultural farm, continues through supply, manufacture, 

transportation, and retail, and ends with consumption. It’s important to note that the steps 

could subsequently be split   up into several manufacturing or transport sub-entities: Shoji 

et al. [17], for instance, look into the cold chain of vegetables and fruits from the farm 

through the storehouse through distribution to the merchant. The supply  is  transported  

in  two different ways by authors: from the storehouse to the distribution warehouse and 

from the distribution hub to the retailer. According to our view, the storehouse is a 

component of the processing step, and distribution would include both transportation and 

delivery. 

 

Since solutions and mitigation strategies must be devised   to stop disturbances to 

the distribution network, it is essential that distribution networks be designed with these 

factors in mind [12]. These interruptions have a direct impact on the other actors and the 

normal flow of the distribution network [18]. Human mistake, misunderstandings in 

communication, faults in organizational procedure, and issues with the quality of supplied 

commodities are specifically the food distribution disruptions that occur most frequently 

[19]. As a result, disruptions could have a severe impact on the end product’s longevity, 

safety, and quality [12], [16]. 

 

A number of challenges also arise in the distribution of food at various stages 

[20]: Production planning in the processing stage addresses comment damage along with 

requirement prediction. Distribution identifies trip planning, this same fore-casting of 

risks and interruptions in the distribution system, in addition to the forecasting of shelf-

life. Production evaluation and optimization within the production stage includes crop 

safety and security, in addition to livestock control. 
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2. Concepts Related to Industry 4.0: The fourth revolution is referred to as ”Industry  

4.0.”  Cloud technology, computer systems (CPSs), as well as the Internet of Everything 

is among the technologies it uses (IoT). While ”Industry 4.0” is frequently used in 

Europe, ”Industrial Internet of Things” (IIoT) is a term that is more  frequently used in 

the US to describe advancements in big data, cloud computing, and networking of 

industrial gear and systems. Based on CPSs and IoT [21]. Industry 4.0 production 

processes, such as logistical, services, and maintenance, are efficiently synchronized [22]. 

Instead than focusing on a single process or technology, Industry 4.0 combines all 

processes into a highly customizable and integrated production process. With the 

implementation of Industry 4.0 or IIoT, the smart factory would be established, which is 

an integrated manufacturing  process that is totally self by the linked machines or smart 

machines without any human contact. [23]. 

 

Additionally, modern food distribution use integrated in- formation and 

communications technologies (ICT) systems more and more frequently to help with risk 

and uncertainty mitigation, process improvement, and a variety of other uses [14]. 

Additionally, traceability and decision-making processes within the food distribution are 

of special importance for ICT systems [24]. In order to pinpoint issues with food quality 

and safety and to show the customer and authorities the product’s provenance, traceability 

is crucial [16]. Traceability systems for food distribution, according to Zhong et al. [12], 

differ significantly depending on geography, laws, and the level of digitization of the 

distributing food. Inside the food distribu- tion industry, ICT systems acting as digital 

twins can help  with decision-making, cooperation, planning and scheduling logistics and 

distribution, and warehouse management [25]. 

 

III.  DIGITAL TWINS 

 

1. Definition: A digital twin of a particular product is described as a virtual representation 

of its physical counterpart that: 

 Contains all necessary components, such as all geomet- rical elements and material 

properties. 

 simulates all pertinent processes and their kinetics ac- curately and realistically 

throughout the product’s life- cycle; 

 is linked to the genuine product and processes by sensor information, which would be 

preferably continuously updated in real-time. 

 

 
 

Figure 1: A structure of Food Distribution as per [12] 
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Other names for it include a virtual ghost, synchronized virtual prototype, virtual 

avatar, and digital shadow. The form, size, and structural components of horticultural 

output should ideally be included in a digital twin that is part of the agricul- tural supply 

chain. (e.g., skin, seed, pulp). Before the advent  of digital technology, it was known as 

virtual fruit. It also replicates the physically, chemically, sanitary, psychological, and 

developmental states of the product as well as their devel- opment all through the cold 

chain on the basis of collected data about the ambient circumstances (such as surface 

temperature, humidity levels, and metabolism gas concentration). Fig. 2 depicts the usual 

processes that can be captured. Fig. 2 shows a digital-twin system for cold chains of 

horticultural crops.   An illustration of this twin is a single horticulture item that is 

inserted inside a fruit pallet and contains a sensor that gauges the ambient temperature. In 

order to record the fruit’s thermal status, each pallet might contain its digital twin fruit. 

Then, these twins can detect the well-known variation in fruit chilling between various 

pallets, such as between the front and back   of a refrigerator [26]. It is even possible to 

create a digital twin for such a full pallet (Fig. 3), however this would require more 

computational power. Here, for instance, only at the circulating inlet in the pallet, a sensor 

or maybe numerous sensors could determine the air temperature. Because of the number 

and diversity of processes taking place within and around the produce, additional 

surrounding parameters should be sent to the digital twin for improved precision or to 

measure specific quality traits. (Fig.2). 

 

A digital twin needs three things to work (Fig. 3): 

 A computerized main model of the thing that includes a blueprint for the real 

thing, its features, and the operations connected to it. In our case, the actual asset 

is a crop or   a pallet of fruit, which is a horticulture product. 

 Sensors that measure ambient temperature, relative hu- midity, oxygen levels, and 

ethylene in real supply chains. 

 Connecting the digital product design is the process to    the actual asset using 

sensor data 

 

The digital twin’s relationship to the real-world process distinguishes it from 

ordinary computational models. The ideal way to establish this connection is during 

operation, though it is also done gradually offline. The connection between both the 

digital master and the ac- tual reality made possible by sensing allows the digital twin to 

adapt and move with its real-world counterpart during its post- harvest life, from 

containers to arrival at the retailer. Every every ”virtual” product goes through a different 

evolution. By doing this, the digital twin takes into consideration the distinct boundary 

circumstances that each product is subjected to. It thus reacts to changes in real life in a 

realistic manner. Digital twins are therefore especially helpful when every product has a 

unique and changeable life cycle. In such case, digital twins help tangible assets, like 

fruits, tell their narrative. Digital twins can be used to forecast how a certain cargo will 

develop in  the  future  in  addition  to  recognizing  current  issues and documenting this 

history through data storage. 

 

2. Digital Twins in Technology: Different industries have seen the emergence of digital 

twins [27]. The design, manufacture, and operation of items and processes, these twins 

frequently assist with maintenance, which includes inspection, repair, and upkeep. Digital 

twins are therefore used to provide information about items and processes in addition to 
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measurement values. Since there isn’t a lot of participant literature on digital twins, we 

also include links to recent initiatives or online resources below. 

 

Engines, pumps, and turbines are just a few of  the  de- vices that have digital 

twins made for them in aeronautical engineering and allied industries like product 

manufacturing. NASA used a mirroring technique with Apollo 13 in 1970 as  a 

forerunner to the digital twin to safely return the astronauts. For both its manned and 

unmanned aircraft, NASA now employs the digital twin concept [28]. There are also 

efforts underway to create digital twins of complete manufacturing facilities [29], [30]. 

These twins are built for each item on the assembly line or for various parts of an item, 

and they are later joined in the actual and virtual worlds. Building information modeling 

(BIM) has been advocated in the field of building technology as a way to construct 

cognitive buildings [31]. Digital twins of automobiles are employed in the automotive 

industry to time maintenance of parts, such as oil replacement [32]. Instead of being 

determined by miles, maintenance is triggered by the vehicle’s history. As a result, 

maintenance incorporates a high level of individualization, maximizing resources. 

 

Healthcare is a sector where digital twins have a lot of untapped promise [33]. 

Every human being, every human organ, and thus every matching image twin are special 

and develop differently over the period of the patient’s condition. As a result, there is 

tremendous potential for this development in digital technology. A digital twin is 

incredibly beneficial if it can include anatomical or physiological information that    is 

patient-specific. This can be shown, for instance, when a digital model is made utilizing 

CAD geometries of a specific organ that was acquired via X-ray imaging or MRI for a 

specific patient [34]. Generic anatomical models of particular organs collected from a 

large population of patients can be used as an alternative. Because testing therapeutic 

strategies can occasionally be expensive and risky, with lasting negative effects, it is 

especially attractive to utilize digital twins to explore ”what if” scenarios. Thanks to this 

technical alter- native, in-silico trials can be carried out on a large number    of simulated 

patients before the actual clinical trials. Such digital twins could also serve as a 

foundation for individualized 

 

 
 

Figure 2: A Mechanistic Model 
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Figure 2: A mechanistic model must incorporate relevant activities within and 

around a fruit and a list of key food quality parameters to capture and forecast   food 

quality progression (part of figure of orange fruit: dreamstime.com). medicine, for 

instance by merging it into theranostics, in which digital twins can suggest customized 

treatments by diagnostic procedures or sensing. 

 

Digital twins are used in surgery, among other healthcare settings, to teach 

surgeons a completely new method. This is accomplished by the use of interactive 

simulations of the a mechanical material feedback, specifically the tissue response during 

incisions (e.g., [35], [36]. Digital twins are frequently used in the treatment and therapy of 

aerosol pulmonary medicine [37], [38]. By employing an implantation that is specifically 

designed for a given patient, digital twins enable neurosurgeons to better systematize, 

size, and position the implants throughout this invasive  operation again for repair   of 

aneurysms. The application of digital twins for a tailored examination of MRI safety for 

people with implants [39], photothermal therapy therapy, or targeted ultrasonography for 

tumor ablation uses the Sim4Life modeling platform [40], which combines sensor 

feedback. Digital twins are referred   to in many smart healthcare applications in a more 

general sense because not all of them have a strong attachment to sensor data. Instead, 

using patient-specific information offers them a relationship to the real environment or 

the real patient, such as tissue morphology from X-ray CT. 

 

In personalized targeted therapy, where these in-silico tech- nologies substantially 

support in-vitro and also in experimental work, digital twins are anticipated to play a  

significant role.  In this respect, growing usage of genome sequencing of individuals may 

result in the creation of pharmacological treatments that are specifically tailored to the 

genetic state of the patient [41]. A major challenge is ensuring the mechanistic models are 

verified and validated in order to be accepted by regulatory agencies, but there are 

currently certain standards for theory modeling [42]. Digital twins may also bring up 

moral concerns, such as patient data security or unfair treat- ment of individuals with and 

without digital avatars [43]. 

  

3. Facilitators: Digital twins are decades-old. Recent important enablers support the strong 

expansion of such twins in many industries: 

 

 -Miniaturization and lower sensor costs enhance measure- ment points and spatial 

resolution. 

 

 -Huge quantities of sensor information can be remotely captured and transferred in 

real time within a network  thanks to enhanced connectivity (IoT, cloud) or wireless 

data transfer (e.g., Bluetooth, LoRa, 5G). 

 

 Computational power, data transfer hardware, and storage systems for digital twins 

becoming more affordable as a result of cheap cloud services. 

 

 Open data [44], [45] and data standards are being prior- itized. 

 

 Simulation software and computer hardware have ad- vanced. Now, millions of 

degree of freedom complex finite element models may be run in real time and 
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included in user-friendly executable code for physics- based twins. Data-driven twins 

are able to effectively handle and understand vast volumes of data from contem- 

porary horticulture supply chains for products because to recent advancements in 

artificial intelligence and machine learning [46], [47]. 

 

 New programs for smartphones and tablets provide sim- ple, approachable user 

interfaces. 

 

IV.  RELATED WORK 

 

The usage of digital twins in the food sector, as exemplified by food distribution, is 

examined in this article, along with the potentials and difficulties that may arise. We give a 

summary of related publications in the field of digital twins in this section. There are 

literature evaluations on  digital  twins  even  if the idea of them  and  their  technological  

potential  are  still at their infancy. Some reviews, though, were considered for this work even 

though they weren’t specifically about food, 

  

  
 

Figure 3: The structure of a physics-based (mechanistic) digital twin in a fresh horticulture 

produce delivery chain (picture of orange fruit: dreamstime.com,   other portions borrowed 

from [26]. the meal business, or at least certain aspects of the food distribution. By 

identifying the core terms of digital twins, Jones et al. [48] described digital twins in general. 

As a result, they looked at technology applications and usage goals. The authors concluded 

that a review that was restricted to more unified fields would be preferable after identifying 

research needs to apply digital twins.  Abideen  et  al.  [49]  reviewed the literature on ML 

incorporating digital twins with respect to the distribution networks and logistics. The authors 

also offer a framework for doing this.  However,  they don’t pay any attention to the food 

industry or the quality of the food at all; instead, they concentrate on using digital twins to 

improve logistics. From a social science perspective, digitization  in agriculture was 

examined in Klerkx et alwork .’s [50]. In this context, they examine many associated 

technologies, including IoT, blockchain, and digital twins, in relation to social factors 

including the identity and skills of the farmer, ethics in terms of electricity supply and use 
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and data privacy, and economics. Other works focus on a certain stage of the distribution 

network. Pylianidis et al. [51]  conducted  an assessment of the use cases for digital twin 

adoption across all disciplines and in agriculture in particular. They organized the apps in 

accordance with the degree of the distributing food and the kind of digital doppelganger, 

respectively, much like we did in terms of disciplines and services category. They also took 

into account the TRL, or the ability to distinguish between ideas, models, and operational 

digital twins. Verdouw et al.’s 

  

[52] scheme was also provided, and it is employed in our work. However, they were 

only concerned with agricultural applications, such as crop management and animal 

monitoring, which we also covered. The words ”digital model,” ”digital shadow,” and 

”digital twin” are used interchangeably, accord- ing to Kritzinger et al. [53], who 

distinguished the degree of integration regarding the data transfer between both the virtual 

and physical entities. The type was further considered by the authors in light of the TRL. 

They demonstrated that digital twins are most frequently used in manufacturing, however the 

studies did not concentrate on food processing. 

 

The work of Tebaldi et al. [54] provides a more compre- hensive picture of the agri-

food distribution network, taking into account the SC stages of production, processing, and 

distribution. We used the apps described there into our work  to make it comprehensive. 

Additionally, the estimation of interruption risks in the works by Ivanov et al. [55] and 

Burgos and Ivanov [8] considered the complete distribution network. In order to analyze 

risks, forecast resilience, and optimize the distribution system to prevent catastrophic 

disruptions, ref. [55] developed a digital twin framework. A digital twin is used to investigate 

the COVID-19 pandemic’s effects on food distribution in [8]. 

 

1. Smart Food Factory: IoT technologies and machine learning algorithms are used in 

Industry 4.0 to intelligently collect and analyze data [57]. Data sources includes raw 

material, machine, and customer information (e.g., information about sales or 

complaints). In particular, machine learning can optimize production planning [58], such 

as employing genetic algorithms to optimize pro- duction step sequence or incorporating 

photo  identification for quality control. Machine predictive maintenance is another 

example [10], [59]. The procedure and machines are the main focus, though. The food 

industry’s internal operations and product view are excluded [56]. Proactive adaptation 

forecasts adaption concerns (e.g., by identifying patterns in past data) and prepares or 

adapts [60]. When a disruption occurs, real- time production site data would enable 

proactive adaption and dynamic adjustment. 

 

2. Food Simulations: Food science typically suggests modeling or simulating food features 

and traits. We demonstrate application band- width below. Myhan, Białobrzewski, and 

Markowski [61] created a mathematical model of food material  rheology.  Food matrix 

affects chemical reactivity, according to [62].Van Boekel proposed using mathematical 

models to quantify food characteristics including color, nutritional content, and safety 

[63]. Food industry numerical simulations simulate process or product features.Hartmann 

simulated high-pressure treatment’s thermal and fluid-dynamic effects [64]. Abdul Ghani 

et al. solved the axisymmetric continuity, momentum, and energy conservation equations 

to replicate natural convection heating in a can of  wet  food  during  sterilization  

[65].The  authors of [66] used finite element analysis to study heat transport  into an 

oxygenated food matrix. The white-box technique of modeling or simulink approaches 
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allows for the  extraction and explanation of variable relations. These methodologies 

always require abstraction from different parts due to the complexity of the modeled 

components. This limits their productivity. These methods also involve domain 

knowledge of food attributes and modeling/simulation techniques. 

 

3. Digital Twins in Food: Digital twins can be imaginary, which simulate reference objects, 

real-time, predictive, prescriptive, autonomous (using AI), and recollection (with 

historical data) [67]. Food pro- cessing digital twin concepts are few. In a recent  analysis 

[56], we demonstrated that agro- based digital twins were limited to certain features (e.g., 

animal monitoring, cultivation practices, or hydroponic systems) rather than generally 

appli- cable across the value chain. Most methods monitor and some predict. However, 

few incorporate autonomous control. The poll also found that digital food twins require 

multidisciplinary understanding, notably in modeling bio-physical processes that affect 

food qualities owing to raw material heterogeneity. Literature hasn’t integrated this. 

Numerical modeling and data- driven approaches can predict sensory experience of 

complex foods like yoghurt [68]. This vision study proposes hybrid modeling that adds 

data to local food models and simula- tions. The smartFoodTechnologyOWL program 

examines the applicability of digital twins to food processing [69]. Process mapping 

improves cyber-physical production system control. They continuously develop a ”virtual 

image” of a product during production to make food quality control safer and  more 

efficient. Other initiatives include physical models to forecast food processing changes. 

Physical, chemical, and microbial processes are integrated [70]. This form of digital twin 

frequently lacks a data-driven perspective on processes, thus [70] propose real-time 

connection of sensor information with the digital twin. That would enable proactive 

problem- solving. The goal is  not  to  change  the  production  process or predict 

important occurrences with the data. Digital twins monitor production [71]. Digital twins 

can combine envi- ronment, operational, and process data, while autonomous systems can 

react to state changes [?], [71]. Food process modeling now focuses on optimal design 

and cost targets, but it could reduce inter-product variability, increase transparency, and 

save resources [73]. 

 

4. Indicators and Sensors: Indicators can identify a substance’s existence, reactions, or 

concentration. Indicators either within or outside the packing change color to indicate 

analytical results. Indicators vary. Time-temperature indicators, freshness indicators, and 

gas in- dicators are the most prevalent varieties. Unlike unchangeable indications, sensors 

in food packaging or the environment can sense temperature, humidity, pressure on food, 

and vibrations (accelerometers). Chemical sensors or biosensors monitor CO2 or hydro-

sulfuric acid concentrations to determine perishabil- ity. Non-dispersive infrared (NDIR) 

sensors, chemical sensors, electrolytic, ultrasonic, and laser technologies assess oxygen 

and CO2 concentrations. Biotechnologies use enzymes, anti- gens, hormones, or nucleic 

acids as receivers. These identify salmonella, E. coli, and listeria. The authors of [74] 

presents the latest sensor and indicator types. Sensors enable real-time data collecting for 

digital twins. 
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V. DIGITAL FOOD TWIN SYSTEM MODEL 

 

In order to close the gap left by the models’ abstraction and produce a composite 

digital food twin for attaining real-time, anticipatory decisions of adaption inside the food 

supply chain, this paper proposes and explores a notion that supplements  the conventional 

modeling or simulation. As a result, such a concept makes it easier to i)comprehend how a 

supply chain behaves, ii)foresee difficult circumstances, and iii)decide how to modify the 

procedures. 

 

1. Data Origins: To make sure the chain of custody of the manufacturing  and the status of 

the food, the digital twin is created using artificial intelligence and machine learning from 

production systems and extra data sources (such as scientific principles, process the data, 

or input materials data). This allows again for simulation of a variations of the food 

during process operation. 

  

 
 

Figure 4: The digital food twin which integrates the data from various sources. 

 

Fig. 4 depicts how we think about a digital twin. We emphasize the instance of a 

milk product in the picture and  the paragraphs that follow (e.g., cheese). The digital twin 

incorporates data from raw materials, customer complaints, and expert knowledge in 

addition to sensor, machine, and processing data from the manufacturing site (such as 

tem- peratures, pressure, or pH value) (e.g., about the handling of production issues). The 

digital twin gives data on the actual food preparation and provides feed back to a food 

process operation by utilizing various modeling methods based on cytotoxic drugs 

modeling and simulation studies from the  field of food science. These simulations that 

are based on mathematical models also aid in forecasting how the item will change as a 

result of the procedures and environmental factors. Forecasts on how various phases in 

the process can affect the product’s quality can be made using this data. As a result, the 

digital twin is appropriate for both retrospective and analytic applications of the operation 

and the product’s quality. 

 

By using the fermentation of yogurt as an example, we hope to demonstrate the 

possibilities. It would not be possible to apply the traditional digital twin notion as it is 

known from Industry 4.0. The production processes are controlled and de- scribed using 

process data, primarily from machines. The state of the product won’t change unless the 

machines take some sort of activity. However, after infection with starter cultures, the 

fermentation process for yogurt is primarily focused on resting. Because the process takes 
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place inside the product,  the data set cannot adequately represent the process. We gain  a 

more accurate representation when we add existing scientific models to the sparse process 

data to describe the actions of  the bacterium. However, the model itself wouldn’t be 

sufficient when starter cultures were injected because the model abstracts so each set of 

starter cultures has its own variances, much like milk, whose characteristics change over 

time (due to different feeding). Accordingly, a blend of either is important: both    the 

model to comprehend how the conversion of milk into yogurt functions and the data 

available to modify the model’s parameters. With the concept of the digital food twin, we 

want to accomplish this. 

  

2. Analysis: Deep learning techniques are frequently used to extract information from huge 

datasets. These methods are incredibly effective and offer a great sense of independence 

in the learning process. The user is given a black-box and is so unaware of the inner 

workings. The resulting models, however, are extremely complicated and challenging to 

understand. Because of this opacity, smart sensors cannot be fully tested before being put 

to use in useful ways. As a result, combining the derived forecast with the already used 

food science models is impossible. Therefore, for the purpose of creating the digital twin, 

we depend on machine learning, particularly those in the area of explainable machine 

learning. 

 

Machine learning that is explicable and validated system- atically with user input 

is known as explainable machine learning. explainable machine learning is concerned 

with tech- niques and algorithms that explain to humans why a choice was made. As a 

result, the user is included in the machine learning model and has the ability to actively 

improve the system’s quality by using cognitive skills like generalization. With regard to 

the lack of results that can be explained, explainable machine learning fills the gap 

between both the great potential of machine learning and its inherent risks. 

 

These comprehensible machine learning techniques assist  in converting sensing 

data into a  virtual  twin  model  that  can be utilized for simulation. These explainable 

machine learning models are also explainable, unlike methods based  on artificial neural 

networks (such as deep learning), and people can comprehend and modify them. This 

makes it easier to incorporate specialized knowledge into the learning process. There are 

two viable methods for explainable machine learning: 

 

 Some machine learning algorithms, such as  decision trees or random forests, are 

intrinsically explicable. These may have drawbacks for huge data sets and do  not 

offer automatic feature extraction like deep learning techniques do. 

 The goal is to include a second device called XAI component for non-explainable 

approaches, like deep neural networks, which tries to utilize models to explain the 

outcomes (see Fig. 5). 

 

We aim for the second strategy since the XAI component can be based on the 

aforementioned food  science  models  and simulations. The second method also uses 

deep learning techniques, which perform better than conventional machine learning 

methods. If approaches like random forest can be employed, the first group is 

preferred since these techniques produce models that can be explained. In general, the 

choice  is based on the use case, the data set at hand (only sizable datasets can be used 
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with deep learning techniques), the effectiveness of the approaches with category 1 

explainable models (such as random forest), and whether or not the XAI component 

can be implemented. 

 

3. Choosing a Model: The creation of a machine learning workflow that enables 

automatically the pre-processing of data, selection of a ma- chine learning approach, and 

development of machine learning models is a challenge. The choice of machine learning 

method is particularly crucial because the data pattern affects how well the method learns. 

Based on the 1997 ”No-Free-Lunch Theo- rem” [75], which states that no optimization 

algorithm is best suited for every situation, a comparison to the field of machine learning 

can be made: no machine learning technique is best suited for every type of data. Based 

on the properties of the data and the pattern of the data, recommendation systems can 

assist in selecting the optimal fitting approach and configuring its parameters, or hyper-

parameter tuning. We intend to modify and incorporate earlier work on recommendation 

algorithms for time series forecasting [76]. 

 

The preprocessing of the data, or the creation of learning features, is a crucial 

stage in  the  information  analysis  us- ing machine learning. Typically, this task calls for 

manual labor and subject-matter knowledge. Although deep learning systems 

automatically do this feature extraction,  they  have the drawback of having less 

explainability. The automatic, organized feature extraction from log data is supported by 

approaches to prediction based on log data. Such methods train algorithms for machine 

learning using historical event-log data [77]. With log-based predictions, the necessary 

procedures can be automated but are also well-defined, supporting the data pre-

explicability. processing’s An strategy for predictive maintenance that incorporates log-

based prediction was pre- sented by Gutschi et al. [77]. To affect the likelihood of a 

critical machine malfunction sufficiently early, Lopez et al.  use chronological logs 

emitted by manufacturing equipment from various industrial factories [78]. We intend to 

incorporate a comparable log-based prediction to automate the extraction of pertinent data 

patterns and characteristics from historical data, particularly given that such an approach 

may improve  the generalisability of a digital twin among various food categories. 

  

4. Simulation: The study of machine data is a common emphasis of Industry 4.0 approaches 

for digital twins, but our idea also incorporates modeling of interior product states. Yet, 

up until now, our attention has been on the integration of process data, such as that 

obtained from in-line sensors or sensors built into processing equipment. This could be 

improved by a method  of data collecting that makes use of 3D-printed duplicates of food 

items. These copies may include sensors that enable data gathering from the point of the 

goods so that inferences about the processing processes and their impact on the  products 

may be made. In order to gather intra-process data from the perspective of the products, 

IoT technology, particularly smart miniaturized sensors, and the utilization of 3D printing 

are be- ing used. Two instances of this strategy are given. Then Potato [79] is an artificial 

potato placed in the field for harvesting that has sensors built into it. To determine 

whether the harvester is configured properly, the data is examined. During the whole 

travel in the supply chain, the artificial mango [70] provides improved thermal profiling. 

The proposed food modeling and simulation would support a very accurate view of the 

food items and the process when combined with data analytics of process data using 

machine learning (from an external process perspective) and the integration of product 

data from those  artificial food replicas (from an internal product perspective). 
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VI.  RESULTS 

 

Climate change and diseases linked to poor nutrition rank as two of the biggest 

problems facing contemporary societies. The content of our food is changing as a result of  

these issues. To reduce the health hazards and expenses connected to diabetes, obesity, and 

cardiovascular illnesses, less fat, sodium, or sugar must be added to foods. On the other side, 

concerns about animal welfare and the environmental implications of raw material 

manufacturing are driving a shift away from animals to plant origin protein sources. 

However, long-term nutritional habits can only be altered if the substitute product matches 

the original in terms of sensory attributes. To meet the problems of the modern world, it is 

crucial to comprehend how compositional changes affect the perception of fragrance. 

 

Aromatic perception is a  complicated  phenomenon  since it relies on physiological 

factors that vary greatly between individuals (saliva, respiration, etc.) and crosses over into 

other sensory inputs like taste and texture [80]. However,  from the standpoint of food, scent 

release is mostly influenced by interactions between the aroma component and the food’s 

elements (fat, arbohydrates, proteins, etc.). The partition coef- ficient Kmg, which is the ratio 

between the taste concentration in the diet and the amount in the air above the food, can be 

used to measure the strength of the these interactions. 

 

A significant amount of information about diverse scent compounds in various food 

materials is available as a result of the extensive study in the topic. Consequently, it would be 

con- ceivable to create a digital twin for forecasting the Kmg value of fragrance compounds 

in foods with various compositions by 

 

 
 

Figure 5: Machine learning prediction with XAI explanation. 

  

Combining the models describing all known physical correla- tions driving scent 

release with machine learning. It would be possible to create the digital twin for a certain 

food category, such as dairy products, using the data-driven method, which combines 

machine learning and scientific models. Other than content, this product category exhibits 

significant diversity in pH and protein shape. After that, the model can be applied to items 

made from plants, such as soy or legumes, because the information component can modify 

the digital twin to fit the requirements of the other food item. 
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Lack of a common technique for gathering data from the real to a virtual object is one 

of the biggest obstacles to adopting digital twins. According to Koulouris et al., the high-

quality standards, specialized equipment, and component complexity seen in the food 

industry and other high-value product industries are to blame for the industry’s slow adoption 

using real-time simulation process for design and modeling [9]. Due to the variety of 

methodologies, the unique initiatives for creating a digital twin therefore result in greater 

investment costs and are therefore particularly difficult in smaller busi- nesses and poor 

nations. We go over specific research hurdles for our concept of hybrid related technologies 

in the sections that follow. 

 

1. Complex Food: Application is restricted by the rigidity of the process, the complexity 

and variety of the raw properties of materials utilized to make food products, and the 

short shelf life of    both the raw materials and the  products  made  from  them [9]. 

Additionally, as environments are constantly changing due to plants, processes, and 

knowledge, linked digital twins are under constant pressure to do better [81]. The 

assistance for modifying digital twins is particularly necessary because of the intricacy of 

food items. 

  

2. Physicochemical Model Absence: Modelling and simulation technologies are hindered 

by poor physicochemical data [9]. Food production faces a range of foodstuffs with 

poorly characterized qualities, such as molec- ular weight, pH, water activity, and 

thermodynamics, which are difficult to quantify or anticipate. Additionally, biological 

and chemical kinetics must be understood and calculated using physics-based models [7]. 

Production mixtures, technical het- erogeneity, and the uncertainty of the actual solution 

intensify this effect [82], making modeling method integration complex [7]. However, 

processes can estimate food processing energy, material, and yield [9]. 

 

3. Explaining Data Analysis: Data analysis uses machine learning methods. The 

performance-explain ability trade-off is present here. Based on physicochemical models, 

we plan XAI integration. Model- based XAI is relatively recent [83]. Thus, important 

contri-  butions in this sector are needed for model-data analysis. 

 

4. Data and Digital Twin Validation: Data validation will be crucial. The ”garbage in, 

garbage  out” concept for machine learning states that low-quality data will result in low-

quality models. Validating data is crucial. Sensor failures or manual parameter 

adjustments can affect  data quality. Data validation ensures model validity. To solve 

those challenges, we will include AutoML-like automatic fea- ture engineering [84]. 

Additionally, digital twin model quality matters. This requires an assessment of digital 

twin model quality. However, context drift, where the data pattern changes and the taught 

models no longer capture it, might diminish quality over time. To obtain high validity for 

digital twin models, a metric to estimate quality and a process for lifelong learning on-

the-fly are needed. 

  

5. Supply-Chain Integration: Digital twins help supply chain stakeholders and activities. The 

multiplicity of systems and how to integrate them for digital approach is the difficulty. 

SAP ERP standardization can help. However, similar systems are rarer in the food 

industry. Due to industry needs. Thus, new ERP system kinds have arisen. A digital twin 

concept can mimic and optimize supply chain steps by addressing this difficulty of a 

holistic picture. This can boost supply chain resilience. 
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VII. CONCLUSION 

 

In this study, we proposed integrating biophysical digital twins—data from sensors, 

raw material, and food science models—to capture and recreate the status of a food product 

and process during food processing. A hybrid digital twin can be used to reason about process 

adjustments and adaptations and aid product development. This study proposed using XAI 

processes to increase digital twin construction and expert knowledge to turn machine learning 

into a white-box by combining it with scientific models/simulations. The paper also shows 

how to use the digital twin concept in numerous case studies: 

 

 SeAC systems can assist adaptive food processing, ii)product creation and food 

reformulation, 

 Food supply chain traceability. 
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