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Abstract 

 

We demonstrate the Banach 

contraction mapping theorem on vector 

 -metric space. We also give an example to 

explain our results.  
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I. INTRODUCTION 

 

Banach Contraction Principle(BCP) was demonsted firstly by S. Banach [2] in 1922. 

It has a vital role in fixed point(FP) theory and became very famous due to iterations. Many 

researchers are establishing new results in various generalizations of metric spaces.  -metric 

space is one of the generalizations in metric spaces. In 2012,  -metric space was defined by 

Sedghi et al.[7]. We start with some definitions and results for vector  -metric 

spaces(VSMS). 

 

Definition 1: [4] On a set  , a relation   is a partial order if it follows the conditions stated 

below:   

 

1.        (reflexive)  

2.       and       implies                             

3.       and        implies                           

             .  

 

The set   with partial order   is known as partially ordered set (poset). 

 

A partially ordered set       is called linearly ordered if for        , we have 

either       or      . 

 

Definition 2: [4] Let   be linear space which is real and       be a poset . Then the poset 

      is said to be an ordered linear space if it follows the properties mentioned below:   

 

1.                    

2.               
 

            and    .  

 

Definition 3: [4] A poset is called lattice if each set with two elements has an infimum and a 

supremum. 

 

Definition 4: [4] An ordered linear space where the ordering is lattice is called vector 

lattice(VL). 

 

Definition 5: [4] A VL   is called Archimedean if       
 

 
     for every      

where  

               
 

Definition 6: [3] Let   be VL and   be a nonvoid set. A function         is called 

vector metric on   if it follows the conditions stated below:   

 

1.            iff        

2.                                            

The triple         is called vector metric space. 

 

Now, vector valued  -metric space is defined as follows: 
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Definition 8: [10} Let   be VL and   be a nonvoid set. A function           is 

called vector  -metric on   that satisfies the conditions mentioned below:   

 

1.              ,  

2.               iff         ,  

3. S( 1,  2,  3)   S( 1,  1, α) + S( 2,  2, α) + S( 3,  3, α) 
 

for all              

 

The triplet         is called vector  -metric space(VSMS).  

 

Example 1:  Let   be a nonvoid set and   be a VL. A function           is 

defined by  

                                                
 

then the triplet         is VSMS.  

 

Definition 9: A sequence      in VSMS         is called  -convergent to some     if 

there is a sequence      in   satisfying      and               and denote it by 

   
   
   . 

 

Definition 10: A sequence      in VSMS         is known as  -Cauchy sequence if 

there is a sequence      in   satisfying      and                  holds for all   

and  . 

 

Definition 11: If each  -Cauchy sequence in   is  -converges to a limit in   then VSMS 

        is called  -complete . 

 

Lemma[8] For VSMS        ,  

 

                                 
 

II. MAIN RESULTS 

  

Theorem 1: Let         be a VSMS which is K-complete and   be Archimedean. Suppose 

the transformation       satisfies  

  

S(f Ω, f Ω, f  )   qS(Ω, Ω,  )  Ω,       

 

 where        . Then   has FP in   which is unique and for any     , iterative 

sequence      defined by         , for all    ,  -converges to FP of  . 

 

Proof: Let      and      defined by          for    .Then we have  

                                                   

                                

 Thus for        
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 Thus      is a  -Cauchy sequence because   be Archimedean. Then by 

 -completeness of  , there exist     such that   

   
   . So there exist      in   such 

that      and              . Since  

 

                                       

                             

           

           
 

then             , i.e.     .  

We can also verify the following theorem as above.  

 

Theorem 2 Let         be a VSMS which is complete and   be Archimedean. Suppose the 

transformation       satisfies  

 

                                                   
                                                                                               
 

 for all      , where             and    are positive and             
    . Then   has FP in   and for any     , iterative sequence      defined by 

        ,    ,  -converges to FP of  .  

  

Example 2 Let     
  with coordinatewise ordering and let  

                                       
The mapping           is defined by  

                       
 

 
             

                             
 

 
       

                       
 

 
      

 

 
   

 

 Then   is VSMS which is complete.  
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