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Abstract 

 

In this research work aims to develop the 

finite Fourier series with two variables using 

the generalized difference operator with two 

shift values. The key benefit of this research 

is to decompose the signals(functions) with 

two variables. To obtain this aim we define 

and develop the Finite Fourier Series 

Decomposition(FFSD), also obtain the 

orthonormal property for the trigonometry 

functions. Additionally, we illustrate the 

results unsing MATLAB to decompose the 

signals(functions) into finite series. 
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I. INTRODUCTION 
 

The evolution of the Fourier series and the origins of the discipline of harmonic analysis can 

be found in early 19th-century France. A study addressing a solution to a particular form of 

the heat equation was published by Jean Baptiste Joseph Fourier in 1804. He used a 

trigonometric term-rich infinite series expansion to arrive at this solution. Although some 

trigonometric expansions had been worked out by previous mathematicians, Fourier 

established their usage as legitimate. Harmonic analysis might be considered to have been 

initiated by Fourier, as he derived a general solution to the heat equation, which was an open 

and challenging topic at the time "[1, 12]. 

 

A potent tool for tackling a variety of number theory issues is the finite Fourier series. It has 

something to do with some kinds of trigonometric and exponential sums. Thus, it can be 

extended to a finite Fourier series of the following form: 

 

𝑔(𝜉𝜇) =   𝑛−1
𝑘=0 𝑔(𝑘)𝜉𝜇𝑘 (𝜇 = 0,1,⋯ , 𝑛 − 1). The orthogonality relation   𝑛−1

𝑘=0 𝜉
𝑎𝑘𝑥𝑖−𝑏𝑘 =

 
𝑛    (𝑎 ≡ 𝑏(𝑚𝑜𝑑  𝑛)),
0    (𝑎 ≡ 𝑏(𝑚𝑜𝑑  𝑛)),

  permits the computation of the finite Fourier coefficients. 𝑔(𝑥) 

explicitly using the equation 𝑔(𝑥) =
1

𝑛
  𝑛−1
𝜇=0 𝑓(𝜉𝜇)𝜉−𝜇𝑥  [2]. If we are given 𝑘 distinct 

complex numbers 𝑧0, 𝑧1,⋯ , 𝑧𝑘−1, then 𝑃(𝜆) = 𝜆0 + 𝜆1𝑥 + ⋯+ 𝜆𝑘−1𝑥
𝑘−1 satisfying the 

equations 𝑃(𝜔𝜈) = 𝑧𝜈(𝜈 = 0,1,⋯ , 𝑘 − 1) [13]. 

 

A finite Fourier series: 𝜂(𝑡) = 𝐴0 +   
𝑁/2
𝑞=1 𝐴𝑞cos(𝑞𝜍1𝑡) +   

𝑁/2−1
𝑞=1 𝐵𝑞sin(𝑞𝜍1𝑡), where the 

following are used: 𝜍1 = fundamental radian frequency, 𝜂 = sea surface elevation, 𝑡 = time 

(𝑠), 𝐴0 = second mean, 𝑁 = total number of sample points, 𝐴𝑞  and 𝐵𝑞 = Fourier 

coefficients, 𝑞 = harmonic component index (in the frequency domain) [10]. The sum of 𝑁 

sine waves defined over the time interval, 0 ≤ 𝑡 ≤ 𝑇: 𝑦 =   𝑁
𝑛=1 𝑎𝑛cos(𝜔𝑛𝑡 + 𝜙𝑛), 0 ≤ 𝑡𝑛 ≤

𝑇, 𝑎𝑛 ≥ 0, 0 ≤ 𝜙𝑛 < 2𝜋, is also a finite Fourier series[7], where 𝑡 is time and 𝑎𝑛  is 
amplitude. The authors of [11] present an effective method for formulating the analysis of 

axi-symmetric solids under non-symmetric loading, which utilizes a discrete Fourier series 

expansion. The Fourier series method and discrete Fourier series representation issues, 

including Gibb‘s phenomena and element nonconformance, have been covered. The use of 

the generalized difference operator to obtain the finite Fourier series of a single variable was 

covered in [9].  

 

An expansion of a periodic function 𝑔(𝑥) in terms of an infinite sum of sines and cosines is 
called a Fourier series. The orthonormal correlations between the sine and cosine functions 

are used in Fourier series. The Fourier series of the function 𝑢(𝑡), if such a function forms a 

full orthogonal system over [−𝜋, 𝜋], is given by  
 

𝑔(𝑥) =
𝑎0

2
+   

∞

𝑛=1

(𝑎𝑛cos𝑛𝑥 + 𝑏𝑛sin𝑛𝑥) 

where  
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 𝑎0 =
1

𝜋
  
𝜋

−𝜋
𝑔(𝑥)𝑑𝑥,  𝑎𝑛 =

1

𝜋
  
𝜋

−𝜋
𝑔(𝑥)cos𝑛𝑥𝑑𝑥 and   𝑏𝑛 =

1

𝜋
  
𝜋

−𝜋
𝑔(𝑥)sin𝑛𝑥𝑑𝑥  

 

The generalized difference equation has two different sorts of solutions: closed form and 

summation form. Any difference equation can have a summation solution found if a closed 

form solution cannot be found for any function. 

 

In this study, we use the inverse generalized difference operator Δ
𝛼1 ,𝛼2

−1

 to define a discrete 

orthonormal family of functions, and then we create and analyze a new type of Finite Fourier 

Series Decomposition (FFSD) of two variable functions (signals). The Fourier Series is 

formed by this FFSD as 𝛼1,𝛼2 goes to zero. The primary conclusions are confirmed, and 

MATLAB is used to create the diagrams, which are then provided. 

 

II. PRELIMINARIES 

 

The 𝜉𝑡  roots of unity is (𝜒𝜉 = 1  𝑏𝑢𝑡  𝜒𝑖 ≠ 1; 0 < 𝑖 < 𝜉)  
 

𝜒𝑝 = 𝑒𝑖(2𝜋/𝜉)𝑝 , 𝑝 = 1,2,3, . . . , 𝜉 − 1,                                                                                      (1) 

 

where the geometric series written as follows when 𝑝 and 𝜉 are co-prime.  
 

  
𝜉−1
𝑗=0 𝜒𝑝

𝑗 = Δ
−1𝜒𝑝

𝑗 |𝑗=0
𝜉

=
𝜒𝑝
𝜉
−1

𝜒𝑝−1
=  

1    𝑖𝑓    𝜉 = 1
0    𝑖𝑓    𝜉 > 1.

                                                                    (2) 

 

The complex discrete-time sequence 𝑓𝑖(𝑡) is defined from (1) and (2) as  
 

𝑓𝑝(𝑡) = (𝜒𝑝)𝑗 = 𝑓𝑖(2𝜋/𝜉)𝑝𝑗 ;   𝑝, 𝑗 = 0,1,2, . . . , 𝜉 − 1.                                                            (3) 

 

For the positive integers 𝑝, 𝑖 and 𝜉, the 𝑓𝑝(𝑡) defined in (3) satisfies the i dentity  

 

  
𝜉−1
𝑗=0 𝑓𝑝(𝑡) = Δ

−1𝑓𝑝(𝑡)|𝑗=0
𝜉

= Δ
−1𝑓𝑖(2𝜋𝑝/𝜉)𝑗 |𝑗=0

𝜉
=  

𝜉    𝑖𝑓    𝑝 = 𝑖𝜉
0    𝑖𝑓    𝑝 ≠ 𝑖𝜉.

                                    (4) 

 

Using the factorization into two orthogonal exponential functions, {𝑒𝑛(𝑘)} satisfying this  
mathematical characteristic  

 

Δ
−1𝑓𝑝(𝑡)𝑓𝑞

∗(𝑡)|𝑗=0
𝜉

= Δ
−1𝑓

𝑖(
2𝜋(𝑝−𝑞)𝑗

𝜉
)
|𝑗=0
𝜉

=  
𝜉    𝑖𝑓    𝑝 − 𝑞 = 𝑖𝜉
0    𝑖𝑓    𝑝 − 𝑞 ≠ 𝑖𝜉,

                                          (5) 

 

where (∗) denotes the complex conjugate and 𝑝,𝑞,𝑎𝑛𝑑𝑖 are integers. By substituting Δ
𝛼1 ,𝛼2

 for 

Δ and 𝑓𝑝(𝜉1, 𝜉2) for 𝑓𝑝(𝑡), we may create a generalized discrete orthonormal system of two 

variables and a finite Fourier series using the equation (5).  
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III. BASIC RESULTS 
 

In order to determine the Fourier coefficients using the generalized difference equation, we 

present certain fundamental definitions and results in this section. Real valued functions of 

two variables are denoted by 𝑓(𝜉1, 𝜉2) and 𝑔(𝜉1, 𝜉2) in this case.  
 

Definition 3.1  Let 𝑓(𝜉1, 𝜉2) be the two-variable function, and let the shift values be 

(𝛼1,𝛼2) ∈ 𝑅2. Then, the partial difference operator described in two dimensions is  

 

Δ
𝛼1 ,𝛼2

𝑓(𝜉1, 𝜉2) =
𝑓(𝜉1+𝛼1 ,𝜉2+𝛼2)−𝑓(𝜉1 ,𝜉2)

𝛼1𝛼2
,                                                                                  (6) 

 

Lemma 3.2 If 𝛥
𝛼1 ,𝛼2

𝑔(𝜉1, 𝜉2) = 𝑓(𝜉1, 𝜉2) and 𝛼1,𝛼2 > 0 where 𝑝 is any positive integer, then 

we have  

 

𝑔(𝜉1, 𝜉2)− 𝑔(𝜉1 − 𝑝𝛼1, 𝜉2 − 𝑝𝛼2) = 𝛼1𝛼2   
𝑝
𝑗=1 𝑓(𝜉1 − 𝑗𝛼1, 𝜉2 − 𝑗𝛼2)                               (7) 

 

Proof. Since Δ
𝛼1 ,𝛼2

𝑔(𝜉1, 𝜉2) = 𝑓(𝜉1, 𝜉2), from the Definition 3.1, we have  

 
𝑔(𝜉1+𝛼1 ,𝜉2+𝛼2)−𝑔(𝜉1 ,𝜉2)

𝛼1𝛼2
= 𝑓(𝜉1, 𝜉2)                                                                                            (8) 

 

Replacing 𝜉1 by 𝜉1 − 𝛼1 and 𝜉2 by 𝜉2 − 𝛼2, we get  

 

𝑔 𝜉1, 𝑥𝑖2 = 𝛼1𝛼2𝑓 𝜉1 − 𝛼1, 𝜉2 − 𝛼2 + 𝑔 𝜉1 − 𝛼1, 𝜉2 − 𝛼2                                                      (9) 
 

Again replacing 𝜉1 by 𝜉1 − 𝛼1 and 𝜉2 by 𝜉2 − 𝛼2 in (9), we get 
 

𝑔(𝜉1 − 𝛼1, 𝜉2 − 𝛼2) = 𝛼1𝛼2𝑓(𝜉1 − 2𝛼1, 𝜉2 − 2𝛼2) + 𝑔(𝜉1 − 2𝛼1, 𝜉2 − 2𝛼2) and (9)  

Becomes 

 

  𝑔(𝜉1, 𝜉2) = 𝛼1𝛼2[𝑓(𝜉1 − 𝛼1, 𝜉2 − 𝛼2) + 𝑓(𝜉1 − 2𝛼1, 𝜉2 − 2𝛼2)] + 𝑔(𝜉1 − 2𝛼1, 𝜉2 − 2𝛼2) 
 

Continuing in this manner for 𝑝 steps, we obtain (7).  
 

Lemma 3.3 [8] Let 𝑓(𝜉1, 𝜉2) and 𝑔(𝜉1, 𝜉2) are the two functions, then we have  

Δ
𝛼1 ,𝛼2

−1

(𝑓(𝜉1, 𝜉2)𝑔(𝜉1, 𝜉2)) =

𝑓(𝜉1, 𝜉2) Δ
𝛼1,𝛼2

−1

𝑔(𝜉1, 𝜉2)− Δ
𝛼1 ,𝛼2

−1

( Δ
𝛼1,𝛼2

−1

𝑔(𝜉1 + 𝛼1, 𝜉2 + 𝛼2) Δ
𝛼1 ,𝛼2

𝑓(𝜉1, 𝜉2)).                             (10) 

  

Lemma 3.4 Let 𝑠𝑟
𝑚  and 𝑆𝑟

𝑚  are the Stirling numbers of first and second kinds, (𝜉1 +

𝜉2)𝛼1 ,𝛼2

(0,0)
= 1, (𝜉1 + 𝜉2)𝛼1 ,𝛼2

(1,1)
= 𝜉1 + 𝜉2 and the polynomial factorial as 

 

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑚 ,𝑚)
= (𝜉1 + 𝜉2)(𝜉1 + 𝜉2 − (𝛼1 + 𝛼2))⋯ (𝜉1 + 𝜉2 − (𝑚 − 1)(𝛼1 + 𝛼2)). Then  
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(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑚 ,𝑚)
=   𝑚

𝑟=1 𝑠𝑟
𝑚(𝛼1 + 𝛼2)𝑚−𝑟(𝜉1 + 𝜉2)𝑟 , (𝜉1 + 𝜉2)𝑚 =   𝑚

𝑟=1 𝑆𝑟
𝑚(𝛼1 +

𝛼2)𝑚−𝑟(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑟,𝑟)
,                                                                                                           (11) 

 

Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑚 ,𝑚)
=

(𝜉1+𝜉2)𝛼1,𝛼2

(𝑚+1,𝑚+1)

(𝛼1+𝛼2)(𝑚+1)
, Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝑚 =   𝑚
𝑟=1

𝑆𝑟
𝑚 (𝛼1+𝛼2)𝑚−𝑟(𝜉1+𝜉2)𝛼1,𝛼2

(𝑟 ,𝑟)

(𝑟+1)(𝛼1+𝛼2)
. (12) 

  

Lemma 3.5  Let p be real, 𝛼1,𝛼2 > 0, 𝜉1 ∈ (𝛼1, ∞), 𝜉2 ∈ (𝛼2, ∞) and 𝑝𝛼1,𝑝𝛼2 ≠ 𝑚2𝜋.Then, 

we have  

Δ
𝛼1 ,𝛼2

−1

cos𝑝(𝜉1 + 𝜉2) = 𝛼1𝛼2
cos 𝑝(𝜉1−𝛼1+𝜉2−𝛼2)−cos 𝑝(𝜉1+𝜉2)

2(1−cos𝑝(𝛼1+𝛼2))
                                                     (13) 

 

  

Δ
𝛼1 ,𝛼2

−1

sin𝑝(𝜉1 + 𝜉2) = 𝛼1𝛼2
sin 𝑝(𝜉1−𝛼1+𝜉2−𝛼2)−sin𝑝(𝜉1+𝜉2)

2(1−sin 𝑝(𝛼1+𝛼2))
                                                      (14) 

  

Proof.  From Definition 3.1, 

 

Δ
𝛼1 ,𝛼2

cos𝑝(𝜉1 + 𝜉2) =
cos𝑝(𝜉1 + 𝛼1 + 𝜉2 + 𝛼2)− cos𝑝(𝜉1 + 𝜉2)

𝛼1𝛼2
 

 

 R.P ( Δ
𝛼1 ,𝛼2

𝑒𝑖𝑝(𝜉1+𝜉2)) = R. P(𝑒𝑖𝑝(𝜉1+𝜉2))𝑅𝑒(𝑒𝑖𝑝(𝛼1+𝛼2) − 1) 

 

 Applying Δ
𝛼1 ,𝛼2

−1

 both sides, we obtain 

 

 R.P  Δ
𝛼1 ,𝛼2

−1

𝑒𝑖𝑝(𝜉1+𝜉2) = R. P  
𝑒 𝑖𝑝 (𝜉1+𝜉2)

𝑒 𝑖𝑝 (𝛼1+𝛼2)−1
   

 
 After equating the real components of the complex conjugate, we obtain (13).  

 Similarly, by equating the imaginary part, we obtain the evidence of (14).  

 

IV. COMPUTATION OF FINITE FOURIER SERIES DECOMPOSITION 
 

In this section, we use the orthonormal condition of trigonometric functions and the 

generalized difference equation to compute the Fourier series and extract the Fourier 

coefficients.  

 

Theorem 4.1 Let 𝑓(𝜉1, 𝜉2) be bounded function on [𝑎, 𝑎 + 2𝜋] and 𝛼1 + 𝛼2 =
2𝜋

𝑁
. Then we 

have FFSD as  

 

𝑓(𝜉1, 𝜉2) =
𝑎0,0

2
+   𝑃−1

𝑛=1 (𝑎𝑝 ,𝑝𝑐𝑜𝑠  𝑝(𝜉1 + 𝜉2) + 𝑏𝑝 ,𝑝𝑠𝑖𝑛  𝑝(𝜉1 + 𝜉2)) +
𝑎𝑃 ,𝑃

2
𝑐𝑜𝑠  𝑃(𝜉1 + 𝜉2),         (15) 

where the coefficients are obtained by 

 

𝑎0,0 =
𝛼1 + 𝛼2

2𝜋
Δ

𝛼1 ,𝛼2

−1

𝑓(𝜉1, 𝜉2)|𝑎
𝑎+2𝜋  
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𝑎𝑝 ,𝑝 =
𝛼1 + 𝛼2

2𝜋
Δ

𝛼1,𝛼2

−1

𝑓(𝜉1, 𝜉2)cos  𝑝(𝜉1 + 𝜉2)|𝑎
𝑎+2𝜋  

 

𝑏𝑝 ,𝑝 =
𝛼1 + 𝛼2

2𝜋
Δ

𝛼1,𝛼2

−1

𝑓(𝜉1, 𝜉2)sin  𝑝(𝜉1 + 𝜉2)|𝑎
𝑎+2𝜋  

 

Proof.  To prove orthogonality condition, we can take 

 

 𝛼1 + 𝛼2 Δ
𝛼1 ,𝛼2

−1 cos𝑝 𝜉1 + 𝜉2 

 2𝜋

cos𝑞 𝜉1 + 𝜉2 

 2𝜋
|0

2𝜋  

 

 =
(𝛼1+𝛼2)

2𝜋
Δ

𝛼1 ,𝛼2

−1
 cos(𝑝𝜉1 + 𝑞𝜉2) + cos(𝑞𝜉1 − 𝑞𝜉2)|0

2𝜋 = 0. 

 

and Δ
𝛼1,𝛼2

−1

cos2𝑝(𝜉1 + 𝜉2)|0
2𝜋|0

2𝜋 = Δ
𝛼1,𝛼2

−1

 
1+cos 2𝑝(𝜉1+𝜉2)

2
 |0

2𝜋   

 

 = Δ
𝛼1 ,𝛼2

−1

 
1

2
 |0

2𝜋|0
2𝜋 +

1

2
Δ

𝛼1 ,𝛼2

−1

cos2𝑝(𝜉1 + 𝜉2)|0
2𝜋|0

2𝜋  

 

 =
2𝜋

𝛼1+𝛼2
,  

 

which is the required FFSD coefficients as 𝑎𝑝 ,𝑝  and 𝑏𝑝 ,𝑝 . 

  

V.  MAIN RESULTS AND DECOMPOSITION OF FUNCTIONS 

 

This section provides the FFSD for polynomial, polynomial factorial, and trigonometric 

functions. By utilizing the extended difference operator, we can also break down real valued 

functions of two variables into the sum of sine and cosine.  

 

Theorem 5.1  Let 𝜉1, 𝜉2 ∈ (−∞, ∞) and 𝛼1,𝛼2 > 0. If 𝑝(𝛼1 + 𝛼2) ≠ 2𝑚𝜋, then  

 Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑛 ,𝑛)
cos𝑝(𝜉1 + 𝜉2)  

 

=   𝑛
𝑗=0   

𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
(𝑛)1

(𝑗 )
(𝜉1+𝜉2)𝛼1,𝛼2

(𝑛−𝑗 ,𝑛−𝑗 )
cos 𝑝((𝜉1+𝜉2)−(𝑘−1)(𝛼1+𝛼2))

(−1)(𝑘−1)(𝛼1+𝛼2)−𝑗 (2(cos 𝑝(𝛼1+𝛼2)−1))(𝑗+1)                                      (16) 

 

Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑛 ,𝑛)
sin𝑝(𝜉1 + 𝜉2) 

 

=   𝑛
𝑗=0   

𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
(𝑛)1

(𝑗 )
(𝜉1+𝜉2)𝛼1,𝛼2

(𝑛−𝑗 ,𝑛−𝑗 )
sin𝑝((𝜉1+𝜉2)−(𝑘−1)(𝛼1+𝛼2))

(−1)(𝑘−1)(𝛼1+𝛼2)−𝑗 (2(sin 𝑝(𝛼1+𝛼2)−1))(𝑗+1)                                      (17) 

 

  

Proof.  Taking 𝑓(𝜉1, 𝜉2) = (𝜉1 + 𝜉2)𝛼1 ,𝛼2

(1,1)
 and 𝑔(𝜉1, 𝜉2) = cos𝑝(𝜉1 + 𝜉2) in (10) and using 

(13) we get 
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Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

 1,1 cos𝑝(𝜉1 + 𝜉2)

= (𝜉1 + 𝜉2)𝛼1 ,𝛼2

 1,1 cos𝑝 𝜉1 + 𝜉2 − cos𝑝 𝜉1 + 𝛼1 + 𝜉2 + 𝛼2 

2 1 − cos𝑝 𝛼1 + 𝛼2  
 – 

Δ
𝛼1 ,𝛼2

−1

 Δ
𝛼1 ,𝛼2

−1

cos𝑝(𝜉1 + 2𝛼1 + 𝜉2 + 2𝛼2) Δ
𝛼1 ,𝛼2

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(1,1)    

 

Applying (13) in the above equation, we get 

 

Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(1,1)
cos𝑝(𝜉1 + 𝜉2)

= (𝜉1 + 𝜉2)𝛼1,𝛼2

(1,1) cos𝑝(𝜉1 + 𝜉2)− cos𝑝(𝜉1 + 𝛼1 + 𝜉2 + 𝛼2)

2(1 − cos𝑝(𝛼1 + 𝛼2))
 

 

−
(𝛼1+𝛼2) cos 𝑝(𝜉1+𝜉2)−2cos 𝑝(𝜉1+𝜉2+(𝛼1+𝛼2)+cos𝑝(𝜉1+𝜉2+2(𝛼1+𝛼2) 

(2(1−cos 𝑝(𝛼1+𝛼2)))2                                             (18) 

 

Taking 𝑓(𝜉1, 𝜉2) = (𝜉1 + 𝜉2)𝛼1,𝛼2

(2,2)
 and 𝑔(𝜉1, 𝜉2) = cos𝑝(𝜉1 + 𝜉2) in (10), using (13) and 

(18), we get 

 

Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(2,2)
cos𝑝(𝜉1 + 𝜉2)

= (𝜉1 + 𝜉2)𝛼1 ,𝛼2

(2,2) cos𝑝(𝜉1 + 𝜉2 − (𝛼1 + 𝛼2))− cos𝑝(𝜉1 + 𝜉2)

2(1− cos𝑝(𝛼1 + 𝛼2))
 

 

 −
2(𝛼1+𝛼2)(𝜉1+𝜉2)𝛼1,𝛼2

(1,1)

(2(1−cos𝑝(𝛼1+𝛼2)))2 (cos𝑝(𝜉1 + 𝜉2 − (𝛼1 + 𝛼2))− 2cos𝑝(𝜉1 + 𝜉2) + cos𝑝(𝜉1 + 𝜉2 +

(𝛼1 + 𝛼2)) +
2(𝛼1+𝛼2)2

(2(1−cos𝑝(𝛼1+𝛼2)))3 (cos𝑝(𝜉1 + 𝜉2 − (𝛼1 + 𝛼2))  

 

−3cos𝑝(𝜉1 + 𝜉2) + 3cos𝑝(𝜉1 + 𝜉2 + (𝛼1 + 𝛼2))− cos𝑝(𝜉1 + 𝜉2 + 2(𝛼1 + 𝛼2)),           (19) 
 

and hence RHS of (19) can be expressed as 

 

   2
𝑗=0   

𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
(2)1

(𝑗 )
(𝛼1+𝛼2)𝑗 (𝜉1+𝜉2)𝛼1,𝛼2

(2−𝑗 ,2−𝑗 )
cos𝑝((𝜉1+𝜉2)−(𝑘−1)(𝛼1+𝛼2))

(−1)(𝑘−1)(2(cos 𝑝(𝛼1+𝛼2)−1))(𝑗+1)  

 

Performing the aforementioned procedure up to 𝑛 steps yields (16).  
 

Now,(17) follows by replacing cos𝑝(𝜉1 + 𝜉2) by sin𝑝(𝜉1 + 𝜉2) in (16).  
 

Corollary 5.2   When I = [0,2𝜋], 𝛼1 + 𝛼2 =
2𝜋

𝑃
, 𝜉1, 𝜉2 ∈ {𝑘(𝛼1 + 𝛼2)}0

2𝑃−1, the finite  

 

Fourier coefficients 𝑎𝑝 ,𝑝  and 𝑏𝑝 ,𝑝  for the polynomial factorial (𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑛 ,𝑛)
 are given by, 
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𝑎0,0 =
𝛼1+𝛼2

2𝜋
Δ

𝛼1,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑛 ,𝑛)
|0

2𝜋 =
(4𝜋)𝛼1,𝛼2

(𝑛+1,𝑛+1)
(𝛼1+𝛼2)

2𝜋3(𝛼1+𝛼2)
                                                     (20) 

 

 𝑎𝑝 ,𝑝 =
𝛼1+𝛼2

2𝜋
Δ

𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑛 ,𝑛)
cos𝑝(𝜉1 + 𝜉2)|0

2𝜋   

 

=   𝑛−1
𝑗=0   

𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
(𝑛)1

𝑗
(𝛼1+𝛼2)𝑗 (4𝜋)𝛼1,𝛼2

(𝑛−𝑗 ,𝑛−𝑗 )
cos𝑝(𝑘−1)(𝛼1+𝛼2)

𝑃(−1)(𝑘−1)(2(cos 𝑝(𝛼1+𝛼2)−1))𝑗+1                                             (21) 

 

 𝑏𝑝 ,𝑝 =
𝛼1+𝛼2

2𝜋
Δ

𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝛼1 ,𝛼2

(𝑛 ,𝑛)
sin𝑝(𝜉1 + 𝜉2)|0

2𝜋   

 

=   𝑛−1
𝑗=0   

𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
(𝑛)1

𝑗
(𝛼1+𝛼2)𝑗 (4𝜋)𝛼1,𝛼2

(𝑛−𝑗 ,𝑛−𝑗 )
sin𝑝(𝑘−1)(𝛼1+𝛼2)

𝑃(−1)(𝑘−1)(2(sin𝑝(𝛼1+𝛼2)−1))𝑗+1                                               (22) 

 

  

Proof. To prove the statement, multiply 
𝛼1+𝛼2

2𝜋
 by the limit 0 to 2𝜋 in  16 and (17)  

  

Theorem 5.3  Let 𝜉1, 𝜉2 ∈ (−∞, ∞),𝛼1 + 𝛼2 > 0 . If 𝑝(𝛼1 + 𝛼2) ≠ 𝑛2𝜋, then  

Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝑞cos𝑝(𝜉1 + 𝜉2)  

 

=   
𝑞
𝑛=1   𝑛

𝑗=0   
𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
𝑆𝑛
𝑝

(𝑛)1
(𝑗 )

(𝜉1+𝜉2)𝛼1,𝛼2

(𝑛−𝑗 ),(𝑛−𝑗 )
cos𝑝((𝜉1+𝜉2)−(𝑘−1)(𝛼1+𝛼2))

(−1)𝑘−1(𝛼1+𝛼2)𝑛−𝑗−𝑞 (2(cos𝑝(𝛼1+𝛼2)−1))𝑗+1                        (23) 

 

 Δ
𝛼1 ,𝛼2

−1

(𝜉1 + 𝜉2)𝑞sin𝑝(𝜉1 + 𝜉2)  

 

=   
𝑞
𝑛=1   𝑛

𝑗=0   
𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
𝑆𝑛
𝑞

(𝑛)1
(𝑗 )

(𝜉1+𝜉2)𝛼1,𝛼2

(𝑛−𝑗 ),(𝑛−𝑗 )
sin 𝑝((𝜉1+𝜉2)−(𝑘−1)(𝛼1+𝛼2))

(−1)𝑘−1(𝛼1+𝛼2)𝑛−𝑗−𝑞 (2(sin𝑝(𝛼1+𝛼2)−1))𝑗+1 .                      (24) 

 

Proof. The proof follows by second term of (11) and applying (16).  
  

Corollary 5.4 When 𝐼 = [0, 2𝜋], 𝛼1 + 𝛼2 =
𝜋

𝑃
, the finite Fourier coefficients 𝑎𝑝 ,𝑝  and 𝑏𝑝 ,𝑝  

for 𝑝 = 0,1,2,⋯ ,𝑃 for polynomial (𝜉1 + 𝜉2)𝑞  are given by 
 

 𝑎𝑝 ,𝑝 =
𝛼1+𝛼2

2𝜋
Δ𝛼1,𝛼2

−1 (𝜉1 + 𝜉2)𝑞cos𝑝(𝜉1 + 𝜉2)|0
2𝜋   

 

=   
𝑞−1
𝑛=1   𝑛

𝑗=0   
𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
𝑆𝑛
𝑞

(𝑛)1
(𝑗 )

(4𝜋)𝛼1,𝛼2

(𝑛−𝑗 ),(𝑛−𝑗 )
cos𝑝(𝑘−1)(𝛼1+𝛼2

(−1)𝑘−1𝑃(𝛼1+𝛼2)𝑛−𝑗−𝑞 (2(cos 𝑝(𝛼1+𝛼2)−1))𝑗+1                                  (25) 

 

 𝑏𝑝 ,𝑝 =
𝛼1+𝛼2

2𝜋
Δ𝛼1,𝛼2

−1 (𝜉1 + 𝜉2)𝑞sin𝑝(𝜉1 + 𝜉2)|0
2𝜋   

 

=   
𝑞−1
𝑛=1   𝑛

𝑗=0   
𝑗+1
𝑘=0  

𝑗 + 1
𝑘

 
𝑆𝑛
𝑞

(𝑛)1
(𝑗 )

(4𝜋)
ℓ
(𝑛−𝑗 )

sin𝑝(𝑘−1)(𝛼1+𝛼2)

(−1)𝑘−1𝑃(𝛼1+𝛼2)𝑛−𝑗−𝑞 (2(cos 𝑝(𝛼1+𝛼2)−1))𝑗+1.                                 (26) 

  



Recent Trends in Mathematics 

e-ISBN: 978-93-6252-929-9 

IIP Series 

NUMERICAL ANALYSIS OF FINITE FOURIER DECOMPOSITION WITH TWO SHIFT VALUES 

 

Copyright © 2024 Authors                                                                                                                          Page | 57  

Proof. Applying the limits 0 to 2𝜋 in (23) and (24) and multiplying the result by (𝛼1 +
𝛼2)/2𝜋 completes the proof.  
 

Assuming the two-dimensional harmonic signal 𝑓(𝜉1, 𝜉2) = cos  𝑝(𝜉1 + 𝜉2) to be a periodic 
signal in two-dimensional space, similar to a picture, in the specific situation of FFSD, we 

obtain 𝑎0,0 = 0,𝑎𝑝 ,𝑝 = 1,𝑏𝑝 ,𝑝 = 0, for all 𝑝 by (15), which is the Fourier series equivalent of 

the cosine function. 

 

Assuming that 𝑓(𝜉1, 𝜉2) = 𝜉1 + 𝜉2 is a signal (polynomial) at this point, we can derive 

𝑎0,0 =
38𝜋

5
,𝑎𝑝 ,𝑝 =

−2𝜋

5
, and 𝑏𝑝 ,𝑝 =

−2𝜋sin (2𝜋/10)

5(1−cos𝑝(2𝜋/10))
 from (15).‗In this case, 𝛼1 + 𝛼2 =

2𝜋

𝑃
. 

Hence, using MATLAB, the result of the input signal‘s decomposition can be produced as 

follows:  
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The aforementioned diagrams are produced for the specific value of 𝑁 = 3. Depending on 

the number of 𝑁, the function can be broken down into as many identical components as 

desired. We can also break down different functions, such as polynomials, polynomial 

factorials, exponentials, and so forth.  

 

VI. CONCLUSION 
 

 Here, we have provided the FFSD expression (decomposition) for the functions using the 

inverse of the generalized difference operator‘s summation solution form and orthonormal 

constraints. The nature of Fourier series is demonstrated and illustrated with a numerical 

example. The Fourier series decomposition of the input functions—which are treated as 

signals—is produced using MATLAB.  
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