SOFT J^CHOMOEMORPHISM IN SOFT TOPOLOGICAL SPACE

Abstract

The study of Soft J^{C} homeomorphism and Soft Strongly J^{C} homeomorphism in Soft Topological space is the subject of this article. We come up with a few of its properties and talk about a few composition theorems.

Keywords: Soft J^{C} homeomorphism, Soft Strongly J^{C} homeomorphism, Soft homeomorphism, Soft mappings.

Authors

S. Jackson

Assistant Professor P.G and Research Department of Mathematics V. O. Chidambaram College Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu, India. 1jacks.mat@voccollege.ac.in

J. Carlin

Research Scholar P.G and Research Department of Mathematics V. O. Chidambaram College, Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu, India. carlinewilliams103@gmail.com

I. INTRODUCTION

Molodtov D [3] introduced the Soft set concept in 1999 to deal uncertainty in a parametric fashion. Naim Cagman et al. [4] in 2011 created a soft topological space and established a soft topology on soft set. In 2002, P. K. Maji et al. [5] defined certain fundamental terminology for the theory, including the equality of two Soft sets, subset and superset of a Soft set, complement of a Soft set, null Soft set, and absolute soft set. C. G. Aras and H. Cakalli [1] presented soft mappings in soft topological spaces in 2013. Soft πgb -homeomorphism in Soft topological space was presented by C. Janaki and D. Sreeja [2] in 2014. We previously discussed the soft J^c closed set, soft J^c open set, soft J^c continuous and soft J^c open map. In this work, we look into soft J^c homeomorphism using an example. Theorems relating to their properties and composition were also examined. Additionally, we discover soft strongly J^c homeomorphisms and their characteristics. Throughout this paper Soft set has been represented as S-set.

II. PRELIMINARIES

Definition 2.1[3]: A S-set F_A on the universe *G* is defined by the set of ordered pairs $F_A = \{(x, f_a(x)): x \in E \text{ and } f_a(x) \in P(G)\}$, where $f_a: A \to P(G)$ such that $f_a(x) = \phi$ for all $x \notin A$. Hence f_a is called an approximate function of the S-set F_A . The value of f_a may be arbitrary, some of them may be empty, some may have non empty intersection.

Definition 2.2[3]

- 1. A S-set (F_A) over G is said to be **Null S-Set** denoted by F_{ϕ} or $\tilde{\phi}$ if for all $e \in A$, $F(e) = \phi$.
- 2. A S-set (F_E) over G is said to be an **Absolute S-Set** denoted by F_G or \tilde{G} if for all $e \in A$, F(e) = G.

Definition 2.3[3]: Let $x \in G$. Then (x_e) denotes the **S-point** over *G*, for which $x(\alpha) = \{x\} \forall \alpha \in E$. Also the **S-Singleton Set** corresponding to (x_e) is denoted by (x_E) .

Definition 2.4[4]: Let τ be a collection of S-sets over G with a fixed set E of parameters. Then τ is called a S-topology on G if

- 1. $\tilde{\phi}$, \tilde{G} belongs to τ .
- 2. The union of any number of S-sets in τ belongs to τ .
- 3. The intersection of any two S-sets in τ belongs to τ .

The triplet (G, τ_E) is called **S-topological Space** over *G*. The members of τ are called **S-open** sets in *G* and complements of them are called **S-closed** sets in *G*.

Definition 2.5[4]: A S-map $m: (G, \tau_E) \to (H, \sigma_K)$ is said to be **S-open (closed)**, if the image of every S-open(closed) set in (G, τ_E) is S-open (closed) in (H, σ_K) .

Definition 2.6[6]: A S-Subset (F_E) of a S-Topological space (G, τ_E) is known as S- J^c closed set if $Scl^*(F_E) \cong (U_E)$ whenever $(F_E) \cong (U_E)$ and (U_E) is S-semi*open set. $SJ^cC(G)$ represents the collection of all S- J^c closed sets. The complement of S- J^c closed set is S- J^c open set and noted by $SJ^cO(G)$.

Definition 2.7[6]: A S-map $m: (G, \tau_E) \to (H, \sigma_K)$ is said to be **S-J^C continuous map** if $m^{-1}(V_K)$ is s-J^C closed set in (G, τ_E) for every s-closed set (V_K) in (H, σ_K) .

Definition 2.8[6]: A S-map $m: (G, \tau_E) \to (H, \sigma_K)$ is said to be **S-J^c closed (open)** if $m(U_E)$ is s-J^c closed (open) set in (H, σ_K) for every s-closed (open) set (U_E) in (G, τ_E) .

Definition 2.9[5]: A S-bijective map $m: (G, \tau_E) \to (H, \sigma_K)$ is called **S-homeomorphism** if *m* is both S-continuous map and S-open map.

Definition 2.10[6]: A S-topological space (X, τ_E) is said to be S- T_{J^c} space if every S- J^c closed set is S-closed.

III. S-J^CHOMEOMORPHISM

Definition 3.1: A S-bijective map *m* from (G, τ_E) to (H, σ_K) is called **S**-*J*^{*C*}**homeomorphism** if *m* is both S-*J*^{*C*} continuous map and S-*J*^{*C*} open map.

Example 3.2: Consider $G = \{x_1, x_2\}, H = \{y_1, y_2\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u : G \to H$ and $v : E \to K$ as $u(x_1) = y_1, u(x_2) = y_2$ and $v(e_1) = k_1, v(e_2) = k_2$. Consider the S-topologies $\tau = \{\tilde{\phi}, \tilde{G}, (F_{E1}), (F_{E2})\}$ where $F_1(e_1) = \{x_1\}, F_1(e_2) = \{x_1\}, F_2(e_1) = \{x_2\}, F_2(e_2) = \{x_2\}$ and $\sigma = \{\tilde{\phi}, \tilde{H}, (X_{K1})\}$ where $X_1(k_1) = \{y_1, y_2\}, X_1(k_2) = \tilde{\phi}$. Therefore the s-mapping $m: (G, \tau_E) \to (H, \sigma_K)$ is both S-J^C continuous and S-J^C open map. Hence, m is S-J^C homeomorphism.

Theorem 3.3: A S-bijective map $m: (G, \tau_E) \to (H, \sigma_K)$ is S-homeomorphism. Then *m* is S- J^C homeomorphism.

Proof. Consider $m: (G, \tau_E) \to (H, \sigma_K)$ is a S-homeomorphism, then m is S-continuous and Sopen map. Also consider (M_K) is a S-open set in (H, σ_K) . Therefore, $m^{-1}(M_K)$ is S-open set in (G, τ_E) . We know that all S-open sets are S- J^C open set, $m^{-1}(M_K)$ is S- J^C open set in (G, τ_E) . Thus m is S- J^C continuous. Again consider (N_E) is a S-open in (G, τ_E) . Since m is a S-open map, $m(N_E)$ is S-open set in (H, σ_K) . We know that all S-open sets are S- J^C open set, $m(N_E)$ is S- J^C open set in (H, σ_K) . Then m is a S- J^C open map. Hence m is S- J^C homeomorphism.

Remark 3.4: S-*J^C* homeomorphism need not be S-homeomorphism.

Example 3.5: Consider $G = \{x_1, x_2\}$, $H = \{y_1, y_2\}$, $E = \{e_1, e_2\}$, $K = \{k_1, k_2\}$. Define $u : G \to H$ and $v : E \to K$ as $u(x_1) = y_1, u(x_2) = y_2$ and $v(e_1) = k_1, v(e_2) = k_2$. Consider the S-topologies $\tau = \{\tilde{\phi}, \tilde{G}, (P_{E1}), (P_{E2})\}$ where $P_1(e_1) = \{x_2\}, P_1(e_2) = \{x_1\}, P_2(e_1) = \{x_2\}, P_2(e_2) = \{x_1, x_2\}$ and $\sigma = \{\tilde{\phi}, \tilde{H}, (Q_{K1}), (Q_{K2}), (Q_{K3})\}$ where $Q_1(k_1) = \{y_2\}, Q_1(k_2) = \tilde{\phi}, Q_2(k_1) = \tilde{\phi}, Q_2(k_2) = \{y_1\}, Q_3(k_1) = \{y_2\}, Q_3(k_2) = \{y_1\}$. Therefore the S-mapping $m: (G, \tau_E) \to (H, \sigma_K)$ is both S-J^C continuous and S-J^C open map, but m is not S-continuous and S-open map. Since, $m(\alpha_E) = \{(e_1, y_2), (e_2, y_1, y_2)\}$ is not S-open set in (H, σ_K) , also $m^{-1}(\beta_K) = \{(e_1, x_1), (e_2, x_1, x_2)\}$ is not S-closed set in (G, τ_E) . Hence, m is not S-homeomorphism.

Theorem 3.6: A S-bijective map $m : (G, \tau_E) \to (H, \sigma_K)$ is S-*J*^C continuous, then the following are equivalent

- (i) m is S- J^C open map
- (ii) m is S- J^{C} homeomorphism
- (iii) m is S- J^{C} closed map

Proof: (i) \Rightarrow (ii) Since a S-bijective map *m* is S-*J*^C continuous, also *m* is S-*J*^C open map. Then *m* is S-*J*^C homeomorphism.

(ii) \Rightarrow (iii) Consider (U_E) is s-closed set in (G, τ_E) . Then $(U_E)^c$ is s-open set in (G, τ_E) . By hypothesis, $m((U_E)^c) = (m(U_E))^c$ is S-J^c open set in (H, σ_K) . Therefore, $m(U_E)$ is S-J^c closed set in (H, σ_K) . Hence, *m* is S-J^c closed map.

(iii) \Rightarrow (i) Consider (V_E) is s-open set in (G, τ_E) . Then $(V_E)^c$ is s-closed set in (G, τ_E) . By hypothesis, $m((V_E)^c) = (m(V_E))^c$ is S-J^c closed set in (H, σ_K) . Therefore, $m(V_E)$ is S-J^c open set in (H, σ_K) . Hence, *m* is S-J^c open map.

Theorem 3.7: Every S- J^{C} homeomorphism from a S- $T_{J^{C}}$ space into another S- $T_{J^{C}}$ space is S-homeomorphism.

Proof: Consider a s-map $m: (G, \tau_E) \to (H, \sigma_K)$ is S-J^C homeomorphism and (L_E) be a s-open set in (G, τ_E) . Since m is S-J^C open and (H, σ_K) is a S- T_J^c space, $m(L_E)$ is s-open set in (H, σ_K) . Thus, m is a s-open map. Since m is S-J^C continuous and (G, τ_E) is a S- T_J^c space, $m^{-1}(L_E)$ is s-closed in (G, τ_E) . Therefore, m is s-continuous. Hence, m is s-homeomorphism.

Theorem 3.8: Consider (G, τ_E) be a S-topological space, then $SJ^Ch(G, \tau_E)$ is a group under the composition of maps.

Proof: Let us define a binary operation $*: SJ^{C}h(G, \tau_{E}) \times SJ^{C}h(G, \tau_{E})$ by $m * n = (n \circ m)$ for all $m, n \in SJ^{C}h(G, \tau_{E})$ and \circ is the usual operation of composition of maps. Then $(n \circ m) \in SJ^{C}h(G, \tau_{E})$. We know that the composition of maps is associative, also the identity map $I: (G, \tau_{E}) \to (G, \tau_{E})$ belonging to $SJ^{C}h(G, \tau_{E})$ serves as the identity element. For every $m \in SJ^{C}h(G, \tau_{E})$, $m \circ m^{-1} = m^{-1} \circ m = I$. Therefore the inverse exists for each element of $SJ^{C}h(G, \tau_{E})$. Hence, $SJ^{C}h(G, \tau_{E})$ forms a group under the operation of composition of maps.

Theorem 3.9: If $m : (G, \tau_E) \to (H, \sigma_K)$ is a S-*J*^C homeomorphism. Then, *m* induces a S-isomorphism from the group S*J*^C *h* (*G*, τ_E) onto the group S*J*^C *h* (*G*, τ_E).

Proof: Suppose $m \in SJ^{C}h(G, \tau_{E})$. We define a function $\psi m: SJ^{C}h(G, \tau_{E}) \to SJ^{C}h(G, \tau_{E})$ by $\psi m = m \circ h \circ m^{-1}$ for every $h \in SJ^{C}h(G, \tau_{E})$. Therefore m is a S-bijection. Now for all $n, h \in SJ^{C}h(G, \tau_{E})$, we get $\psi m(n \circ h) = m \circ (n \circ h) \circ m^{-1} = (m \circ n \circ m^{-1}) \circ (m \circ h \circ m^{-1}) = \psi m(n) \circ \psi m(h)$.

Theorem 3.10: Consider $m : (G, \tau_E) \to (H, \sigma_K)$ be a S- J^C homeomorphism and (U_E) be a S- J^C closed subset of (G, τ_E) . Also, (V_K) be a s-closed subset of (H, σ_K) such that $m(U_E) =$

 (V_K) . Assume that $SJ^CC(G, \tau_E)$ is closed under any s-intersection. Then the restriction $m_{(U_E)}: ((U_E), \tau_{(U_E), E}) \rightarrow ((V_K), \sigma_{(V_K), K})$ is a S-J^Chomeomorphism.

Proof:

- i. Consider $m : (G, \tau_E) \to (H, \sigma_K)$ is a S-J^C homeomorphism. Since *m* is S-1-1 and s-onto, $m_{(U_E)}$ is S-1-1 and $m_{(U_E)}(U_E) = (V_K)$ such that $m_{(U_E)}$ is s-onto. Hence, $m_{(U_E)}$ is s-bijection.
- ii. Consider (L_E) be an s-open set of $((U_E), \tau_{(U_E),E})$. $(L_E) = (U_E) \cap (A_E)$, for some sopen set (A_E) in (G, τ_E) . Since, *m* is S-1-1 then $(L_E) = m((U_E) \cap (A_E)) = m(U_E) \cap m(A_E) = (V_K) \cap m(A_E)$. Since, *m* is S-J^C open and (A_E) is s-open set in (G, τ_E) , then $m(A_E)$ is S-J^C open in (H, σ_K) . Therefore $m(A_E)$ is a S-J^C open in $((V_K), \sigma_{(V_K),K})$. Hence, $m_{(U_E)}$ is S-J^C open map.
- iii. Consider (S_K) be a s-closed in $((V_K), \sigma_{(V_K),K})$. Then $(S_K) = (V_K) \cap (B_K)$ for some sclosed set (B_K) in (H, σ_K) . Since (V_K) is a s-closed set in (H, σ_K) , then (S_K) is a sclosed set in (H, σ_K) . By hypothesis and assumption, $m^{-1}((S_K) \cap (X_K)) = (Y_E)$ (say) is a S-J^C closed set in (G, τ_E) . Since $m_A^{-1}(S_K) = (Y_E)$, It is adequate to prove that (Y_E) is S-J^C closed in $((U_E), \tau_{(U_E),E})$. Let (C_E) be S- \hat{g} -open set in $((A, E), \tau_{(A,E)}, E)$ such that $(Y_E) \cap (C_E)$. Then by hypothesis and by relativity of S- \hat{g} -open set, (C_E) is S- \hat{g} -open set in (G, τ_E) . Since (Y_E) is a S-J^C closed set in (G, τ_E) , s^{*}Cl_{\tilde{G}} $(Y_E) \subset Int(C_E)$. Since (U_E) is S-open, s^{*}Cl_{(U_E)} $(Y_E) = s^*Cl_{\tilde{G}}(Y_E) \cap (U_E) \subset Int(C_E) \cap Int(U_E) =$ $Int((C_E) \cap (U_E)) \subset Int(C_E)$ and so $(Y_E) = m_A^{-1}(S_K)$ is S-J^C closed in $((U_E), \tau_{(U_E),E})$.

Therefore, $m_{(U_E)}$ is s-bijection, S- J^C continuous and S- J^C open map. Hence the restriction map $m_{(U_E)}: ((U_E), \tau_{(U_E), E}) \rightarrow ((V_K), \sigma_{(V_K), K})$ is a S- J^C Homeomorphism.

Theorem 3.11: If $m: (G, \tau_E) \to (H, \sigma_K)$ is S-strongly J^C continuous and $n: (H, \sigma_K) \to (W, \rho_R)$ be a S- J^C homeomorphism then $n \circ m: (G, \tau_E) \to (W, \rho_R)$ is S- J^C homeomorphism.

Proof: Consider (D_E) be a s-open set in (G, τ_E) . Since every s-open set is S- J^c open set, $m(D_E)$ is a s-open set in (H, σ_K) . Then $n(m(D_E))$ is S- J^c open set in (W, ρ_R) . Also, consider (I_R) be a s-closed in (W, ρ_R) , $n^{-1}(I_R)$ is a S- J^c closed set in (H, σ_K) . Since m is S-strongly J^c continuous and n is S- J^c continuous, $m^{-1}(n^{-1}(I_R))$ is S- J^c closed set in (G, τ_E) . Thus $n \circ m$ is S- J^c open map and S- J^c continuous. Hence, $n \circ m$ is S- J^c homeomorphism.

IV. S-STRONGLY J^CHOMEOMORPHISM

Definition 4.1: A s-bijective map m from (G, τ_E) to (H, σ_K) is S-strongly J^C homeomorphism if m and m^{-1} are both S- J^C irresolute.

Example 4.2: Consider $G = \{x_1, x_2\}, H = \{y_1, y_2\}, E = \{e_1, e_2\}, K = \{k_1, k_2\}$. Define $u : G \to H$ and $v : E \to K$ as $u(x_1) = y_1, u(x_2) = y_2$ and $v(e_1) = k_1, v(e_2) = k_2$. Consider the S-topologies $\tau = \{\tilde{\phi}, \tilde{G}, (S_{E1}), (S_{E2})\}$ where $S_1(e_1) = \{x_1\}, S_1(e_2) = \{x_1\}, S_2(e_1) = \{x_2\}, S_2(e_2) = \{x_2\}$ and $\sigma = \{\tilde{\phi}, \tilde{H}, (T_{K1}), (T_{K2})\}$ where $T_1(k_1) = \{y_1\}, T_1(k_2) = \{y_2\}, T_2(k_2) = \{y_2\}, T_2(k_2) = \{y_2\}, T_2(k_2) = \{y_2\}, T_2(k_3) = \{y_3\}, T_2(k_4) = \{y_4\}, T_3(k_4) = \{y_4\}, T_4(k_4) = \{y_4\}, T_4(k_5) = \{y_4\}, T_4(k_5) = \{y_5\}, T_4(k_5) = \{y_5\}, T_4(k_5) = \{y_5\}, T_5(k_5) = \{y_5\}, T_5($

 $T_2(k_1) = \{y_2\}, T_2(k_2) = \{y_1\}$. Therefore the s-mapping $m: (G, \tau_E) \to (H, \sigma_K)$ is S- J^C irresolute also the s-mapping $m^{-1}: (H, \sigma_K) \to (G, \tau_E)$ is S- J^C irresolute. Hence, m is S-strongly J^C homeomorphism.

Theorem 4.3: If a s-map $m: (G, \tau_E) \to (H, \sigma_K)$ is S-strongly J^C homeomorphism then m is a S- J^C homeomorphism.

Proof: Consider $m: (G, \tau_E) \to (H, \sigma_K)$ be a S-strongly J^C homeomorphism, then m and m^{-1} are S- J^C irresolute. Since every S- J^C irresolute map is S- J^C continuous and m is S- J^C open map if m^{-1} is S- J^C continuous. Then m is S- J^C continuous and S- J^C open map. Hence, m is S- J^C homeomorphism.

Remark 4.4: The reverse implication of the above theorem is not true.

Example 4.5: Let $G = \{x_1, x_2\}$, $H = \{y_1, y_2\}$, $E = \{e_1, e_2\}$, $K = \{k_1, k_2\}$. Define $u : G \rightarrow H$ and $v : E \rightarrow K$ as $u(x_1) = y_1$, $u(x_2) = y_2$ and $v(e_1) = k_1$, $v(e_2) = k_2$. Consider the S-topologies $\tau = \{\tilde{\phi}, \tilde{G}, (B_E)\}$ where $B(e_1) = \phi$, $B(e_2) = \{x_2\}$ and $\sigma = \{\tilde{\phi}, \tilde{H}, (C_{K1}, C_{K2}, C_{K3})\}$ where $C_1(k_1) = \{y_2\}$, $C_1(k_2) = \{y_2\}$, $C_2(k_1) = \{y_2\}$, $C_2(k_2) = \{y_1, y_2\}$, $C_3(k_1) = \{y_1, y_2\}$, $C_3(k_2) = \{y_2\}$. Therefore the s-mapping $m: (G, \tau_E) \rightarrow (H, \sigma_K)$ is both S-J^C continuous and S-J^C open map, but m is S-J^C irresolute and m^{-1} is not S-J^C irresolute. Since, $(m^{-1})^{-1}(\gamma_E) = \{(e_1, y_2), (e_2, \phi)\}$ is not S-J^C closed set in (H, σ_K) . Hence, m is not S-strongly J^C homeomorphism.

Theorem 4.6: If $m: (G, \tau_E) \to (H, \sigma_K)$ is a S-strongly $J^{\mathcal{C}}$ homeomorphism, then $SJ^{\mathcal{C}}cl(m(X_K)) = m(SJ^{\mathcal{C}}cl(X_K))$ for every s-subset (X_K) of (H, σ_K) .

Proof: Consider $m: (G, \tau_E) \to (H, \sigma_K)$ is a S-strongly $J^{\mathcal{C}}$ homeomorphism, then m is Sstrongly $J^{\mathcal{C}}$ continuous. Since $SJ^{\mathcal{C}}cl(m(X_{\mathcal{K}}))$ is S- $J^{\mathcal{C}}$ closed set in $(H, \sigma_{\mathcal{K}})$, $m^{-1}(SJ^{c}cl(m(X_{K})))$ is S-J^c closed in (G, τ_{E}) . Now, $m(X_{K}) \cong m(SJ^{c}cl(X_{K}))$ and so $J^{C}cl(m(X_{K})) \cong m(SJ^{C}cl(X_{K}))$. Also, since m is a S-strongly J^{C} homeomorphism, then m^{-1} S- I^{C} irresolute. Since $SI^{C} cl(m(X_{K}))$ is S- I^{C} closed is set in $(G, \tau_F),$ $(m^{-1})^{-1}(SJ^{\mathcal{C}}cl(m(X_{\mathcal{K}}))) = m(SJ^{\mathcal{C}}cl(m(X_{\mathcal{K}})))$ is S- $J^{\mathcal{C}}$ closed in $(H, \sigma_{\mathcal{K}})$. Now, $(X_K) \cong (m^{-1})^{-1} (m(X_K)) \cong (m^{-1})^{-1} (SJ^{\mathcal{C}}cl(m(X_K))) = m (SJ^{\mathcal{C}}cl(m(X_K)))$ then $J^{C}cl(X_{K}) \cong m^{-1}(SJ^{C}cl(m(X_{K}))).$ Therefore, $(SJ^{C}cl(X_{K})) \cong m\left(m^{-1}\left(SJ^{C}cl(m(X_{K}))\right)\right) \cong SJ^{C}cl(m(X_{K})).$ Hence, $SI^{C}cl(m(X_{K})) = m(SI^{C}cl(X_{K})).$

Theorem 4.7: If $m: (G, \tau_E) \to (H, \sigma_K)$ is a S-strongly J^C homeomorphism, then $SJ^C cl(m^{-1}(V_K)) = m^{-1}(SJ^C cl(V_K))$ for all $(V_K) \cong (H, \sigma_K)$.

Proof: Consider *m* is a S-strongly J^{C} homeomorphism, then *m* is $S-J^{C}$ irresolute. Since $SJ^{C}cl(m(V_{K}))$ is a $S-J^{C}$ closed set in (H, σ_{K}) , $m^{-1}(SJ^{C}cl(V_{K}))$ is $S-J^{C}$ closed set in (G, τ_{E}) . Now, $m^{-1}(V_{K}) \cong m^{-1}(SJ^{C}cl(V_{K}))$ then $SJ^{C}cl(m^{-1}(V_{K})) \cong m^{-1}(SJ^{C}cl(V_{K}))$. Also, since *m* is a S-strongly J^{C} homeomorphism, m^{-1} is $S - J^{C}$ irresolute. Since $SJ^{C}cl(m^{-1}(V_{K}))$ is $S - J^{C}$ closed set in $(G, \tau_{E}), (m^{-1})^{-1}(SJ^{C}cl(m^{-1}(V_{K})) = m(SJ^{C}cl(m^{-1}(V_{K})))$ is $S - J^{C}$ closed set in (H, σ_{K}) . Now $(V_{K}) \cong (m^{-1})^{-1}(m^{-1}(V_{K})) \cong (m^{-1})^{-1}(SJ^{C}cl(m^{-1}(V_{K})))$ = $m\left(SJ^{C}cl(m^{-1}(V_{K}))\right), J^{C}cl(V_{K}) \cong m\left(SJ^{C}cl(m^{-1}(V_{K}))\right)$. Thus $m^{-1}(SJ^{C}cl(V_{K})) \cong m^{-1}\left(m\left(SJ^{C}cl(m^{-1}(V_{K}))\right)\right) \cong SJ^{C}cl(m^{-1}(V_{K}))$ and hence the equality holds.

Theorem 4.8: The composition of two S-strongly J^{C} homeomorphism is S-strongly J^{C} homeomorphism.

Proof: Consider the s-mappings $m: (G, \tau_E) \to (H, \sigma_K)$ and $n: (H, \sigma_K) \to (W, \rho_R)$ be two Sstrongly J^C homeomorphism and (Y_R) be a S- J^C closed set in (W, ρ_R) . Since m and n are S- J^C irresolute, $n^{-1}(Y_R) = m^{-1}(n^{-1}(Y_R))$ is S- J^C closed set in (G, τ_E) . Thus $(n \circ m)$ is S- J^C irresolute. Now, consider (Z_E) is S- J^C closed set in (G, τ_E) . Since m^{-1} and n^{-1} are S- J^C irresolute, $(m^{-1})^{-1}(Y_R) = (n^{-1})^{-1}[(m^{-1})^{-1}(Y_R)] = n(m(Y_R))$ is S- J^C closed set in (W, ρ_R) . Therefore, $(n \circ m)^{-1}$ is S- J^C irresolute. Hence, $(n \circ m)$ is S-strongly J^C homeomorphism.

Theorem 4.9: Consider $m: (G, \tau_E) \to (H, \sigma_K)$ be a S-strongly $J^{\mathcal{C}}$ homeomorphism and $n: (H, \sigma_K) \to (W, \rho_R)$ be a S- $J^{\mathcal{C}}$ homeomorphism then $n \circ m: (G, \tau_E) \to (W, \rho_R)$ is S- $J^{\mathcal{C}}$ homeomorphism.

Proof: Consider (P_K) be a S-closed set in (W, ρ_R) . Since, m is S- J^C irresolute and n is S- J^C continuous. $m^{-1}(n^{-1}(P_K))$ is S- J^C closed set in (G, τ_E) . Therefore, $n \circ m$ is S- J^C continuous. Now, consider (Q_E) be a s-open set in (G, τ_E) , $m(n(Q_E))$ is S- J^C open set in (W, ρ_R) . Since, m^{-1} is S- J^C irresolute and n is S- J^C open map. Thus $n \circ m$ is S- J^C open map. Hence, $n \circ m$ is S- J^C homeomorphism.

V. CONCLUSION

We have introduced S- J^{C} closed (open) maps with S- J^{C} closed (open) set in S-topological space. We have learned some of its properties and composition theorems. Then we have studied about S-strongly J^{C} closed maps and S-quasi J^{C} closed maps with some properties.

REFERENCES

- [1] C. G. Aras, H. Cakalli, "On Soft Mappings", arXiv:1305.4545v1[math.GM], 16 May 2013.
- [2] C. Janaki, D. Sreeja, "A New class of Homeomorphisms is Soft Topological Spaces", International Journal of Science and Research, vol. 3 (6) pp. 810-814, 2014, ISSN: 2319-7064.
- [3] D. Molodtsov, "Soft Set Theory First Results", Computers and Mathematics with Applications, vol. 37, pp. 19-31, 1999.
- [4] [N. Cagman, S. Karatas & S. Enginoglu, "Soft Topology", Comput. Math. Appl., vol. 62, pp. 351-358, 2011.
- [5] P. K. Maji, R. Biswas and A. R. Roy, "Soft Set Theory", Computers and Mathematics with Applications, vol. 45 (4-5), pp. 555–562, 2003.
- [6] S. Jackson, J. Carlin & S. Chitra, "Some New Results in Soft Topological Spaces", International Journal of Pure and Applied Mathematics, in press.