
Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 167

IOT OPERATIONS AND INTEROPERABILITY

Abstract

Internet of things is a global network

architecture that was created as a result of the

interconnection and communication of numerous

smart devices in the physical world over existing

internet infrastructure in recent years. According

to studies, over the previous 6-7 years, solutions

for a variety of devices and Internet of Things

platforms have made significant advancements.

Interoperability problems do, occur because

solution offers a distinct Internet of Things

architecture, devices, APIs, and data formats.

These interoperability problems are largely

caused by the difficulties of connecting non-

interoperable Internet of Things devices to

various Internet of Things platforms, vendor lock-

in, and the inability to create Internet Of Things

apps that deliver cross-platform and/or cross-

domain data. The widespread deployment of

Internet of Things technology is hampered by all

of these issues. The ability of numerous IOT

systems from various suppliers to cooperate has

been improved through a number of initiatives by

academics, corporations, and standards groups.

Traditional operating systems now used on

Internet hosts, as well as conventional operating

systems, are unable for simultaneously meet the

specifications of such a diverse array of devices.

Therefore, a new, consistent operating system is

needed to eliminate duplication in the price of

creating and maintaining IOT products. In this

article, the prerequisites for an IOT operating

system are examined.

Key Words: IOT applications; IOT requirements

and operating systems; improve IOT

interoperability; interoperability in IOT

Taxynomy.

Authors

Babitha Gaikwad G

Electrical And Electronic Engineering

Presidency University

Babithagaikwad372@gmail.com

Bibang Gwar Basumatary

Research Scholar

Department of Civil Engineering

Presidency University

Bengaluru, India

bibang1999@gmail.com

Nakul Ramanna

Professor and HOD

Department of Civil Engineering

Presidency University

Bengaluru, India.

nakul@presidencyuniversity.in

mailto:Babithagaikwad372@gmail.com

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 168

I. INTRODUCTION

The Internet Of Things, which Kevin Ashton utilized for the first time in 1999, has

recently emerged as a cutting-edge technology in number of industries. The Internet of

Things is the network of physical locations and things that are connected via the Internet.

According to this scenario, a technological revolution will connect digital and analog objects

to both the current Internet infrastructure and to one another. The Internet of Things

European Research Cluster (IERC). The Internet of Things is an adaptable, self-configuring

worldwide network architecture due to standardized and cooperative communication

techniques. With the Internet of Things, both real-world and digital items have identities,

physical traits, and virtual personalities, as well as intelligent interfaces, enabling them easy

incorporation into the information network. Academics and business executives have

emphasized the significance of the IOT interoperability dilemma. Standardization is being

used by the sector that will deal with IOT interoperability issues. Numerous initiatives have

been started to ensure Internet Of Things systems, networks, and services as well as data

formats produced by other manufacturers. We conducted research on the past, present, and

anticipated advancements of enabling technologies and solutions in order to better inform

readers about the current situation and anticipated developments in IOT interoperability.

This study has two advantages. First, let's have a look at the general requirements for
IOT device software. It demonstrates that no existing operating system can meet the

numerous requirements of IOT systems, including limitations, a wide variety of network

stacks, autonomy, and real-time constraints. There have been numerous attempts to adapt

present operating systems for the IOT, but it has been impossible to include crucial

components like maximum energy efficiency or robust real-time assurances since they have

an impact on every aspect of the system.

II. IOT REQUIREMENTS

1. Use Cases: Several projects and a substantial scientific community are now addressing

the IOT topic. It conducts research and development on a CPS that uses sensors to

improve security and safety in populated regions and close to important infrastructure. To

precisely target area monitoring in airports, SAFEST combines two different types of

technologies.

 A system of visual and audio surveillance that keeps an eye on large crowds to

provide warning in the event of unforeseen circumstances.

 A perimeter security system that searches for unalgorithms industries using
distributed event detection algorithms.

At this point, a problem occurred because, as will be detailed further below,

present operating systems are either unable to make making use of the robust board's

skills or on the confined board, cannot run. This necessitates the simultaneous use of

multiple operating systems, requiring the creation and upkeep of duplicate application

code that is shared over a network of such devices.

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 169

2. Software Characteristics: The project states that typical situations involve a variety of

heterogeneous devices with varied levels of complexity. This implies that the software

that runs on such devices must adhere to strict guidelines. Restricted hardware is the first

category of demand. The requirement for these systems to function independently is

covered by a second category. A third category of requirement assesses the system's

usefulness from the perspective of a developer.

III. OPERATING SYSTEM

As we saw with the network stack in the previous section, an operating system needs

to be carefully built in every way if it is to respond to the limitations of ordinary IOT devices.

In this section, we will examine how operating systems should be designed for the context of

the IOT, also to analyze and contrast current operating systems.

1. Characteristics: Different operating system types can be distinguished by a wide range

of characteristics. The kernel's structure is one of the most fundamental design elements.

There are three different ways to build the operating system: monolithically, layeredly, or

with the microkernel architecture. This decision has a substantial impact on the overall

structure of the system. Although building an operating system from the ground up using

a monolithic kernel is the most fundamental approach is lacking typically resulted in a
complicated framework that is flexible harder to grasp since the system grows. The

system's hierarchical division is facilitated by the layered model. The developer must

choose how closely user space and the kernel are separated. A microkernel takes

modularity a step further by partitioning the whole operating system into manageable,

well defined modules, with just a tiny subset of operations taking place in kernel mode.

This technique increases system stability since it prevents system crashes due to errors in

specific components. Another crucial design factor is the scheduler. The system's capacity

to support real-time attributes, numerous priorities, and various user participation levels is

inextricably linked to the scheduling method that is implemented. The third and most

crucial design element is the model for programming. a number of operating systems run

every procedure in the same context when memory address space segmentation is not

present. Multi-threading is a feature of several other operating systems that allows each

process to execute in its own thread with its own memory stack. The programming model

and the programming language are interconnected. There may be a major impact on both

the programming languages used to create operating systems and the programming

languages accessible to application developers.

2. Comparision of Operating System: Tiny OS and Contiki are the two WSAN device

operating systems that are most frequently utilized. Both employ different file systems,

shells, device drivers, algorithms, protocols, and tools. The majority we now analyze

contemporary operating systems that are purportedly suitable for running IOT devices

while keeping in mind the essential design attributes and needs listed in Section II. To do

this, we chose representative operating systems from both widely-used full-featured

operating systems found on Internet hosts and embedded WSAN operating systems.

For more conventional Internet-connected devices, Windows, various UNIX

variants, and Linux are the most popular operating systems. Linux will be used as

example full-featured given that it is open source and offers assistance a variety

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 170

equipment platforms. The majority of the claims made here hold true for both the UNIX

and Windows versions.

It investigate these operating systems' characteristics in connection to the

previously described design categories. Monolithic kernels are used by both Linux and

Tiny OS, however Contiki was built in a way that more closely resembles a layered

architecture. To provide a single static binary, Tiny OS combines many essential parts.

The components interact with one another via events and commands, and they expose one

or more interfaces. Device drivers can be set up as modules even if the Linux kernel is a

monolith.

With the help of this method, an application's requirements can be exactly met by

configuring a Linux system. A faulty driver can still cause the system to crash even

though these modules can be loaded and unloaded while the system is in operation.

Operating system features like connection, device drivers, and sensor data management

are provided by Contiki. The device driver loader, the proto threading system, and the u

IP stack are additional components of the Contiki core.

Purely event-driven scheduling is used by Contiki, which is similar to Tiny OS's

FIFO scheduling strategy. Their scheduling plans are made to handle straightforward
situations, such asynchronous sensor disruptions. Linux now uses the red-black tree-based

Completely Fair Scheduler (CFS), which makes sure that processing time is distributed

fairly. The objectives of this scheduler are to increase CPU usage and interaction

performance.

Even though all tasks are completed inside the same context in the event-driven

programming models used by Contiki and Tiny OS, they do offer a very small amount of

multi-threading. TOS Threads, which employ a cooperative threading paradigm and

demand that a program actively cede the CPU, are introduced by Tiny OS. Contiki

provides proto threads as an easy-to-use, stack-free multi-threading technology. Process

synchronization amongst proto threads is not possible since events run to completion.

Contiki employs a simplified version of the C programming language that lacks

some jargon. C, a dialect of C, is used to create Tiny OS. On the other hand, Linux was

created in C and supports a broad variety of scripting and programming languages.

IV. INTEROPERABILITY IN IOT: A TAXYNOMY

The Contiki and Tiny OS programming models are event-driven, meaning all tasks

are carried out inside the same context, however they do support a very limited amount of

multi-threading. Tiny OS, which make use of a joint threading a program must explicitly cede

the CPU in a system. Contiki offers proto threads straightforward, stack-free implementation

of basic multi-threading. Process synchronization amongst proto threads is not possible since

events run to completion. To the fullest extent possible, the numerous IOT components

should effectively communicate and work with one another. As shown in Figure 1, there are

several ways to look at IOT interoperability, including from the perspectives of devices,

networks, syntactic interoperability, semantic interoperability, and platform compatibility.

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 171

Figure 1: IOT Taxnomy

1. Device Interoperability: The Internet of Things has a far larger number of devices than

the traditional Internet. These gadgets, often known as B smart items or things, can be

pricey or reasonably priced. Processing power is abundant in smartphones and other high-

end IOT devices like the Raspberry Pi. Low-end IOT devices, in contrast, have less

energy, computational hosts with more energy and communication skills. Examples

include inexpensive actuators and sensors, Arduino, Open Mote. The microcontroller

(MCU) between manufacturers and models, there are significant differences in

architecture and other important system components like as processor speed, RAM,

communication protocols, and battery capacity. IOT needs vary, which has caused a

number of communication protocols to arise. The microcontroller (MCU) architecture of

IOT devices, as well as key system features like processing speed, RAM, communication

protocols, and battery life, vary greatly between manufacturers and models. The various

requirements of IOT industries have led to the emergence of numerous communication

protocols. The ability of disparate IOT devices to connect and communicate with one

another a range of device interoperability refers to communication standards and

protocols. The ability to integrate new devices into any IOT platform is known as device

interoperability. It raises questions about:

 • Data transfer between disparate devices and communication protocols.

2. Network Interoperability: IOT devices will continue to operate on diverse, multi-

service, multi-vendor, and heterogeneous networks. IOT devices depend on irregularity

and instability, unlike desktop PCs. The architecture of microcontrollers (MCUs) and

essential device system characteristics include processing speed, RAM, and protocols for
communication, as well as battery power, varies significantly between manufacturers and

models. Numerous communication protocols have emerged as a result of the diverse

requirements of IOT sectors. Device interoperability is the ability of heterogeneous IOT

devices to integrate and communicate with a variety of communication protocols and

standards. The capacity to integrate new devices into an platform is known as

interoperability. Information exchange between heterogeneous communication protocols

and heterogeneous hardware are among its main concerns.

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 172

3. Syntactical Interoperability: In order for two separate IOT system components to

communicate with one another, there must be syntactic interoperability, which is the

compatibility of the employed format and data structure. Every resource needs a user

interface that shows a structure that follows a particular schema. REST APIs and WSDL

are two examples. A message must be serialized before it can be sent across a channel,

and the serialization format (such as XML or JSON) must be supplied. Data in messages

is encrypted by the message sender utilizing syntactic rules found in several grammars.

Using the specified syntactic rules in the same or a different the message recipient

decodes the delivered message using grammar.

4. Semantic Interoperability: In order for two separate IOT system components to

communicate with one another, there must be syntactic interoperability, which is the

compatibility of the employed format and data structure. Every resource needs a user

interface that shows a structure that follows a particular schema. REST APIs and WSDL

are two examples. A message must be serialized before it can be sent across a channel,

and the serialization format (such as XML or JSON) must be supplied. Data in messages

is encrypted by the message sender utilizing syntactic rules found in several grammars.

The recipient of the message decodes it using the provided similar syntactic rules or

alternative grammar. Different sources frequently utilize different data models and

schemas that are not always compatible necessarily interoperable, even though the
environment's entities may produce data in a specific format. Additionally, the info may

use other measurement units and be conveyed with additional information.

V. INTEROPERABILTY DOMAIN KNOWLEDGE

Developing templates for SWOT applications without interoperable data and a set of

rules is a difficult task. To accomplish so, we must be familiar with cross-domains, datasets,

and IOT data rules.

VI. DESIGNING, DEVELOPING

The design phase assists developers in selecting the application that will be deployed

by template using semantic web query. The developer fills the program with data and rules

and arranges data to implement the application during the development stage. End users enter

run time into the running level application.

VII. CLOUD COMPUTING AND IOT

Cloud computing refers to the consumption of required services from providers as

scheduled ahead of time over the internet. Companies can begin with few resources and then

scale up as needed. Cloud computing is a novel technology for hosting and providing services

(SaaS, PaaS, IaaS, and so on), but the concept is not new; in 1960, John McCarthy predicted

that computing services will be publicly available in the future.

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 173

Figure 2: Cloud computing IOT

By 2020, there are expected to be 24 billion linked gadgets, surpassing the number of

people. Managing that amount of data is a challenging task. Devices have limited default

storage, which makes it necessary to use a permanent, dependable, and secure leasing

solution that can increase data storage and processing speed. Integration of cloud computing

and IOT can help resolve a number of problems, including those related to resource

allocation, data integrity, security, and storage capacity.

VIII. REAL TIME OPERATING

Real Time Operating is made to both fulfill the demands outlined in Section II and fill

the space we discovered between WSAN both operating systems conventional featured

existing operating system on Internet hosts.

System is built utilizing a modular design to consume the least amount of memory. As

a result, certain needs can be met by changing the system's configuration. A minimal amount

of dependencies exist between components.

Because it doesn't require periodic events, RIOT's scheduler can be thought of as a

tick-less unlike many other operating systems, scheduler. This method will ensure that the

device uses as little energy as possible while maximizing the length of time in sleep mode.

The computer only exits its idle state in reaction to interruptions from the outside world or the

kernel. Because it doesn't require periodic events, RIOT's scheduler can be thought of as a

tick-less in contrast to many other operating systems, scheduler. If no tasks are open, RIOT

will switch to the idle thread. The idle thread's sole purpose is to calculate the deepest sleep

level based on the utilised peripherals. This will ensure that the device uses as little energy as

possible while maximizing the length of time in sleep mode. The computer only exits its idle

state in reaction to interruptions from the outside world or the kernel. RIOT's scheduler can

be viewed as superior to many other operating systems of as a tick-less scheduler because it

doesn't require periodic events.

 A Memory Management Unit are not necessary for RIOT. However, because CPU-

dependent code and the kernel implementation are tightly related, RIOT can take advantage

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 174

of any extra features the microcontroller provides, such as the various ARM processors offer

the Vectored Interrupt Controller (VIC). The implementation, in general, abstracts away from

the hardware, allowing the creation of system libraries, kernel functions, and programs that

are independent of specific platforms. This is accomplished by exposing unambiguous

interfaces and preserving a distinct division between hardware-dependent and hardware-

independent code. The separation also makes it possible to create hardware-specific

functionality without having to modify the kernel or system libraries. Function pointers and

other indirection techniques that increase overhead are not used.

IX. LIMITATIONS

By reducing the distances between them, "IOT" technology aims to make physical

objects more interactive so that they can exchange critical data more quickly. However, the

IOT paradigm has a number of drawbacks that need apps finishing their tasks on time. One of

the numerous issues with IOT is data management because all connected things generate a

large amount of data every second that is challenging for the existing infrastructure to handle.

Data mining needs the use of data mining technologies to process and analyze it as data

volumes grow. IOT data also includes streaming data, such as location, temperature, chemical

changes, and so on, in addition to normal data (plan text, tables), which is a challenge for data

mining algorithms to rapidly resolve. The security risks increase with the scale of the Internet
of Things network lack of encryption, unsafe online interfaces, poor software protection, and

lack of software authorisation are all contributing factors, IOT presents security challenges.

Developers should incorporate security tools like firewalls into their products and instruct

customers on how to use built-in device security capabilities in order to address IOT security

problems. IOT architecture poses a cost and performance challenge for service-based devices.

A network with many linked devices has scalability problems in data management and

transfer, among other areas.

X. IOT CONNECTIVITY

A variety of IOT connectivity methods can be used to connect one IOT device to

another over the Internet. Both wired and wireless Internet connections are typically

available. Wireless and cable communications each have advantages and disadvantages,

therefore one should decide which is best for the application. We must take into account both

the advantages and disadvantages of wired and wireless connecting methods before

establishing an IOT system. Several factors have a role in this choice. The size of the

network's IOT nodes, their location, the necessary bandwidth or data rate, the permitted

maximum power consumption, and the security requirements are a few examples of these

criteria. Several factors have a role in this choice. The network's maximum range, the

placement of the IOT nodes, and their number, the necessary bandwidth or data rate, the

permitted maximum power consumption, and the security requirements are a few examples

of these criteria. IOT devices must be close to one another as well as a wired Internet access

point in order for the wired IOT network to be effective. Wireless IT equipment is the

standard because most IOT applications require a wired connection. IOT is made possible by

wireless short-range technologies like Bluetooth, Zigbee, and even WiFi.

These technologies are particularly enticing since they benefit from the Industrial,

Science, and Medicine (ISM) spectrum. To connect IOT devices to the Internet, these

Frontiers of Advancements in Materials | IoT | Drones | and

Innovations in Construction Environment| and Infrastructure

e-ISBN: 978-93-6252-744-8

IIP Series

 IOT OPERATIONS AND INTEROPERABILITY

Copyright © 2023 Authors Page | 175

technologies need an IOT gateway, which is connected to the IOT physical device on one

side and the Internet on the other. The IOT gateway is located at the local network's edge and

has enough computing power to run small calculations there on occasion. Several Internet of

Things (IOT) devices are connected to an IOT gateway in order to provide data to the

Internet, as seen in Figure 3.

Figure 3: IOT gateway for internet connection

As a result of the rapid technological development of wireless IOT, a domain of

regularly battery-powered gadgets is starting to emerge. It would be difficult to replace these

batteries in many situations. Thus, one of the prerequisites for wireless IOT technologies is

low power consumption. Another rationale for creating low-power IOT devices is the fact

that there will be a large number of them in the future. If we can lower the power

consumption of these devices, we will require less energy to power them. An IOT device

must sleep if there are no tasks it needs to do in order to conserve power. Due to the fact that

it consumes less energy while sleeping, the battery life of the smartphone gets longer. One of

the key elements of wireless IOT is low power consumption, which explains the widespread

adoption of Zigbee and Bluetooth Low Energy (BLE) in IOT applications. WiFi could be

used by IOT applications that require more bandwidth but don't care about battery life.

APPLICATIONS

 Communicate and share information among them.

 For port management

 INTER-Health

 Lifestyle monitor: Medical perspective

REFERENCES

[1] Christen P, Georgakopoulos D (2014), Perera C, Zaslavsky A.

[2] Al-Fuqaha A, Guizani M, Aledhari M, Ayyash M (2015).

[3] Li S, Da Xu L, and He W. (2014).

[4] Bandyopadhyay S, Sengupta M, Maiti S, Dutta S (2011).

[5] Zeiger F (2015), Gazis V, Goertz M, Huber M, Leonardi A, Mathioudakis K, and Wiesmaier A.

[6] Spinsante S (2016), Gambi E (2016), Montanini L (2016), Raffaeli L (2016).

[7] Zeiger F (2015); Gazis V; Goertz; Huber; Leonardi; Mathioudakis; Wiesmaier.

