
Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 230

PARALLEL COMPUTING

Abstract

Modern computational solutions now

rely heavily on parallel computing, which

allows for the efficient processing of

complicated tasks by doing numerous

operations at once. This abstract gives a

general overview of parallel computing,

emphasizing its importance, guiding

principles, applications, and possibilities for

the future. In contrast to typical sequential

processing, parallel computing involves the

concurrent execution of tasks across numerous

processors or cores. To achieve effective use

of computational resources, it makes use of a

variety of parallelism techniques, including

task parallelism, data parallelism, thread-level

parallelism, and instruction-level parallelism.
The advantages of parallel processing are

extensive. It speeds up computing, improves

scalability, maximizes resource use, and makes

it possible to solve big problems. Scientific

simulations, data analytics, artificial

intelligence, image processing, and other areas

find use for parallel computing. It enables

scientists, engineers, and creators to take on

complex problems, make data-driven choices,

and progress in many sectors. Key ideas

including parallel hardware architectures,

programming paradigms, algorithm design

considerations, difficulties, and potential

solutions are explored in this abstract.

Additionally, it explores cutting-edge

developments like quantum, neuromorphic,

and exascale computing, which have the

potential to transform the parallelism

landscape and pave the way for fresh

innovation. Parallel computing serves as a

catalyst for advancement as technology

advances, allowing us to push the limits of

computation, acquire deeper insights into

complex systems, and open the door to

potentially game-changing discoveries.

Keywords: Computing, quantum,

neuromorphic, algorithm, architectures.

Authors

Kapish Nautiyal

Department of Electronics and

Communication Engineering

Dev Bhoomi Uttarakhand University

DBUU

Dehradun, India.

ece.kapish@dbuu.ac.in

Jaishree Agrawal

Department of Computer Science and

Engineering

Dev Bhoomi Uttarakhand University

DBUU

Dehradun, India.

socse.jaishree@dbuu.ac.in

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 231

I. INTRODUCTION

In parallel computing, numerous activities or processes are run simultaneously in

order to solve a problem more quickly and effectively than with traditional serial processing.

Parallel computing uses the combined power of several processors, cores, or other computing

resources to split a large task into smaller subtasks and distribute them among them to

produce results more quickly [1]. It includes a variety of approaches and procedures that

make use of concurrency and cooperation among computer units to handle bigger datasets

and run complicated algorithms faster. Artificial intelligence, real-time systems, data

analysis, and scientific simulations are just a few of the areas where parallel computing is

used to overcome the drawbacks of sequential processing and achieve better levels of

computational efficiency.

1. Definition and Purpose: In order to solve a computer problem more rapidly and

efficiently than traditional serial processing, parallel computing refers to the simultaneous

execution of several tasks or instructions using multiple processors, cores, or computing

resources. It includes splitting a large work into smaller, concurrently executable tasks,

making use of the resources at hand to accelerate computing [2]. Improved performance,

handling complex problems, scalability, energy efficiency, real-time and interactive

applications, scientific and engineering simulations, economic value, data analysis, and

machine learning are the main goals of parallel computing. Through the use of numerous

computing resources, parallel computing seeks to solve difficult issues more rapidly,

effectively, and efficiently than through traditional serial processing. This technology is

essential for expanding computer capabilities across a variety of fields and has a wide

range of applications.

2. Types of Parallelism

Parallelism in computing is the practice of performing multiple tasks or operations

simultaneously to enhance efficiency and performance. There are diverse types of

parallelism that cater to various computing scenarios. Instruction-Level Parallelism (ILP)

enhances instruction throughput by executing multiple instructions from a program

concurrently using techniques like pipelining. Data parallelism processes identical

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 232

operations on multiple data pieces in applications like graphics and simulations, often

using SIMD architectures and GPU programming models. Task parallelism divides

programs into threads, each executing a specific task concurrently, optimizing multi-

threaded programming [2]. Bit-Level Parallelism deals with parallel manipulation of data

bits, frequently in hardware operations. Pipeline Parallelism splits tasks into stages,

allowing different stages to run simultaneously. Task Farming distributes independent

tasks to separate units, commonly used in parallel computing. Spatial Parallelism breaks

tasks into smaller parts for simultaneous execution. Loop-Level Parallelism divides loop

iterations to be executed concurrently, optimizing repetitive computations [3]. Thread-

Level Parallelism involves concurrent execution of program threads on separate units,

common in multi-core processors. Hierarchical Parallelism combines different levels of

parallelism for optimized performance. Careful design and synchronization are crucial to

harness these parallelism types effectively and avoid potential issues.

3. Benefits and Applications

Parallelism in computing offers a host of advantages that lead to improved

performance and efficiency. By executing multiple tasks simultaneously, parallelism

reduces execution times, boosts throughput, and optimizes resource utilization. This is

particularly beneficial for real-time applications like gaming, robotics, and multimedia,

ensuring timely responses. Moreover, parallelism scales seamlessly, making it adaptable

to changing workloads and promoting energy efficiency when employed judiciously. Its

applications span numerous domains, including graphics processing, scientific

simulations, machine learning, video encoding, distributed computing, and financial

modeling [3]. From accelerating complex problem-solving to enhancing data analysis and

industrial automation, parallelism serves as a cornerstone in modern computing, powering

innovation and progress across various industries.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 233

II. PARALLEL HARDWARE ARCHITECTURES

Parallel hardware architectures are intricately designed systems that enable the

concurrent execution of multiple tasks or operations, thereby significantly enhancing

computing performance and efficiency. These architectures are engineered to leverage

diverse forms of parallelism, catering to a wide range of applications across various

industries. SIMD (Single Instruction, Multiple Data) architectures process the same

instruction across multiple data elements simultaneously, a cornerstone in tasks involving

multimedia and scientific simulations. MIMD (Multiple Instruction, Multiple Data)

architectures, prevalent in multi-core processors, empower individual processors or cores to

execute distinct instructions on separate datasets, driving general-purpose computing.

Similarly, SIMT (Single Instruction, Multiple Threads) architectures, a vital component of

modern GPUs, offer flexibility by allowing different threads to slightly vary instructions.

Vector processors specialize in array-based operations, particularly suitable for numerical

analysis and scientific simulations. FPGA (Field-Programmable Gate Array) architectures

provide reconfigurable hardware that can be customized to implement specific logic circuits

and parallel processing units, serving applications like cryptography and signal processing

[4]. NUMA (Non-Uniform Memory Access) architectures cater to large-scale systems where

memory access times vary, frequently found in high-performance computing clusters. Cluster

and grid computing architectures unite multiple computers or servers for distributed parallel

processing, ideal for scientific simulations and data analysis. Neuromorphic architectures

mimic neural structures for tasks like pattern recognition, and Tensor Processing Units

(TPUs) specialize in accelerating machine learning tasks. These parallel hardware

architectures collectively exemplify the innovative solutions driving improved performance

and efficiency across a wide array of computing domains.

1. Shared Memory vs. Distributed Memory: Shared memory and distributed memory are

two contrasting approaches to managing memory in parallel computing systems. In

shared memory systems, multiple processing units share a single, unified memory space,

enabling direct data access and communication between processors. This simplicity in

data sharing and synchronization makes shared memory programming straightforward,

but scalability can be a concern due to potential contention for memory access. On the

other hand, distributed memory systems consist of separate memory spaces associated

with individual processing units. Processors communicate through explicit message

passing, necessitating the explicit movement of data between local memory spaces. While

more complex to program, distributed memory systems excel in scalability as adding

more processors doesn't lead to memory access bottlenecks [4]. The choice between these

paradigms depends on factors such as the number of processing units, communication

frequency, and the degree of control over data movement and synchronization. In some

cases, hybrid memory systems combine both approaches to harness the benefits of each

while mitigating their limitations.

2. Multi-Core Processors: Multi-core processors are a pivotal advancement in computing

architecture, featuring two or more independent processing units, or cores, within a single

chip. This innovation enables simultaneous execution of multiple tasks, significantly

enhancing computational performance and efficiency. Each core operates autonomously,

capable of executing distinct instructions and threads concurrently [5]. This empowers

parallelism, where diverse cores handle separate tasks simultaneously, accelerating

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 234

multitasking and expediting the execution of multi-threaded applications. Multi-core

processors offer benefits such as true parallel processing, efficient multithreading support,

scalable performance, enhanced energy efficiency through workload distribution, and

improved thermal management through advanced cooling solutions [4]. However,

software optimization is crucial for maximizing their potential, necessitating the

simultaneous execution of applications. Since these processors are now present in a wide

range of devices, including smartphones, servers, and embedded systems, software

development methodologies have evolved to take advantage of parallelism and meet the

demands of changing computing requirements.

3. GPU Acceleration: A revolutionary idea in computing, GPU acceleration uses the

enormous parallel processing capability of graphics processing units (GPUs) to speed up

a variety of computational activities outside of typical graphics rendering. GPUs excel at

performing multiple calculations at once because they are built with a large number of

cores that are tuned for data-parallel operations [4]. APIs and programming paradigms

like CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing

Language) are used to take advantage of this feature. Applications can significantly

improve performance by outsourcing particular computational workloads to GPUs. For

jobs requiring heavy computations, such scientific simulations, data analysis, machine

learning, and artificial intelligence, GPU acceleration is extremely helpful. GPUs can

analyze large datasets quickly and handle complex algorithms with great efficiency

thanks to their parallel nature. Because of this, GPU acceleration has transformed a

number of industries by giving researchers, developers, and companies a way to speed up

computations and obtain insights from data-intensive applications that would otherwise

take a long time to run on conventional CPUs alone.

4. Cluster and Cloud Computing: Modern computing environments are made scalable and

effective by the revolutionary principles of cloud and cluster computing. The process of

cluster computing is joining a number of computers or servers to work together as a

single, distributed processing-capable system. By distributing workloads across nodes,

cluster computing enhances computational power, making it ideal for high-performance

computing, scientific simulations, and data analysis. On the other hand, cloud computing

takes this concept further by offering computing resources, including processing power,

storage, and networking, as on-demand services over the Internet [5]. Cloud platforms

provide a scalable and flexible infrastructure for businesses and individuals to deploy

applications, manage data, and execute tasks without the need for dedicated hardware.

Cloud computing services can be categorized into Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS), tailoring resource access

to specific user needs [4]. Both cluster and cloud computing optimize resource allocation,

minimize infrastructure costs, and enable rapid deployment of applications, transforming

the landscape of computing by facilitating efficient, scalable, and accessible computing

solutions for various domains.

III. PARALLEL PROGRAMMING MODELS

Parallel programming models encompass a diverse range of frameworks and

methodologies that streamline the creation of software capable of effectively harnessing the

processing power of multiple cores or processors in parallel computing systems. These

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 235

models provide structured approaches for expressing and managing parallelism, simplifying

the development of applications that capitalize on modern hardware architectures. Shared

memory programming, exemplified by OpenMP, facilitates concurrent access to shared

memory by employing directives to define parallel regions and control synchronization.

Message-passing models, notably MPI (Message Passing Interface), emphasize explicit

communication between processes or threads, making them apt for distributed memory

systems and clusters. Data parallelism models like CUDA and OpenCL target GPUs and

accelerators, enabling the definition of parallel operations on data arrays [6]. Task

parallelism, exemplified by Intel TBB and Cilk Plus, divides applications into manageable

tasks executed concurrently. Hybrid models combine multiple parallel programming

approaches to maximize system potential, and functional programming languages like

Haskell and Erlang emphasize immutability and ease the handling of parallelism. Modern

computing environments are made scalable and effective by the revolutionary principles of

cloud and cluster computing. The process of cluster computing is joining a number of

computers or servers to work together as a single, distributed processing-capable system.

Parallel Programming Models

1. Task Parallelism: Powerful programming techniques like task parallelism emphasize

breaking up a program's execution into smaller, independent jobs that can run

simultaneously. By effectively allocating work among them, this methodology seeks to

maximize the utilization of the processing resources that are already available, such as

CPU cores or threads. Task parallelism deals with various actions that can be carried out

in parallel without dependencies as opposed to data parallelism, which performs the same

operation on numerous data objects. Since task parallelism enables the system to

efficiently distribute resources and optimize total execution time, it is especially well

suited for applications with different and independent workloads [6]. This programming

paradigm allows for the effective use of parallel processing capabilities, which makes it

particularly relevant in systems with multiple cores and threads. Task parallelism can

significantly increase performance, responsiveness, and scalability in a variety of

computational environments, but it must be implemented with careful consideration of

task granularity, load balancing, and synchronization.

2. Data Parallelism: A well-known programming paradigm called data parallelism focuses

on carrying out the same operation on numerous data pieces at once. In order to speed up

Shared Memory
Programming

Message
Passing
Interface

Data Parallel
Programming

Task Parallel
Programming

MapReduce
Functional

Programming
Hybrid Models

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 236

computations involving huge datasets, this method makes use of the capabilities of

contemporary parallel computing architectures, such as graphics processing units (GPUs)

and multi-core CPUs. The task is split up into smaller parts in data parallelism, which are

then processed separately by parallel processing units. Applications like image

processing, simulations, and scientific computations, which require repetitive calculations

or changes on data arrays, benefit greatly from this paradigm. Because each processing

unit only processes its own subset of data, data parallelism enables software developers to

take advantage of the hardware's parallel processing capabilities without complex

synchronization [4]. Programming for data parallelism can result in significant

performance gains, allowing applications to efficiently process large volumes of data in a

fraction of the time it would take on conventional single-core systems. However, it can

also require careful consideration of data distribution and load balancing.

3. Thread-Level Parallelism (TLP): A key idea in computer design is thread-level

parallelism (TLP), which focuses on running several threads concurrently on one or more

processor cores. By taking advantage of the processing power that is already available,

such as CPU cores, this method seeks to improve performance. TLP is especially useful

for workloads that require frequent context shifts or multi-threaded programs that can be

broken up into smaller, more independent threads that can operate concurrently. TLP is

further enabled by contemporary processors with multiple cores because each core can

manage a different thread, maximizing resource usage and overall efficiency. TLP can

provide advantages like increased throughput, responsiveness, and effective use of CPU

resources [7]. The effective parallel execution of TLP, however, necessitates careful

management of thread creation, synchronization, and load balancing to avoid resource

contention. Understanding and successfully utilizing thread-level parallelism have

become crucial abilities for programmers hoping to utilize the potential of today's multi-

core processors as software development increasingly focuses on multi-threaded

applications.

4. Instruction-Level Parallelism (ILP): A fundamental idea in computer design known as

"Instruction-Level Parallelism" (ILP) centers around the concurrent execution of several

instructions within a single processor core. By effectively leveraging several CPU

execution units, this idea aims to maximize performance. ILP takes advantage of the fact

that numerous instructions in a program can be executed concurrently and independently

of one another even if they are not explicitly marked as parallel in the source code of the

program [8]. To take advantage of ILP, methods like pipelining, out-of-order execution,

and speculative execution are used. This allows the processor to fetch, decode, execute,

and complete several instructions at once. For both single-threaded and multi-threaded

programs, this method increases throughput and accelerates execution [7]. But extracting

ILP is a challenging process since it needs sophisticated hardware and clever compiler

optimizations. The efficient orchestration of the execution of various instructions in a

coordinated and parallel way is still made possible by ILP, which is a fundamental

component of the architecture of current processors.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 237

IV. PARALLEL PROGRAMMING FRAMEWORKS

Frameworks for parallel programming are crucial tools that make it easier to create

software that effectively uses the processing capacity of contemporary parallel computing

architectures. Developers can concentrate on designing algorithms rather than low-level

threading and synchronization concerns thanks to these frameworks' abstractions, libraries,

and tools for managing the complexity of parallelism. Solutions for distributed memory

communication, shared memory programming, and GPU acceleration are provided by

frameworks like OpenMP, MPI (Message Passing Interface), and CUDA, respectively.

Through the provision of directives that define parallel areas and synchronization, OpenMP

makes it possible to develop multi-threaded applications. Through standardized message

forwarding, MPI enables communication between various processes in distributed memory

systems. Developers can use CUDA to take use of GPUs' parallel processing capacity for

data-parallel computations. Large datasets may be managed across clusters more easily

thanks to distributed data processing capabilities provided by higher-level frameworks like

Apache Hadoop and Spark [9]. By bridging the gap between hardware capabilities and

software development, these frameworks are crucial in allowing programmers to fully utilize

parallel computing without having to become bogged down in complex low-level details.

1. Open MP: Multi-Threaded Shared Memory: Multi-threaded shared memory

programming is facilitated by OpenMP, a well-known parallel programming framework.

By offering a combination of compiler directives, runtime library routines, and

environment variables, OpenMP makes it easier to build multi-threaded applications by

utilizing the capability of multi-core CPUs. Through the use of pragmas, this framework

enables programmers to specify which parts of their code should be processed

concurrently. Due to the automatic management of thread formation, workload

distribution, and synchronization provided by OpenMP, many of the complexity involved

in thread-level parallelism are abstracted away. Data sharing between threads is made

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 238

possible by OpenMP's use of the shared memory model, which gives threads access to a

shared memory area without the need for explicit data moving [8]. This strategy works

especially well in applications where parallelism may be achieved by splitting up tasks

into threads that need access to the same shared data. Because of its simplicity and

portability, OpenMP is a useful tool for accelerating software on multi-core processors,

speeding up application execution, and boosting performance as a whole without

becoming bogged down in the details of low-level thread management and

synchronization.

2. MPI: Distributed Memory Message Passing: The resilient parallel programming

framework MPI (Message Passing Interface) was created for distributed memory systems

and enables effective coordination and communication across several processes or nodes.

By offering a standardized way to message forwarding, MPI, which was created for high-

performance computing clusters and supercomputers, promotes the development of

parallel applications. Processes operate in different memory areas while using MPI, and

they communicate by sending and receiving explicit messages. When data needs to be

shared between processes but is dispersed over various memory locations, this model

works well. Developers may quickly synchronize parallel jobs and share data thanks to

the variety of point-to-point communication, collective operations, and process

management functions offered by MPI. Scientific simulations, numerical modeling, and

large-scale data processing are just a few examples of applications that benefit from

MPI's abstraction of the complexities of distributed memory transfer [9]. MPI is a key

tool for creating high-performance, distributed memory programs that can successfully

take on complicated challenges over a network of interconnected nodes because to its

adaptability and widespread usage across multiple platforms.

3. CUDA: GPU Parallelism: NVIDIA created the cutting-edge parallel programming

framework CUDA (Compute Unified Device Architecture) with the express purpose of

utilizing the powerful parallel processing capabilities of graphics processing units

(GPUs). By utilizing the enormous number of cores found in modern GPUs, CUDA gives

developers the ability to expedite computations and carry out intricate calculations in

parallel. With the help of this framework, data-parallel workloads can be executed in

parallel on the GPU by splitting them up into separate threads. CUDA is a programming

interface that enables developers to express parallelism using C/C++ language extensions

while abstracting the GPU architecture's intricacies. Programmers may create algorithms

using CUDA that work with massive datasets and tens of thousands of threads at once,

enabling astounding speed improvements for work like image processing, simulations,

machine learning, and scientific computing. Additionally, CUDA offers primitives for

synchronization, memory management, and libraries that are tailored for GPU

acceleration, increasing developer efficiency and system speed [10]. Its influence across a

range of industries, from boosting real-time applications to speeding up research,

solidifies CUDA's status as a key technology for utilizing GPUs' parallel processing

capabilities.

4. MapReduce and Hadoop: To handle large-scale data processing in a distributed

computing environment, MapReduce is a programming model and processing paradigm.

By splitting up parallelizable activities into two major operations—"Map" for processing

and altering input data and "Reduce" for aggregating and summarizing the results—it

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 239

makes it easier to build them. Due to its ability to do operations concurrently across

several nodes, this method is particularly well suited for processing large datasets across

computer clusters [9]. On the other hand, Hadoop is an open-source framework that uses

the MapReduce paradigm and offers further capabilities for resource management and

distributed storage. Scalable data processing and storage are made possible by Hadoop's

fundamental components, the MapReduce processing engine and Hadoop Distributed File

System (HDFS). Hadoop is a key component of big data analytics, log processing, and

batch processing because it enables organizations and researchers to effectively manage

and analyze massive amounts of data [16]. Due to its fault tolerance, scalability, and

flexibility, it has become a key technology in the field of distributed computing,

providing a dependable answer to the problems presented by enormous datasets in a

variety of fields.

V. DESIGNING PARALLEL ALGORITHMS

It is difficult but essential to establish methods for effectively utilizing the processing

capacity of several computing units while designing parallel algorithms. By breaking up large

computational problems into smaller, concurrently executable jobs, parallel algorithms

attempt to solve them. To get the best performance, the process comprises finding

opportunities for parallelism within the problem, creating systems for task distribution and

coordination, and improving communication and synchronization. Careful consideration is

given to factors like load balancing, granularity of tasks, and minimizing dependencies

between tasks. Designing effective parallel algorithms requires a deep understanding of the

problem domain, the underlying parallel architecture, and the available programming models

or frameworks. Challenges such as managing data sharing, avoiding race conditions, and

ensuring proper synchronization must be addressed to prevent bottlenecks and ensure

correctness [10]. Parallel algorithm design spans various application areas, from scientific

simulations and data analysis to machine learning and real-time systems, making it an

essential skill for efficiently utilizing modern computing resources and achieving significant

speedups in computation-intensive tasks.

1. Decomposition and Granularity: Decomposition and granularity are fundamental

concepts in parallel computing that play a pivotal role in designing efficient parallel

algorithms. Decomposition involves breaking down a problem into smaller, manageable

tasks that can be executed concurrently. This step is crucial to exploit parallelism

effectively, as it identifies opportunities to distribute work across processing units.

Granularity, on the other hand, refers to the size and complexity of these tasks. Fine-

grained tasks are smaller and require less computation per task but might introduce higher

overhead due to increased communication and synchronization. Coarse-grained tasks

encompass more significant computations per task but can limit parallelism potential by

not fully utilizing available processing units. Striking the right balance between

granularity levels is crucial; an optimal decomposition and granularity strategy can

significantly impact the efficiency of parallel algorithms. Choosing the appropriate

decomposition strategy depends on the problem's inherent structure and the underlying

parallel architecture. Task dependencies, load balancing considerations, and the

availability of parallel resources all influence the decomposition process. For example,

data decomposition divides tasks based on the data they operate on, suitable for tasks with

inherent data parallelism like matrix operations. Functional decomposition divides tasks

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 240

based on the operations they perform, suitable for tasks with complex interdependencies

[11]. Hybrid approaches combine these strategies to optimize parallel execution. In

parallel algorithm design, understanding the trade-offs between task granularity and the

overhead introduced by communication and synchronization is vital. Striving for an

optimal balance ensures that parallel computations effectively leverage the available

resources, leading to enhanced performance and efficiency in a variety of computational

scenarios.

2. Load Balancing: Load balancing is a critical aspect of parallel computing that involves

distributing computational tasks evenly across available processing units to ensure

efficient resource utilization and optimal performance. In parallel environments, tasks

might have varying computational complexities, leading to situations where some

processing units are underutilized while others are overwhelmed. Load imbalance can

hinder overall system efficiency, leading to longer execution times and underutilization of

hardware resources. Load balancing techniques aim to mitigate load imbalance by

dynamically redistributing tasks among processing units during runtime. This can involve

migrating tasks from heavily loaded units to less utilized ones or breaking down large

tasks into smaller subtasks that can be distributed more evenly. Dynamic load balancing

algorithms analyze the workload distribution and make real-time decisions to optimize

task allocation. Load balancing strategies must consider factors such as communication

overhead, data dependencies, and the characteristics of the parallel architecture. Overhead

introduced by task migration or communication to rebalance the load should not outweigh

the benefits gained from achieving balance. Effective load balancing is crucial for

achieving the full potential of parallel computing systems, ensuring that processing units

work collaboratively and efficiently to solve complex problems [12]. Well-designed load

balancing algorithms contribute to reduced execution times, improved system utilization,

and enhanced scalability, making them a vital component of high-performance computing

environments.

3. Data Partitioning and Distribution: Data partitioning and distribution are integral

components of parallel computing that involve breaking down and allocating data across

processing units to enable efficient parallel processing. In data-intensive applications,

distributing data effectively is essential for minimizing communication overhead and

maximizing resource utilization. Data partitioning strategies determine how data is

divided and assigned to processing units, and data distribution mechanisms handle the

actual movement of data to these units. Data partitioning methods can be categorized as

static or dynamic. Static methods divide data before computation begins, ensuring that

tasks are well-balanced from the outset. Dynamic methods, on the other hand, adapt to

changing workloads during runtime, allowing for more responsive load balancing. Data

distribution techniques include block-wise distribution, where data is divided into fixed-

size blocks and assigned to processing units, and cyclic distribution, where data is

distributed in a round-robin fashion. Other methods involve distributing data based on the

data's characteristics, such as its key or range [9]. These strategies aim to minimize data

movement while maximizing parallel processing efficiency. Choosing the appropriate

data partitioning and distribution strategy depends on the problem's nature, the

architecture of the parallel system, and the communication costs involved. Effective data

partitioning and distribution enhance overall parallel application performance by reducing

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 241

communication bottlenecks, minimizing load imbalances, and optimizing resource

utilization.

4. Communication and Synchronization: Communication and synchronization are vital

aspects of parallel computing that ensure efficient collaboration among processing units

and correct execution of parallel algorithms. Communication involves the exchange of

data and information between different processing units, while synchronization refers to

coordinating the execution of tasks to maintain the correct order and consistency of

operations. In parallel computing, processing units often work on separate tasks that may

require sharing data or coordinating their activities. Effective communication

mechanisms, such as message passing or shared memory, enable processing units to

exchange data and coordinate actions. Message passing, commonly used in distributed

memory systems, involves explicit sending and receiving of messages between processes.

Shared memory, prevalent in multi-core systems, allows processing units to access a

common memory space, simplifying data sharing but requiring synchronization to

prevent race conditions. Synchronization ensures that tasks are executed in the correct

sequence and that shared resources are accessed safely. Locks, semaphores, and barriers

are synchronization mechanisms used to manage access to shared resources and

coordinate the execution of parallel threads or processes. However, excessive

synchronization can introduce bottlenecks, limiting parallelism and overall performance.

Balancing communication and synchronization is crucial; excessive communication can

lead to increased overhead, while improper synchronization can cause deadlocks or

reduce parallelism potential [14]. Effective communication and synchronization strategies

are essential for ensuring the correctness, reliability, and performance of parallel

applications, enabling processing units to collaborate seamlessly while maintaining the

desired order of operations.

VI. CHALLENGES AND CONSIDERATIONS

Parallel computing offers significant potential for accelerating computation and

handling vast amounts of data. However, it comes with challenges such as managing data

sharing and synchronization, load balancing, and ensuring scalability. Debugging and

diagnosing errors are complex due to non-deterministic execution. Energy efficiency and

choosing the right programming model are also key concerns [13]. Addressing these

challenges is crucial for effectively harnessing the benefits of parallel computing and

achieving improved performance in diverse applications.

1. Data Dependencies: Data dependencies are relationships between instructions in a

program that dictate the order in which they must be executed. They involve cases where

an instruction relies on the output of another instruction. These dependencies include

Read After Write (RAW), Write After Read (WAR), and Write After Write (WAW)

dependencies. Managing these dependencies is vital in parallel execution, as they affect

the order and timing of instruction execution [13]. Careful handling of data dependencies

is essential to achieve efficient parallel processing and optimize program performance.

2. Race Conditions and Deadlocks: Race conditions and deadlocks are critical challenges

in parallel and concurrent programming. Race conditions occur when multiple threads

access shared resources simultaneously, leading to unpredictable results due to the timing

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 242

of execution. Deadlocks, on the other hand, arise when multiple threads are blocked,

unable to proceed because they're waiting for resources held by each other. Both issues

can cause program failures, incorrect behavior, and crashes. Preventing race conditions

requires proper synchronization mechanisms to ensure safe access to shared resources

[14]. Avoiding deadlocks involves careful resource management and synchronization.

Addressing these challenges is essential to ensure the correctness, reliability, and stability

of parallel and concurrent programs.

3. Scalability and Efficiency: Scalability and efficiency are vital goals in the realm of

parallel and distributed computing. Scalability focuses on maintaining performance as

systems expand, achieved through effective load balancing and resource utilization.

Efficiency, on the other hand, emphasizes achieving optimal results with minimal

resources, involving efficient algorithms, communication patterns, and hardware

utilization. Balancing these objectives requires careful consideration, as increasing

scalability might introduce communication overhead, while maximizing efficiency could

limit scalability potential [13]. Striking the right equilibrium is essential to leverage the

benefits of parallel and distributed computing for diverse applications effectively.

4. Debugging and Profiling: Debugging and profiling are crucial components of successful

parallel and distributed computing. Debugging addresses the intricate challenges of

identifying and rectifying errors in parallel programs, such as race conditions and

deadlocks, by employing specialized tools and techniques. Profiling, on the other hand,

focuses on optimizing performance by analyzing a program's execution, identifying

bottlenecks, and uncovering areas for improvement [14]. Both processes are essential for

creating reliable and efficient parallel applications, enabling developers to ensure

correctness and enhance performance in the complex landscape of parallel and distributed

computing.

VII. PARALLELISM IN SPECIFIC DOMAINS

Parallelism plays a transformative role in numerous specialized domains,

revolutionizing the way complex challenges are tackled and computations are executed. In

scientific simulations, it expedites intricate calculations, enabling accurate investigations in

fields such as physics, chemistry, and climate science. The realm of data analytics benefits

from technologies like MapReduce and Apache Spark, which leverage parallelism to swiftly

process immense datasets, revealing valuable insights in big data. Machine learning advances

are driven by parallelism, as GPUs and distributed processing accelerate model training and

real-time predictions. In genomics, parallel algorithms unravel genetic patterns from

extensive data, hastening discoveries in genetics and personalized medicine. Financial

modeling leverages parallel computations to refine risk assessments, portfolio management,

and trading strategies. Industries like oil and gas harness parallel simulations for rapid

resource exploration. Computer graphics achieve realism and interactivity through parallel

GPU rendering. Parallelism is fundamental to bioinformatics, weather forecasting, and high-

performance computing clusters, powering breakthroughs in drug discovery, meteorology,

and scientific research [15]. In every domain, parallelism unlocks computational power,

fostering innovation, insights, and solutions that were once out of reach due to limitations in

computing capacity.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 243

1. Scientific Simulations: Scientific simulations involve using computational models to

replicate real-world phenomena across various scientific disciplines. Parallelism has

revolutionized this process by dividing complex calculations into smaller tasks that can be

processed concurrently on multiple computing units. This approach accelerates simulation

runtimes, allowing researchers in fields like physics, chemistry, climate science, and

engineering to achieve more accurate results in less time. Parallel simulations have led to

breakthroughs in understanding particle interactions, molecular dynamics, climate

systems, and more, significantly advancing scientific knowledge and innovation.

2. Data Analytics and Big Data: Parallel computing has revolutionized data analytics and

big data processing by enabling the efficient analysis of vast and complex datasets.

Traditional sequential methods are inadequate for today's data volumes, making

parallelism essential. Technologies like MapReduce and frameworks such as Hadoop

distribute tasks across multiple processing units, accelerating tasks like data cleaning,

transformation, and statistical analysis. In machine learning and AI, parallel processing

significantly reduces training times for complex models [16]. This approach empowers

organizations to extract valuable insights, make informed decisions, and gain a

competitive advantage in the data-driven landscape of modern industries.

3. Machine Learning and Deep Learning: Machine learning and deep learning, at the

forefront of artificial intelligence (AI), have witnessed remarkable advancements through

the utilization of parallel computing techniques, driving breakthroughs in various

applications. Parallelism plays a critical role in accelerating the training of machine

learning models, which involves processing enormous amounts of data to adjust model

parameters. Graphics processing units (GPUs) are particularly well-suited for this task, as

they consist of numerous cores that can perform parallel computations. Due to the ability

to divide and process training tasks simultaneously, complicated model training can be

completed faster. Deep learning, a branch of machine learning, uses parallelism even

more to handle challenging tasks like speech and picture recognition. Layers in deep

neural networks are responsible for processing data as it moves through the network. The

simultaneous processing of data across multiple layers and nodes is made possible by

parallelism, which accelerates and optimizes calculations. [10] Parallelism's success in

deep learning and machine learning has been crucial in advancing AI. Applications

include everything from computer vision and natural language processing to autonomous

vehicles and medical diagnosis. Parallel computing is still essential to enabling timely

model updates as the demands for more precise and complex models increase.

4. Image and Signal Processing: Image and signal processing have undergone a revolution

because to parallel computing, which makes it possible to analyze audio and visual data

quickly and effectively. Parallelism speeds up operations like filtering, enhancing, and

feature extraction in image processing. The processing of many segments of an image

simultaneously is made possible by multicore CPUs and GPUs, which speeds up

operations like object recognition, edge detection, and image denoising. The real-time

generation of high-quality visuals for video games and computer graphics applications

also relies heavily on parallel approaches. Parallelism also improves signal processing,

which is important in fields like telecommunications and audio analysis. Tasks like

Fourier transforms, filtering, and data compression are accelerated using parallel

algorithms. Real-time audio and video processing, as well as activities like speech

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 244

recognition and music analysis, are made possible by the use of graphics processing units

(GPUs), which play a key role in speeding up these computations [15]. Medical imaging

is another area where parallel computing is used for image and signal processing. Here, it

speeds up processes like MRI reconstruction and picture segmentation. Additionally, it

helps with seismic imaging for resource exploitation, video surveillance for security

purposes, and remote sensing for analyzing the environment. Overall, parallel computing

has changed the way that image and signal processing is done, allowing for quick

analysis, real-time functionality, and the handling of enormous datasets. Its effects can be

seen in all sectors that use visual and auditory data, including entertainment, healthcare,

scientific research, and more.

VIII. PERFORMANCE EVALUATION AND OPTIMIZATION

In parallel computing, performance evaluation and optimization are essential for

maximizing resource efficiency and improving program execution. To determine how

successfully an application uses parallelism, performance evaluation entails monitoring

important metrics including execution time, speedup, and scalability. By finding and

eliminating inefficiencies, optimization, which can range from algorithmic changes to

system-level optimizations, tries to enhance performance. With the help of profiling tools,

developers can identify areas that could use improvement, leading to more efficient parallel

algorithms, less communication overhead, and better load balancing. This iterative approach

makes sure that parallel applications run well, utilizing all parallel resources to their fullest

capacity and offering optimal performance in a variety of computing environments.

1. Measuring Speedup and Efficiency: In order to evaluate the influence and efficacy of

parallel computing, speedup and efficiency measurements are essential. The improvement

in execution time brought about by parallelization is quantified by Speedup and

contrasted with sequential execution. Efficiency measures how effectively parallel

processing resources are used by comparing the speedup obtained to the total number of

processing units [10]. In order to attain optimal performance in a variety of computing

settings, both Metrix offer useful insights into the advantages and resource consumption

of parallel programs, driving optimization efforts, load balancing techniques, and

communication improvements.

2. Amdahl's Law and Gustafson's Law: The fundamental laws of parallel computing,

Amdahl's Law and Gustafson's Law, offer crucial insights into the potential advantages

and limitations of parallelization. Gene Amdahl's law, which states that a program's

speedup from parallelization is limited by the percentage of its code that cannot be

parallelized, was developed. This law emphasizes how important it is to optimize crucial

sequential parts of a program in order to maximize the benefits of parallel processing.

John Gustafson's law, in contrast, puts more emphasis on scalability with problem size. It

acknowledges that when the number of processors rises, the issue size may as well,

resulting in a bigger proportion of the program that can be parallelized [15]. According to

this viewpoint, parallel processing is more advantageous for larger problems since the

non-parallelizable element of the problem takes up less of the total execution time. These

rules help practitioners create and optimize efficient parallel programs by providing

insightful perspectives on the complex trade-offs and potentials of parallel computing.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 245

3. Parallel Overheads and Bottlenecks: Critical elements that can have a substantial

impact on the effectiveness and performance of parallel computing systems are overheads

and bottlenecks. Parallel overheads encompass the additional time and resources needed

to manage parallel execution, stemming from communication, synchronization, and load

balancing challenges. Communication overhead arises due to data exchange between

processors, synchronization overhead results from threads or processes waiting for

coordination, and load balancing overhead occurs when tasks aren't evenly distributed

among processing units. Bottlenecks, on the other hand, represent points of congestion

that limit overall performance. These bottlenecks can occur in various parts of the system,

such as memory access, computation, or communication. Mitigating these challenges

requires optimizing communication patterns, employing efficient synchronization

techniques, and implementing load balancing strategies to reduce parallel overheads.

Additionally, identifying and addressing bottlenecks involve profiling the application,

understanding system architecture, and implementing targeted optimizations. Effectively

managing both parallel overheads and bottlenecks is essential for achieving optimal

performance and harnessing the benefits of parallel computing.

IX. FUTURE TRENDS IN PARALLEL COMPUTING

The future of parallel computing is marked by dynamic trends that promise to reshape

the landscape of computing. Heterogeneous computing will gain prominence, integrating

diverse processing units like CPUs, GPUs, and accelerators for optimized performance.

Quantum computing's potential will continue to intrigue, revolutionizing cryptography,

optimization, and material science with its inherent quantum parallelism. Distributed deep

learning will become vital, enabling faster model training through parallelism across

machines. Edge computing will leverage parallel techniques for real-time data processing,

enhancing IoT applications. Quantum-inspired computing will advance in simulating

quantum behavior for various tasks. AI and natural language processing will see increased

parallelism adoption for faster model training and inference. Automation will simplify

parallel programming through advanced tools, and parallel computing will also focus on

resilience with fault-tolerant mechanisms [14]. In essence, the future of parallel computing

points to a more diverse and interconnected computing ecosystem, addressing the challenges

of complex applications and data-intensive tasks with efficiency and innovation.

1. Quantum Computing: Quantum computing is an innovative and transformative

paradigm in computing that harnesses the principles of quantum mechanics to process

information in fundamentally new ways. Unlike classical computers that use bits to

represent either a 0 or a 1, quantum computers use quantum bits, or qubits, which can

exist in multiple states simultaneously due to superposition and entanglement. This

unique property of qubits enables quantum computers to perform complex calculations at

an unprecedented speed, making them particularly suited for tackling problems that are

computationally infeasible for classical computers. Tasks such as factoring large

numbers, simulating quantum systems, optimizing complex systems, and cryptography

can be revolutionized by quantum computing. Quantum computers are not merely faster

versions of classical computers; they excel in solving specific problems due to their

inherent parallelism and ability to explore multiple solutions simultaneously. But creating

and keeping stable qubits is a huge technical problem that frequently calls both extremely

low temperatures and exact control over quantum states. In order to lessen the

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 246

consequences of the noise and errors that are inherent in quantum systems, quantum error

correction approaches are being developed. Quantum computing research is growing

quickly, despite the fact that practical, large-scale quantum computers are still being

developed [15]. Researchers and developers may now explore the potential of this

ground-breaking technology thanks to the development of quantum algorithms, computer

languages, and cloud computing services. It is believed that quantum computing will have

a major impact on a variety of sectors, including drug discovery, materials research,

optimization, and cryptography, ushering in a new era of computation.

2. Neuromorphic Computing: An innovative method of computing known as

"neuromorphic computing" takes its cues from the structure and operation of the neural

networks in the human brain. The goal of this paradigm is to develop parallel, highly

effective computing systems that can mimic how the brain processes information.

Neuromorphic computing uses networks of artificial neurons and synapses to process

information in a more brain-like manner than conventional digital computing, which

focuses on binary operations and sequential processing. These systems make use of the

idea of "spiking neural networks," in which information is transmitted via activity spikes

or pulses rather than fixed binary values. Numerous benefits of neuromorphic computing

exist, including the possibility for parallel processing and energy efficiency.

Neuromorphic systems have the ability to mirror the efficiency of the brain's operation,

which makes them suited for use in edge computing, the Internet of Things, and robotics.

Additionally, the parallel nature of neuromorphic computing is well-suited for tasks like

pattern recognition, sensory processing, and complex simulations. Researchers and

organizations are developing neuromorphic hardware and software platforms to realize

these benefits. These platforms range from specialized chips with neuromorphic

architectures to software frameworks that allow the simulation and programming of

spiking neural networks [17]. As these technologies advance, neuromorphic computing

holds the potential to drive innovations in artificial intelligence, cognitive computing, and

brain-inspired computing paradigms that can tackle complex problems in novel ways.

3. Exascale Computing: Exascale computing, the pursuit of achieving a quintillion

calculations per second, represents a monumental advancement in high-performance

computing. Beyond its unprecedented processing speed, exascale computing addresses

intricate challenges involving energy efficiency, data management, resilience, and

scalability. Its potential is vast, offering transformative impacts across scientific research,

drug discovery, data analytics, and AI [15]. Collaborative efforts worldwide are driving

the development of exascale systems, ushering in a new era of computational capabilities

that have the potential to revolutionize fields, accelerate innovation, and tackle complex

problems on an unprecedented scale.

X. CONCLUSION

Parallel computing has emerged as a cornerstone of modern computational solutions,

enabling us to tackle complex problems, process vast amounts of data, and achieve

unprecedented levels of performance. This journey through the realm of parallel computing

has uncovered its diverse facets, from its foundational concepts to its practical applications

across various domains. Parallel computing involves simultaneous execution of multiple

tasks to enhance performance and solve intricate challenges more efficiently. Parallel

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 247

computing empowers scientific simulations, data analytics, artificial intelligence, and more,

ushering breakthroughs in research, industry, and technology. Task, data, thread-level, and

instruction-level parallelism offer different ways to harness the power of concurrency and

optimize performance. From shared and distributed memory systems to multi-core processors

and GPU acceleration, a diverse range of hardware architectures fuels parallel computation.

OpenMP, MPI, CUDA, and more provide frameworks to develop efficient parallel programs,

utilizing various forms of parallelism. Decomposition, granularity, load balancing, and data

distribution are pivotal considerations for crafting effective parallel algorithms. Overheads,

bottlenecks, data dependencies, race conditions, scalability, and debugging pose challenges in

achieving optimal parallel performance. Parallel computing extends its reach to domains like

scientific simulations, image processing, machine learning, and data analytics, accelerating

advancements. Quantum computing, neuromorphic computing, exascale computing, and

other emerging trends promise new horizons for parallelism.

REFERENCES

[1] Brown, D. W., Ford, V., & Ghafoor, S. K. (2020, May). A framework for the evaluation of parallel and

distributed computing educational resources. In 2020 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW) (pp. 261-268). IEEE.

[2] Hockney, R. W., & Jesshope, C. R. (2019). Parallel Computers 2: architecture, programming and

algorithms. CRC Press.

[3] Fernando, R., Komargodski, I., Liu, Y., & Shi, E. (2020). Secure massively parallel computation for

dishonest majority. In Theory of Cryptography: 18th International Conference, TCC 2020, Durham, NC,

USA, November 16–19, 2020, Proceedings, Part II 18 (pp. 379-409). Springer International Publishing.

[4] Byeon, S. P., & Lee, D. Y. (2020). Method for real-time simulation of haptic interaction with deformable

objects using GPU-based parallel computing and homogeneous hexahedral elements. Computational

Mechanics, 65(5), 1205-1218.

[5] Zhao, L., Zhou, Y., Lu, H., & Fujita, H. (2019). Parallel computing method of deep belief networks and its

application to traffic flow prediction. Knowledge-Based Systems, 163, 972-987.

[6] [6] Koziel, B., Ackie, A. B., El Khatib, R., Azarderakhsh, R., & Kermani, M. M. (2020). SIKE’d up: Fast

hardware architectures for supersingular isogeny key encapsulation. IEEE Transactions on Circuits and

Systems I: Regular Papers, 67(12), 4842-4854.

[7] Ji, S., Satish, N., Li, S., & Dubey, P. K. (2019). Parallelizing word2vec in shared and distributed

memory. IEEE Transactions on Parallel and Distributed Systems, 30(9), 2090-2100.

[8] Pandey, R., & Badal, N. (2019, March). Understanding the Role of Parallel Programming in Multi-core

Processor Based Systems. In Proceedings of 2nd International Conference on Advanced Computing and

Software Engineering (ICACSE).

[9] Andrade, G., Griebler, D., Santos, R., & Fernandes, L. G. (2023). A parallel programming assessment for

stream processing applications on multi-core systems. Computer Standards & Interfaces, 84, 103691.

[10] Sakane, S., Takaki, T., & Aoki, T. (2022). Parallel-GPU-accelerated adaptive mesh refinement for three-

dimensional phase-field simulation of dendritic growth during solidification of binary alloy. Materials

Theory, 6(1), 3.

[11] Xia, D., Ning, F., & He, W. (2020). Research on parallel adaptive canopy-k-means clustering algorithm

for big data mining based on cloud platform. Journal of Grid Computing, 18, 263-273.

[12] Rashid, Z. N., Zeebaree, S. R., & Shengul, A. (2019, April). Design and analysis of proposed remote

controlling distributed parallel computing system over the cloud. In 2019 International Conference on

Advanced Science and Engineering (ICOASE) (pp. 118-123). IEEE.

[13] Poenaru, A., Lin, W. C., & McIntosh-Smith, S. (2021, June). A performance analysis of modern parallel

programming models using a computer-bound application. In International Conference on High

Performance Computing (pp. 332-350). Cham: Springer International Publishing.

[14] Jääskeläinen, P., Korhonen, V., Koskela, M., Takala, J., Egiazarian, K., Danielyan, A., ... & McIntosh-

Smith, S. (2019). Exploiting task parallelism with OpenCL: a case study. Journal of Signal Processing

Systems, 91, 33-46.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-671-7

IIP Series, Volume 3, Book 9, Part 5, Chapter 5

 PARALLEL COMPUTING

Copyright © 2024 Authors Page | 248

[15] Madiajagan, M., & Raj, S. S. (2019). Parallel computing, graphics processing unit (GPU) and new

hardware for deep learning in computational intelligence research. In Deep learning and parallel

computing environment for bioengineering systems (pp. 1-15). Academic Press.

[16] Moradifar, M., Shahbahrami, A., Nematpour, M., & Amiri, H. (2019). Performance improvement of

multimedia Kernels using data-and thread-level parallelism on CPU platform. In High-Performance

Computing and Big Data Analysis: Second International Congress, TopHPC 2019, Tehran, Iran, April 23–

25, 2019, Revised Selected Papers 2 (pp. 459-467). Springer International Publishing.

[17] Hepola, K., Multanen, J., & Jääskeläinen, P. (2022, September). Dual-IS: Instruction Set Modality for

Efficient Instruction Level Parallelism. In International Conference on Architecture of Computing Systems

(pp. 17-32). Cham: Springer International Publishing.

