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LAMINAR AND TURBULENT FLOW 
 

Abstract 

 

 There are numerous approaches to 

visually represent flow patterns, whether they 

involve laminar or turbulent flows. A highly 

compelling method to illustrate these 

distinctions involves observing the 

disturbances occurring on the surface of a 

water stream emerging from a cylindrical 

tube. Captured through flash photography, 

these images vividly showcase the 

characteristics of water flow within pipes. 

They effectively highlight the disparity 

between turbulent and laminar flow, 

providing an accessible means to collect data 

for the analysis of conditions that give rise to 

both types of flow. 

 
 While there exist research articles 

centered around turbulence measurements 

that utilize advanced equipment, they do not 

employ the perturbations occurring on the 

free surface of the flowing liquid as a means 

to demonstrate or quantify turbulence. 

 

Keywords: Types of flow, Turbulence, 

Velocity distribution, Losses in pipes, Power 

dissipation.  
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I. INTRODUCTION 

 

 A conduit has a closed boundary where the flow is confined to be wholly internal.  It 

is in this sense, the conduit flow is also referred as a confined flow or internal flow.  Though 

a conduit may be of any shape, circular shapes are common and equations are primarily 

stated for circular cross sections. 

 

 Computation of fluid flow in conduits was one of the earliest problems of engineers 

and in modern technology it is encountered in many branches of engineering. Civil. 

Mechanical. Aeronautical, chemical. etc.  Consequently considerable advances. Both in the 

theoretical and in the experimental, work have been made. 

 

 Any attempt in understanding conduit flow shall have to be towards the aim of 

computing the pressure losses in the flow.  Field problems like pipeline systems, ventilating 

and air conditioning systems, chemical plant systems require the pressure drop characteristics 

for their designs.  The importance of accurate knowledge of pressure losses is enhanced 

because of large, sophisticated modern conduit systems.  Even marginal reductions in 

pressure losses in such cases are known to yield enormous savings, 

 

II. REYNOLDS EXPERIMENT 

 

 Two states of flow have been introduced under Sec.5.4 the orderly laminar flow and 

the complex turbulent flow.  These two states of flow are distinctly different warranting 

independent analysis.  Qualitative description of the state of flow is then not sufficient. But 

one needs to understand deeper to know when a flow would remain laminar or turbulent. 

 

 Osborne Reynolds. An English scientist in 1883 was interested in obtaining a 

quantitative criterion to determine whether a flow in a pipe is laminar or turbulent.  He 

constructed simple equipment shown schematically in Fig.1 and performed experiments 

under well controlled conditions.  He arranged to introduce a fine thread of colored dye into 

water flowing from a large tank into a fairly long glass cylinder; the speed of the water is 

controlled through throttling the valve at the end of the glass tube.  At small velocities he 

found that the dye 

 
 

Figure 1: Reynolds apparatus. 
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 Filament remained a thin, straight streak parallel to the direction of flow indicating 

that the water particles moved in streamlines or in laminas.  There was no mixing with the 

adjacent laminas, thus it demonstrates clearly the laminar state of flow.  When the velocity of 

flow was increased gradually, the dye filament began to waver at some stage (see Fig. 2).  

When the velocity was further increased the dye streak broke and diffused to spread across 

the entire cross section of the tube in a disorderly fashion.  This indicates a chaotic motion of 

the fluid particles mixing crosswise which establishes turbulent flow. 

 

 
Figure 2 

 

 Reynolds intuitively thought that the stability of the flowing particles should be 

influenced by the physical quantities, velocity, diameter, density and viscosity.  The first 

three he argued to have like tendency because increasing values of velocity, diameter and 

density would help to bring in instability.  On the contrary, increasing viscosity would only 

try to damp out any disturbances that are introduced.  Accordingly he thought that a quantity 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  ×𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟  ×𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
   =  

Vd ρ

𝜇
 

 

Might be a criterion.  He further observed that this group is a mere dimension-less number 

which again guided his thinking that all natural phenomena should be influenced only by the 

nature of physical quantities and not by their magnitudes.  Hence natural phenomena must be 

functions of dimensionless group of physical quantities.  This dimensionless number, 

subsequently named after Reynolds, has been found to acquire an important status in the 

analysis of fluid flow. Being dimensionless, it must be valid for any fluid, liquid or gas. 

 

It was later understood on a physical level that the Reynolds number represents a 

straightforward ratio of inertial forces to viscous forces.  That is Reynolds Number (Re) 

It is defined as the ratio of the inertia force to the viscous force. 

 

Inertia force  𝐹𝑖  = mass × acceleration 

   = ρ × Volume ×
Velocity

𝑡𝑖𝑚𝑒
 

   = ρ × 
Volume

𝑡𝑖𝑚𝑒
   ×  Velocity 

             = ρ  × AV × V      ∵ 𝑉𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑎𝑟𝑒𝑎 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝐴𝑉  
                        = ρ AV2 

Viscous force (Fv) = shear stress ×  area = τ × A 

   =  𝜇 
𝑑𝑢

𝑑𝑦
  × A 
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   = μ 
𝑉

𝐿
 × A                                                               ∵

𝑑𝑢

𝑑𝑦  
=  

𝑉

𝐿
     

∴  Reynolds number, Re = 
𝐹𝑖

𝐹𝑣
 =  

ρ AV 2

μ ×  
𝑉

𝐿
 × A

 = 
ρVL

μ
  

  i.e.                                Re = 
ρVL

μ
  = 

𝑉𝐿

μ/ρ
 = 

𝑉𝐿

v
                                       ∵ 𝑣 =  

μ

ρ
   

 For pipe flow (where the linear dimension is taken as diameter, d), 

      Re = 
𝑉𝑑

v
 =   

Vd ρ

𝜇
  ------------------ (1) 

 

 For flow through circular pipes, it has generally been accepted now that if RN is less 

than 2000 laminar flow is sustained.  Low values of RN indicate the relative influence of 

viscous forces over the inertia forces; the inertial tendencies of the disturbing forces are 

suppressed by the viscous shear to establish a laminar flow field.  When RN is greater than 

4000 the flow becomes fully turbulent where viscous forces are no longer capable of damping 

out the increased inertial strength of the disturbances.  Between Reynolds number of 2000 

and 4000 a region of uncertain behavior called transition prevails.  As changes cannot be 

abrupt in nature the transition from one type of flow to another alternates back and forth 

between laminar and turbulent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Critical reynolds number 

 

III. LAMINAR FLOW OR VISCOUS FLUID FLOW 

 

1. Flow of Viscous Fluid in Circular pipes – Hagen Poiseuille Law   

Hagen- poiseuille theory is based on the following assumptions: 

 The fluid follows Newton‘s law of viscosity. 

 There is no slip of fluid particles at the boundary (I.e.i the fluid particles adjacent to 

the pipe will have zero velocity). 

 

Fig. 3 shows a horizontal circular pipe of radius R, having laminar flow of fluid through 

it.  Consider a small concentric cylinder (fluid element) of radius r and length dx as a free 

body. 

 
 

Figure 3: Viscous/laminar flow through a circular pipe. 

 

If τ is the shear stress, the shear force F is given by 

F = τ × 2πr × dx 

Let P be the intensity of pressure at left end and the intensity of pressure at the right end 

be 

[P + 
𝜕𝑝

𝜕𝑥
 .dx] 

Thus the forces acting on the fluid element are: 

 The shear force,  τ × 2πr × dx on the surface of fluid element. 

 The pressure force, P The shear force,  P × 2πr2 on the left end. 
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 The pressure force, [P + 
𝜕𝑝

𝜕𝑥
 .dx] πr2 on the right end. 

For steady flow, the net force on the cylinder must be zero. 

∴           [P × πr2  - [P + 
𝜕𝑝

𝜕𝑥
 . dx] - π r2] - τ × 2πr × dx = 0 

                             Or,      
𝜕𝑝

𝜕𝑥
 . dx × π r2 - τ × 2πr × dx = 0 

                             Or,    τ = - 
𝜕𝑝

𝜕𝑥
,  

𝑟

2
.        -------------- (7.2) 

 

Eqn. (2) Indicates that fluid flow will happen solely when a pressure gradient 

exists in the flow direction, and the negative sign signifies a decrease in pressure along 

the flow path. 

 

Eqn. (2) suggests that the distribution of shear stress across a section is linear, as 

depicted in fig 4 (a). Its absolute value becomes zero at the pipe's center (r = 0) and 

reaches its peak value at the pipe wall. 

 

 
Figure 4: Shear stress and velocity distribution across a section. 

 

Velocity Distribution: To obtain the velocity distribution across a section, the value of 

shear stress   τ = μ . 
𝑑𝑢

𝑑𝑦
 is substituted in equation (7.2) 

 

In this equation, the distance y is measured from the edge.  The relationship 

between radial distance r and distance y can be expressed as follows 

Y =R – r  or  dy = - dr 

 

∴  τ = μ  
𝑑𝑢

−𝑑𝑟
  = - μ . 

𝑑𝑢

𝑑𝑟
   …..(7.3)     

 

When we compare the two τ values from equations (7.2) and (7.3), we obtain the 

following 

  

- μ  
𝑑𝑢

𝑑𝑟
 = - 

𝜕𝑝

𝜕𝑥
,  

𝑟

2
. 

Or,                                                          du = 
1

2𝜇
 [

𝜕𝑝

𝜕𝑥
] r .dr 

                Integrating the  above equation w.r.t ‗r‘ we get 

                                                          u = 
1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
  r2 + C 
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Where C is the constant of integration and its value is obtained from the boundary 

condition 

r = R, u =0 

0 = 
1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
  R2 + C     or,     C = - 

1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
 .  R2 

 

Substituting this value of C in eqn. (7.2), we get 

u = 
1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
  r2 - 

1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
 .  R2 

   u = - 
1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
 . ( R2 – r2)  ………..(7.4) 

 

Eq (7.4) shows that the velocity distribution is a parabola as shown in fig 7.4.The 

maximum velocity occurs at the centre of i.e at r = 0 and is given by 

umax=  - 
1

4𝜇
 . 

𝜕𝑝

𝜕𝑥
 .R2          ------- (7.5) 

From eqns. (7.4) and (7.5), we have 

 u= umax [1 - (
𝑟

𝑅
)2]    ------ (7.6) 

 

Eqn. (7.6) This equation is widely employed to describe the velocity distribution 

in laminar flow through pipes.  One can utilize this equation to determine the discharge in 

the following manner: 

dQ = u × 2πr × dr 

 = umax [1 - (
𝑟

𝑅
)2]2πr . dr 

Total discharge,          Q  =  ʃ dQ 

=  𝑢
R

0
max [1 - (

𝑟

𝑅
)2]2πr . dr 

= 2πr . dr  [
𝑅

0
 r - 

𝑟3

𝑅2 ] dr  

= 2π. umax[
𝑟2

2
  - 

𝑟4

4𝑅2] =2π. umax [
𝑅2

2
  - 

𝑅4

4𝑅2] 

Average velocity of flow, 𝑢  = 
𝑄

𝐴
  =  

𝜋

2     
𝑢𝑚𝑎𝑥  𝑅2

𝜋𝑅2  = 
𝑢𝑚𝑎𝑥

2
       -------------- (7.7) 

 

Eqn. (7.7) Indicates that the mean velocity is equal to half of the maximum 

velocity.. 

By replacing the value of u max from equation (7.6), we obtain the following. 

𝑢  = - 
1

8𝜇
, 
𝜕𝑝

𝜕𝑥
 .  R2 

Or,                                                                       𝜕p =  
8𝜇𝑢 

𝑅2  . 𝜕x 

 

The pressure contrast between sections 1 and 2, located at distances x1 and x2 

respectively (see Fig. 5) 
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Fig 5. is given by 

 ∂p
𝑝2

𝑝1
  =  

8𝜇𝑢 

𝑅2  .  ∂x
𝑥2

𝑥1
 

Or,                                                       (P1 - P2) = 
8𝜇𝑢 

𝑅2   (x2 - x1) =  
8𝜇𝑢 𝐿

𝑅2  {∵  x2 - x1=L 

from fig 7.5} 

                                                                                                   = 
8𝜇𝑢 𝐿

(𝐷/2)2  { ∵  R=D/2} 

Or,                                                         (P1 - P2)   =  
32𝜇𝑢 𝐿

𝐷2    , where P1- P2 is the drop of 

pressure.      

                                           ∴ Loss of pressure head =
𝑃1−𝑃2 

𝜌𝑔
 

        ∴  
𝑃1−𝑃2 

𝜌𝑔
  =hf=  

32𝜇𝑢 𝐿

𝜌𝑔𝐷2      …..(7.8) 

 

Where, D is the diameter of the pipe, and L is the length 

Eqn. (7.8) is known as the Hagen-poiseuille equation. 

 

Problems 

 

Problem 1 A crude oil of viscosity 0.9 poise and relative density 0.8 is flowing through a 

horizontal circular pipe of diameter 80 mm and of length 15m. Calculate the difference of 

pressure at the two ends of  the  pipe, if 50 kg of the oil is collected in a tank in 15 

seconds. 

Solution.  Given  : 𝜇 = 0.9 poise =  
0.9

10
= 0.09 Ns/𝑚2 

Relative density                   =0.8  

∴  𝜌0 , or density ,  = 0.8× 1000 = 800 kg/𝑚3  
Dia . of pipe,                     𝐷 = 80 mm = 0.08 m                                                                                                                             

                                            𝐿 = 15 m 

Mass of oil collected,     𝑀 = 50 kg  

In time,                               𝑡 = 15 seconds 

Calculate  difference of pressure or (𝑝1 − 𝑝2). 

The difference of pressure (𝑝1 − 𝑝2) for viscous or laminar flow is given by 

                                 𝑝1 − 𝑝2 =  
32𝜇𝑢𝐿

𝐷2 , where  𝑢  = average velocity =  
𝑄

𝐴𝑟𝑒𝑎
 

Now, mass of oil/sec            =  
50

15
 kg/s 

   =  𝜌0 × 𝑄 = 800 × 𝑄                                         (∵ 𝜌0 = 800) 
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∴                                         
50

15
 = 800 × Q 

∴                                         𝑄 =  
50

15
 ×

1

800
= 4.16 × 10−3 m3/s 

∴                                         𝑢   =  
𝑄

𝐴𝑟𝑒𝑎
=

4.16×10−3

𝜋

4
𝐷2

=
4.16×10−3

𝜋

4
(0.08)2

= 0.829 m/s. 

 

For laminar or viscous flow, the Reynolds number  (Re ) is less than 2000. Let us 

calculate the Reynolds number for this problem. 

Reynolds number,            Re
   ∗ =  

𝜌𝑉𝐷

𝜇
 

where    𝜌 =  𝜌0 = 800, 𝑉 =  𝑢 = 0.829, 𝐷 = 0.08 m, 𝜇 = 0.09 

∴                                           Re  = 800 ×
0.829×0.08

0.09
= 589.46 

As Reynolds number is less than 2000, the flow is laminar. 

∴   𝑝1 − 𝑝2  =
32𝜇𝑢𝐿

𝐷2 =  
32×0.09×0.829×15

(0.08)2    N/m2 

                                                       = 559 N/m2 = 0.5595 N/m2.  Ans.  

 

Problem 2 Laminar flow is observed within a pipe with a 100 mm diameter, exhibiting a 

maximum velocity of 2 m/s. Determine the mean velocity, along with the corresponding 

radius. Additionally, compute the The speed at a point 3 cm away from the pipe's inner 

wall.  

 

Solution.   Given   :  Dia.  Of pipe, 𝐷 = 100 𝑚𝑚 = 0.1𝑚   

  Umax  = 2 m/s 

Find 

 Mean velocity , 𝑢 

 Radius at which 𝑢 occurs  

 Velocity at 4 cm from the wall. 

 Mean velocity, 𝑢 
 

Ratio of       
Umax

𝑢
= 2.0 or 

2

𝑢
= 2.0      ∴   𝑢 =  

2

2.0
= 1 m/s. Ans. 

 

 Radius at which 𝑢  occurs 

The velocity, 𝑢, at any radius ‗ r ‘ is given by (7.4) 

  𝑢 =  −
1

4𝜇
 
𝜕𝑝

𝜕𝑥
 [R2 − r2]=  −

1

4𝜇
 
𝜕𝑝

𝜕𝑥
  R2   1 −

𝑟2

𝑅2
  

But from equation (7.5)  Umax   is given by 

     Umax  =  −
1

4𝜇
 
𝜕𝑝

𝜕𝑥
  R2       ∴   𝑢 =  Umax     1 −  

𝑟2

𝑅2 
2

   

Now the radius r at which 𝑢 = 𝑢  = 1 m/s 

∴   1 =  2  1 −  
𝑟

𝐷/2
 

2
  

                                                    = 2  1 −  
𝑟

0.1/2
 

2
 = 2  1 −  

𝑟

0.1
 

2
  

∴   
1

2
= 1 −  

𝑟

0.1
 

2

  

∴      
𝑟

0.1
 

2

= 1−  
1

2
= 1 −  

1

2
=

1

2
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∴           
𝑟

0.1
=  

1

2
=  0.5 

∴     r = 0.05 ×   . 5 = 0.05 ×  .353 = 0.03535m 

                                                      = 35.35 mm. Ans. 

 

Velocity at a distance of 3 cm from the wall. 

 
Fig 6 

r= 5 − 3 = 2 cm = 0.02 m    

∴             The speed at a specific radial position = 0.02m 
or     3 cm The distance from the pipe wall provides the following equation for velocity 

(1) 

    

         = 2  1 −  
𝑟

𝑅
 

2
 =  2  1 −  

0.02

0.05
 

2
   

   = 2  1.0 − 0.16 =  2 × 0.84 = 1.68 m/s.  Ans. 

 

Problem 3 A fluid of viscosity 0.5 𝑁 s/m2 and specific gravity 1.2 is flowing through a 

circular pipe of diameter 100 𝑚𝑚. The maximum shear stress at the pipe wall is given as 

147.15 𝑁/m2, find (a) the pressure gradient (b)the average velocity and (c) Reynold 

number of the flow. 
 

Solution.  Given   :                           𝜇 = 0.5 
𝑁𝑠

𝑚2 

                                                   Sp. gr. = 1.2 

∴      Density  = 1.2 × 1000 = 1200 kg/m3 

Dia. of pipe,                                    𝐷 = 100 mm = 0.1 m 

Shear stress,                                 τ0 = 147.15 𝑁/m2 

Find      (i)  Pressure gradient,  
dp

dx
 

             (ii) Average velocity, 𝑢 

            (iii) Reynold number , Re  

 

 Pressure gradient, 
dp

dx
 

 The maximum shear stress     (τ0) =  −
𝜕𝑝

𝜕𝑥
 
𝑅

2
 or 147.15 =  − 

𝜕𝑝

𝜕𝑥
 × 

𝐷

4
=  −  

𝜕𝑝

𝜕𝑥  
 ×  

0.1

4
 

∴                                                      
𝜕𝑝

𝜕𝑥
=  −

147.15 ×4

0.1
 = − 5886 𝑁/m2 per m 

∴                        Pressure Gradient=  −5886 𝑁/m2 per m.  Ans. 
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(ii) Average velocity , 𝑢 

                                                         𝑢 =  
1

2
  𝑈𝑚𝑎𝑥 =

1

2
 −

1

4𝜇
 
𝜕𝑝

𝜕𝑥
  R2                           ∵

 𝑈𝑚𝑎𝑥= −18𝜇 𝜕𝑝𝜕𝑥  R2  

 =  
1

8𝜇
 −   −

𝜕𝑝

𝜕𝑥
   R2 

 =  
𝟏

𝟖×𝟎.𝟓
 ×  𝟓𝟖𝟖𝟔 ×  . 𝟎𝟓 𝟐                                 ∵     𝑹 =

𝑫𝟐=𝟎.𝟏𝟐=.𝟎𝟓 

 = 3.678 m/s 

 Reynold number, 𝐑𝐞 

 R2 =  
𝑢  ×𝐷

v
=  

𝑢  ×𝐷

μ/ρ
=

ρ×𝑢  ×𝐷

μ
  

    = 1200 ×
3.678×0.1

0.5
= 882.72.  Ans. 

 

2. Flow of Viscous Fluid Between Two Parallel Plates 

 

Case-1: One plate is in motion while the other remains still, illustrating the concept of 

Couette flow 

 

Let's analyze laminar flow between two parallel flat plates separated by a distance 

'b.' In this setup, one plate remains stationary while the other moves at a constant velocity 

'U,' as illustrated in Figure 7. We will concentrate on a small rectangular fluid element 

with dimensions 'dx' in length, 'dy' in thickness, and unit width. We'll treat this fluid 
element as a free body (as shown in Figure 7) and examine the forces it encounters 

 

 
 

Figure 7: Couette Flow 

 

 The pressure force on the left side, denoted as p * dy *  

 The force due to pressure at the right end, expressed as [P + (∂p/∂x) * dx] * dy * 1. 

 The shear force on the lower surface, represented as τ * dx * 1.. 

 The shear force, [τ + 
𝜕𝜏

𝜕𝑦
 .dy] dx × 1 on the upper surface. 

 

For steady and uniform flow, there is no acceleration and hence the resultant force 

in the direction of flow is zero. 

∴                             p .dy -  [P + 
𝜕𝑝

𝜕𝑥
 .dx] dy – τ dx + [ τ + 

𝜕𝜏

𝜕𝑦
 .dy] dx = 0 

Or,                      -  
𝜕𝑝

𝜕𝑥
 .dx .dy +  

𝜕𝜏

𝜕𝑦
 .dy . dx = 0 
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Upon division by the volume of the element dx.dy, the result is 

   
𝜕𝑝

𝜕𝑥
  =  

𝜕𝜏

𝜕𝑦
                  …….(.9) 

  

Eqn. (7.9) shows the interdependence of shear and pressure gradients and is 

applicable for laminaras well as turbulent flow. According the pressure gradient, in the 

direction of flow, is equal to the shear gradient across the flow. 

 

According to Newton‘s law of viscosity for laminar flow the shear stress, τ = μ - 
𝜕𝑢

𝜕𝑦
. Substituting for τ in eqn. (7.9), we get 

𝜕𝑝

𝜕𝑥
 = μ.  

𝜕2𝑢

𝜕𝑦2 

 

Since 
𝜕𝑝

𝜕𝑥
 is independent of y, integrating the above equation twice w.r.t. y gives 

u =   
1

2𝜇
 . 

𝜕𝑝

𝜕𝑥
  y 2+ C1 y + C2   --------(7.10) 

      

Where, C1 and C2 are the constants of integration to be evaluated from the known 

boundary conditions.  In the present case the boundary conditions are:  

At                                              y = 0, u = 0, and at y = b, u = U 

∴                                                   C2 = 0,     and     C1 =  
𝑈

𝑏
  - 

1

2𝜇
  ( 

𝜕𝑝

𝜕𝑥
) b 

Consequently, when we insert the values of C1 and C2 into equation (7.10), we 

arrive at the subsequent equation, which characterizes the velocity distribution in 

generalized Couette fluid motion., 

u = (U / b) * y - 
1

2𝜇
 .  

𝜕𝑝

𝜕𝑥
   (by – y2)     ---------(7.11) 

 

Equation (7.11) Suggests that both the velocity 'U' and the spatial pressure 

gradient (∂p/∂x) play roles in shaping the velocity profile in Couette flow. However, it's 

important to highlight that the pressure gradient (∂p/∂x) in this context can take on either 

a positive or negative value. In a particular scenario where (∂p/∂x) equals zero, indicating 

the absence of a pressure gradient along the flow direction, we witness the velocity 

profile described by u = U * (y/b). This linear velocity distribution represents a specific 

case referred to as simple (or plain) Couette flow or simple shear flow 

 

We can determine the discharge per unit width (q) through the following calculation 

q =  𝑢
𝑏

0
 . dy = .

𝑏

0
 [

𝑈

𝑏
 y -   

1

2𝜇
 .  

𝜕𝑝

𝜕𝑥
   (by – y2)]dy 

=U .  
𝑏

2
  - 

𝑏3

12𝜇
 .  

𝜕𝑝

𝜕𝑥
     ------------(7.12)  

 

The application of Newton's law of viscosity enables us to establish the shear 

stress distribution across any given section, 

 τ = μ.  
𝜕𝑢

𝜕𝑦
  = μ [

𝑈

𝑏
 -  

1

2𝜇
 .  

𝜕𝑝

𝜕𝑥
   (b –2y)] 

            =μ. 
𝑈

𝑏
 -  

1

2
 .  

𝜕𝑝

𝜕𝑥
   (b –2y)     --------(7.13) 
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The flow previously described, involving a viscous fluid moving between two 

plates—one stationary and the other in motion—is commonly termed generalized Couette 

flow.. 

 

Case-2: Both Plates at Rest: In this situation, it is also essential to calculate the shear 

stress distribution, the velocity distribution across a particular section, the ratio of 

maximum velocity to average velocity, and the difference in. pressure head for a given 

length of parallel plates.   

  
 

Figure 8: Flow between stationary plates 

 

Consider two parallel fixed plates kept at a distance ‗b‘ apart as shown in Fig. 8. A 

viscous fluid is flowing between these two plates from left to right. Consider a fluid 

element of length ∆x and thickness ∆y at a distance y from the lower fixed plate.  If p is 

the intensity of pressure on the face AB of the fluid element then intensity of pressure on 

the face CD will be  𝑝 +
𝜕𝑝

𝜕𝑥
∆𝑥 . Let τ is the shear stress acting on the face BC then the 

shear stress on the face AD will be  τ +
𝜕𝑝

𝜕𝑥
∆𝑦 . If the width of the element in the 

direction perpendicular to the paper is unity then the force acting on the fluid element are: 

 The pressure force, p×∆y×1 on face AB. 

 The pressure force,  𝑝 +
𝜕𝑝

𝜕𝑥
∆𝑥 ∆y×1 on face CD. 

 The shear force, τ ×∆x×1 on face BC. 

 The shear force,  τ +
𝜕𝑝

𝜕𝑥
∆𝑦 ∆𝑥 × 1 on face AD. 

 

For steady and uniform flow, there is no acceleration and hence the resultant force 

in the direction flow is zero. 

 ∴ 𝑝∆𝑦 × 1 −  𝑝 +
𝜕𝑝

𝜕𝑥
∆𝑥 ∆𝑦 × 1 − 𝜏∆𝑥 × 1 +  τ +

𝜕𝑝

𝜕𝑦
∆𝑦 ∆𝑥 × 1 = 0 

Or  −
𝜕𝑝

𝜕𝑥
∆𝑥∆𝑦 +

𝜕τ

𝜕𝑥
∆𝑦∆𝑥 = 0 

Dividing by ∆x∆y, we get −
𝜕𝑝

𝜕𝑥
+

𝜕τ

𝜕𝑦
= 0 𝑜𝑟 

𝜕𝑝

𝜕𝑥
=

𝜕τ

𝜕𝑦
         ------------(7.14) 
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Velocity Distribution To determine the velocity distribution across a cross-section, we 

insert the shear stress value τ= 𝜇
𝑑𝑦

𝑑𝑢
 from Newton's law of viscosity for laminar flow into 

the equation. (9.6). 

 ∴  
∂p

∂x
=

𝜕

𝜕𝑦
 𝜇

𝜕𝑢

𝜕𝑦
 = 𝜇

𝜕2𝑢

𝜕𝑦 2 

 ∴   
𝜕2𝑢

𝜕𝑦 2 =
1

𝜇

𝜕𝑝

𝜕𝑥
 

 

By performing the integration of the preceding equation with respect to y, we obtain 

 
∂u

∂y
=

1

𝜇

𝜕𝑝

𝜕𝑥
𝑦 + 𝐶1     ∵

𝜕𝑝

𝜕𝑥
 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Integrating again u = 
1

𝜇

𝜕𝑝

𝜕𝑥

𝑦2

2
+ 𝐶1𝑦 + 𝐶1    … (7.15) 

 

Where 𝐶1 and 𝐶2 are constants of integrations. Their values are obtained from the 
two boundary conditions that is (i) at y=0, u=0 (ii) y=b, u=0. 

The substitution of at   y = 0, u = 0 in equation (7.15) gives 

    0 = 0 + 𝐶1 × 0 + 𝐶2  𝑜𝑟 𝐶2 = 0 
The substitution of at   y = b, u=0 in equation (7.15) gives 

    0 = 
1

𝜇

𝜕𝑝

𝜕𝑥

𝑏2

2
+ 𝐶1 × 𝑏 + 0 

 ∴                 𝐶1 =
1

𝜇

𝜕𝑝

𝜕𝑥

𝑏2

2×𝑏
= −

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑏 

Substituting the values 𝐶1 and 𝐶2 in equation (7.15) 

    u = 
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑦2 + 𝑦  −

1

2𝜇

𝜕𝑝

𝜕𝑥
𝑏   

or     u = −
1

2𝜇

𝜕𝑝

𝜕𝑥
[𝑏𝑦 − 𝑦2]    … (7.16) 

 

In the given formula, μ, ∂p/∂x, and b remain unchanged. This implies that u 

changes proportionally to the square of y. As a result, equation (7.16) represents the form 

of a parabola. As a result, the velocity profile within the parallel plate segment adopts a 

parabolic form. You can see this velocity distribution depictedin Figure 9 (a). 
 

 
Figure 9 

 

This diagram portrays the velocity and shear stress distribution along a section of 

parallel plates. 

 

 The connection between maximum velocity and average velocity can be understood 
by noting that the highest velocity is reached when y = b/2. Plugging this value into 

equation (7.16), we get: 
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𝑼𝒎𝒂𝒙 = −
1

2𝜇

𝜕𝑝

𝜕𝑥
 𝑏 ×

𝑏

2
−  

𝑏

2
 

2

  

           = −
1

2𝜇

𝜕𝑝

𝜕𝑥
 
𝑏2

2
−

𝑏2

4
 = −

1

2𝜇

𝜕𝑝

𝜕𝑥

𝑏2

4
= −

1

8𝜇

𝜕𝑝

𝜕𝑥
𝑏2  … (7.17) 

 

The average velocity, 𝑢 , is obtained by dividing the discharge (Q) across the 

section by the area of the section (b×1). And the discharge Q is obtained by 

considering the rate of fluid through the strip of thickness dy and integrating it. The 

rate of flow through strip is 

 

                 dQ = Velocity at a distance y × Area of strip 

             = −
1

2𝜇

𝜕𝑝

𝜕𝑥
[𝑏𝑦 − 𝑦2] × 𝑑𝑦 × 1   

 ∴         Q =  𝑑𝑄
b

0
=  −

1

2𝜇

𝜕𝑝

𝜕𝑥
[𝑏𝑦 − 𝑦2]𝑑𝑦

𝑏

0
 

   = −
1

2𝜇

𝜕𝑝

𝜕𝑥
 
𝑏𝑦 2

2
−

𝑦3

3
 

0

𝑏

=
1

2𝜇

𝜕𝑝

𝜕𝑥
 
𝑏3

2
−

𝑏3

3
   

   = −
1

2𝜇

𝜕𝑝

𝜕𝑥

𝑏3

6
=

1

12𝜇

𝜕𝑝

𝜕𝑥
𝑏3 

 ∴               𝑢 =
𝑄

𝑎𝑟𝑒𝑎
=

1

12𝜇

𝜕𝑝

𝜕𝑥
𝑏3

𝑡×1
= −

1

12𝜇

𝜕𝑝

𝜕𝑥
𝑏2    ---------------(7.18) 

 

Dividing equation (7.17) by equation (7.18), we get 

          
𝑈𝑚𝑎𝑥

𝑢 
=

−
1

8𝜇

𝜕𝑝

𝜕𝑥
𝑏2

−
1

12𝜇

𝜕𝑝

𝜕𝑥
𝑏2

=
12

8
=

3

2
                             ----------(7.19) 

 

 Reducing pressure head over a specific length. By applying equation (7.18), we can 
deduce: 

𝑢 = −
1

12𝜇

𝜕𝑝

𝜕𝑥
𝑏2 𝑜𝑟 

𝜕𝑝

𝜕𝑥
= −

12𝜇𝑢 

𝑏2
 

 

                                
Figure 10 

 

By performing integration with respect to x on this equation, we obtain:   

   

   𝑑𝑝
1

2
=  −

12𝜇𝑢 

𝑏2 𝑑𝑥
1

2
 

Or   𝑝1 − 𝑝2 = −
12𝜇𝑢 

𝑏2
 𝑥1 − 𝑥2 =

12𝜇𝑢 

𝑏2
 𝑥2 − 𝑥1  
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Or   𝑝1 − 𝑝2 =
12𝜇𝑢 𝐿

𝑏2      ∵ 𝑥1 − 𝑥2 = 𝐿  

If  𝑓  is the drop of pressure head, then 

   𝑓 =
𝑝1−𝑝2

𝜌𝑔
=

12𝜇𝑢 𝐿

𝜌𝑔𝑏2     … (7.20) 

 

 Distribution of Shear Stress. This is achieved by inserting the value of u from 

equation (7.16) into: 

 

τ = μ
∂u

∂y
 

 ∴    τ = μ
∂u

∂y
= μ

∂

∂y
 −

1

2𝜇

𝜕𝑝

𝜕𝑥
 𝑏𝑦 − 𝑦2  = 𝜇  −

1

2𝜇

𝜕𝑝

𝜕𝑥
 𝑏 − 2𝑦    

   τ = −
1

2

𝜕𝑝

𝜕𝑥
[𝑏 − 2𝑦]    … (7.21) 

 

Problem 4 Calculate :  (a) the pressure gradient along flow,  (b) the average velocity, and 

(c) the discharge for an oil of viscosity 1.962 𝑁s/m2  flowing between two stationary 

parallel plates 1 m wide maintained 80 mm apart.  The velocity midway between the 

plates is 1.5 m/s. 

 

Solution.   Given  : 
Viscosity, 𝜇 = 1.962 𝑁s/m2   
Width,  𝑏 = 1 m 
Distance between plates,        𝑡 = 80  mm = 0.08 m 
Velocity midway between the plates,  𝑈𝑚𝑎𝑥 = 1.5 m/s. 
 

 Pressure gradient    
𝑑𝑝

𝑑𝑥
   

Using equation (7.17) ,    𝑈𝑚𝑎𝑥 =   −
1

8𝜇
 
𝑑𝑝

𝑑𝑥
  t2          or         1.5 

=  −  
1

8×1.962
   

𝑑𝑝

𝑑𝑥
  (0.08)2  

∴   
𝑑𝑝

𝑑𝑥
 =  −  

1.5×8×1.962

0.08×0.08
=  −3678.75   𝑁s/m2   per m.   Ans. 

 

 Average velocity   (𝑢) 

Using eqaution     (7.19),      
 𝑈𝑚𝑎𝑥

𝑢
=  

3

2
        ∴       𝑢 =  

  2 𝑈𝑚𝑎𝑥

3
=

2×1.5

3
= 1 m/s.   

Ans. 

 

 Discharge (Q)              = Area of flow ×  𝑢 = 𝑏 × 𝑡 × 𝑢 = 1 × 0.08 × 1 = 0.08 

m3/ sec.   Ans.    

 

Problem 5    Within a 150 mm thick wall, a horizontal crack measuring 50 mm in width 

and 3 mm in depth permits water to pass through. To determine the rate of water leakage 

through the crack, taking into account a pressure differential of 245.25 Ns/m² and a water 

viscosity of 0.01 poise 

 

Solution.   Given  :   

Width of crack,     𝑏 = 50 mm = 0.05 m 

Depth of crack,     𝑡 = 3 mm = 0.003 m 
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Length of crack,                     𝐿 = 150 mm = 0.15m 

                                     𝑝1 − 𝑝2 = 245.25 𝑁s/m2 

                                                 𝑢 =  0.01 poise =
0.01

10
 
𝑁𝑠

𝑚2 

Find rate of leakage (𝑄) 

(𝑝1 − 𝑝2 ) is given by eqaution  (7.20) as 

                 𝑝1 − 𝑝2 = 
12μ 𝑢  L 

t2   or  245.25 = 12 ×
0.01

10
 ×

𝑢×0.15

(0.003×0.003)
 

∴  𝑢  =  
245.25×10×0.003×0.003

12×.01×0.15
= 1.22625 m/s 

 

∴                    Rate of leakage  =  𝑢  × area of cross –section of crack 

                                                    = 1.22625 × (𝑏 × 𝑡) 

                                                    = 1.22625 × 0.05 × 0.003 m3/s = 1.84 × 10−4 m3/s 

                                                    = 1.84 × 10−4 × 103 litre/s = 0.184 litre/s.  Ans. 

 

IV. FACTORS FOR CORRECTING ENERGY OF MOTION AND LINEAR 

MOMENTUM 

 

 The kinetic energy correction factor, denoted as α, is determined by comparing the 

kinetic energy of the flow per second calculated using the actual velocity across a section 

with the kinetic energy of the flow per second calculated using the average velocity across 

the same section. To put it mathematically:   

  

α = 
𝐾 .𝐸./ sec 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑐𝑡𝑢𝑎𝑙  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐾.𝐸/ sec 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
    … (7.22) 

  

 Momentum Correction Factor. It is characterized by the ratio of the flow's 

momentum per second, calculated using the actual velocity, to the flow's momentum per 

second, and calculated using the average velocity across a specific section. This factor is 

denoted as β. Thus, in mathematical expression:  

 

  β = 
𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚  𝑝𝑒𝑟  𝑠𝑒𝑐𝑜𝑛𝑑  𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑐𝑡𝑢𝑎𝑙  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑀𝑜𝑚𝑒𝑚𝑡𝑢𝑚  𝑝𝑒𝑟  𝑠𝑒𝑐𝑜𝑛𝑑  𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
   … (7.23) 

 

Problem 7.6 Establish that the correction factors for momentum and energy in the case of 

laminar flow inside a circular pipe are 4/3 and 2.0, respectively. 

 

Solution (i) Momentum Correction Factor or 𝛃 

 

 The equation describing the velocity distribution within a circular pipe for laminar 

flow at any radius r is as follows: (7.4) 

Or     𝑢 =
1

4𝜇
 −

𝜕𝑝

𝜕𝑥
  𝑅2 − 𝑟2    … (i) 

 

 Imagine a small elemental area dA shaped like a ring, situated at a distance of r from 

the center and with a width of dr. In this context,     

dA = 2πr dr 
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Figure 11 

 

The rate at which the fluid streams through the ring        

         = dQ = velocity × area of ring element 

          = u×2πr dr 

 

The velocity at which the fluid passes through the ring.    

          = mass × velocity 

          = ρ × dQ × u = ρ ×2πr dr × u × u = 2πρ 𝑢2r dr 

 

 ∴ The total momentum of the fluid that effectively traverses the section per second.  

                 =  2πρ 𝑢2r dr
𝑅

0
 

 

Replacing the value of u from equation (1) 

         = 2πρ   
1

4𝜇
 −

𝜕𝑝

𝜕𝑥
  𝑅2 − 𝑟2  

2𝑅

0
𝑟𝑑𝑟 

         = 2πρ  
1

4𝜇
 −

𝜕𝑝

𝜕𝑥
  

2

  𝑅2 − 𝑟2  𝑟𝑑𝑟
𝑅

0
 

         = 2πρ 
1

 16𝜇2 
 
𝜕𝑝

𝜕𝑥
 

2

  𝑅4 + 𝑟4 − 2𝑅2𝑟2 
𝑅

0
𝑑𝑟 

    = 
𝜇𝜌

8𝜇2  
𝜕𝑝

𝜕𝑥
 

2

  𝑅4𝑟 + 𝑟5 − 2𝑅2𝑟3 
𝑅

0
 𝑑𝑟    

    =  
𝜇𝜌

8𝜇2  
𝜕𝑝

𝜕𝑥
 

2
 
𝑅2𝑟2

2
+

𝑟6

6
−

2𝑅2𝑟4

4
 

0

𝑅

=
𝜇𝜌

8𝜇2  
𝜕𝑝

𝜕𝑥
 

2
 
𝑅6

2
+

𝑅6

6
−

2𝑅6

4
  

    = 
𝜇𝜌

8𝜇2  
𝜕𝑝

𝜕𝑥
 

2 6𝑅6+2𝑅6−2𝑅6

12
 

    = 
𝜇𝜌

8𝜇2  
𝜕𝑝

𝜕𝑥
 

2

×
𝑅6

12
=

𝜇𝜌

48𝜇2  
𝜕𝑝

𝜕𝑥
 

2

𝑅6                    ……….(ii) 

 
Momentum of the fluid per second based on average velocity 

    = 
𝑚𝑎𝑠𝑠  𝑜𝑓  𝑓𝑙𝑢𝑖𝑑

𝑠𝑒𝑐
× 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

    = ρA𝑢  × 𝑢  = ρA𝑢 2 
 

Where A = area of cross section = π𝑅2 , 𝑢  = average velocity = 
𝑈𝑚𝑎𝑥

2
 

    = 
1

2
×

1

4𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2   ∵ 𝑈𝑚𝑎𝑥 =

1

4𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2  

    = 
1

8𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2 

 

 ∴ Momentum/sec based on average velocity 

    = ρ × π𝑅2 ×   
1

8𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2 

2

= 𝜌 × 𝜋𝑅2 ×
1

64𝜇2   −
𝜕𝑝

𝜇𝑥
 

2

𝑅4  
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    = 
𝜌𝜋 −

𝜕𝑝

𝜇𝑥
 

2
𝑅6

64𝜇2          …………….(iii) 

 

 ∴              β = 
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 / sec 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑐𝑡𝑢𝑎𝑙  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 / sec 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
   

    = 

𝜇𝜌

48𝜇 2 
𝜕𝑝

𝜕𝑥
 

2
𝑅6

𝜇𝜌

64𝜇 2 −
𝜕𝑝

𝜕𝑥
 

2
𝑅6

=
64

48
=

4

3
. Ans. 

 

(ii) The energy correction factor, designated as α, quantifies the kinetic energy associated 

with the fluid moving via the elementary ring with a radius 'r' and a width of 'dr' per second.. 

    = 
1

2
× 𝑚𝑎𝑠𝑠 × 𝑢2 =

1

2
× 𝜌𝑑𝑄 × 𝑢2 

    = 
1

2
× 𝜌 ×  𝑢 × 2𝜋𝑟 𝑑𝑟 × 𝑢2 =

1

2
𝜌 × 2𝜋𝑟 𝑢3𝑑𝑟 = 𝜋𝜌𝑟 𝑢3𝑑𝑟   

 

 ∴ Total actual kinetic energy of flow per second 

    =  𝜋𝜌𝑟 𝑢3𝑑𝑟 =  𝜋𝜌𝑟  
1

4𝜇
 −

𝜕𝑝

𝜕𝑥
  𝑅2 − 𝑟2  

3𝑅

0

𝑅

0
𝑑𝑟 

    = πρ ×  
1

4𝜇
 −

𝜕𝑝

𝜕𝜇
  

3

  𝑅2 − 𝑟2 3 𝑟𝑑𝑟
𝑅

0
 

    = πρ × 
1

64𝜇3   −
𝜕𝑝

𝜕𝑥
 

3

  𝑅6 − 𝑟6 − 3𝑅4𝑟2 + 3𝑅6𝑟4 𝑟 𝑑𝑟
𝑅

0
 

    = 
πρ

64𝜇3   −
𝜕𝑝

𝜕𝑥
 

3

  𝑅6𝑟 − 𝑟7 − 3𝑅4𝑟3 + 3𝑅6𝑟5  𝑑𝑟
𝑅

0
 

    = 
πρ

64𝜇3   −
𝜕𝑝

𝜕𝑥
 

3
 
𝑅6𝑟2

2
−

𝑟8

8
−

3𝑅4𝑟4

4
+

3𝑅2𝑟6

6
 

0

𝑅

 

    = 
πρ

64𝜇3   −
𝜕𝑝

𝜕𝑥
 

3
 
𝑅8

2
−

𝑅8

8
−

3𝑅8

4
+

3𝑅6

6
  

    = 
πρ

64𝜇3   −
𝜕𝑝

𝜕𝑥
 

3

𝑅8  
12−3−18+12

24
  

    = 
πρ

64𝜇3   −
𝜕𝑝

𝜕𝑥
 

3 𝑅8

8
    

 

Kinetic energy of the flow based on average velocity 

    = 
1

2
× 𝑚𝑎𝑠𝑠 × 𝑢 2 =

1

2
× 𝜌𝐴𝑢 × 𝑢 2 =

1

2
× 𝜌𝐴𝑢 3 

 
Substituting the value of         A =   π 𝑅2) 

And                𝑢  = 
1

8𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2 

 
Kinetic energy of the flow based on average velocity 

    = 
1

2
× 𝑚𝑎𝑠𝑠 × 𝑢 2 =

1

2
× 𝜌𝐴𝑢 × 𝑢 2 =

1

2
× 𝜌𝐴𝑢 3 

 
 
Substituting the value of         A =   π 𝑅2) 

And                𝑢  = 
1

8𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2 
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 ∴ Kinetic energy of the flow/sec 

    = 
1

2
× 𝜌 × 𝜋𝑅2 ×  

1

8𝜇
 −

𝜕𝑝

𝜕𝑥
 𝑅2 

3

   

    = 
1

2
× 𝜌 × 𝜋𝑅2 ×

1

64×8𝜇3  −
𝜕𝑝

𝜕𝑥
 

3

× 𝑅6 

    = 
𝜌𝜋

128×8𝜇3 ×  −
𝜕𝑝

𝜕𝑥
 

3

× 𝑅8    …. (V) 

 

 ∴              α = 
𝐾 .𝐸./ sec 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑐𝑡𝑢𝑎𝑙  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐾.𝐸./ sec 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
=

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4)

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5)
   

    = 

πρ

64𝜇 3   −
𝜕𝑝

𝜕𝑥
 

3𝑅8

8

 
𝜌𝜋

128 ×8𝜇 3 −
𝜕𝑝

𝜕𝑥
 

3
×𝑅8

=
128×8

64×8
= 𝟐. 𝟎. Ans. 

 

V. POWER DISSIPATED IN VISCOUS FLOW 
 

 Regarding the lubrication of machine components. oil is employed. The oil stream 

within a bearing serves as an instance of viscous flow. When a lubricating bearing uses oil 

with high viscosity, it leads to increased resistance, resulting in higher power dissipation. 

Conversely, if a low-viscosity oil is utilized, it becomes difficult to maintain the required film 

between the moving component and the stationary metal surface. Consequently, wear 

between the two surfaces occurs. Thus, it becomes essential to select an oil with the 

appropriate viscosity for lubrication purposes. The objective is to compute the power required 

to counteract viscous resistance in the following situations: 

 

 Viscous Friction in Journal Bearings 

 Viscous Friction in Footstep Bearings 

 Viscous Friction in Collar Bearings  
 

1. Viscous Friction in Journal Bearings: Imagine a shaft with a diameter of D rotating 

within a journal bearing. The gap between the shaft and the journal bearing is occupied by 

a viscous oil. The layer of oil in contact with the shaft revolves at the shaft's speed, while 

the oil layer touching the journal bearing remains stationary. Consequently, the oil creates 

a viscous resistance against the rotating shaft. 

         

Let       𝑁 = speed of shaft in r.p.m. 

                                                       𝑡 = thickness of oil film 

                                                      𝐿 =  length of oil film 

   ∴  Angular speed of the shaft,  𝜔 =  
2𝜋𝑁

60
 

  ∴ Tangential speed of the shaft =  𝜔 × 𝑅  𝑜𝑟 𝑉 =
2𝜋𝑁

60
 ×

𝐷

2
=  

𝜋𝐷𝑁

60
 

The shear stress in the oil is given by , 𝜏 =  𝜇
𝑑𝑢

𝑑𝑦
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Figure 12:  Journal Bearing. 

 

As the thickness of oil film is very small, the velocity distribution in the oil film 

can be assumed as linear. 

 

  𝐻𝑒𝑛𝑐𝑒     
𝑑𝑢

𝑑𝑦
=

𝑉−0

𝑡
=

𝑉

𝑡
=

𝜋𝐷𝑁

60×𝑡
 

∴                                                   𝑡 = 𝜇
𝜋𝐷𝑁

60×𝑡
 

 

∴     The shear force or the opposition arising from viscosity=  𝜏 × 

The shaft′s exposed area 

   =
𝜇𝜋𝐷𝑁

60×𝑡
× 𝜋𝐷𝑁 =

𝜇𝜋 2𝐷2𝑁𝐿

60𝑡
 

 

∴ Torque required to overcome the viscous resistance, 

                                                           𝑇 = Viscous resistance ×
𝐷

2
 

                                 =
𝜇𝜋 2𝐷2𝑁𝐿

60𝑡
×

𝐷

2
=

𝜇𝜋 2𝐷3𝑁𝐿

120𝑡
  

 

∴ Power consumed in counteracting viscous resistance 

                ∗ 𝑃 =  
2𝜋𝑁𝑇

60
=

2𝜋𝑁

60
×

𝜇𝜋 2𝐷3𝑁𝐿

120𝑡
 

                                              =
𝝁𝝅𝟐𝑫𝟑𝑵𝟐𝑳

𝟔𝟎×𝟔𝟎×𝒕
 𝒘𝒂𝒕𝒕𝒔.  Ans.      ……….(7.24) 

 

Problem 7 Calculate the power consumed by the bearing when a shaft with a 10 cm 

diameter rotates at 500 revolutions per minute within a journal bearing with a diameter of 

10.02 cm and a length of 20 cm. The space between the shaft and bearing is filled with oil 

of viscosity 0.8 poise. 

 

Solution .    Given  : 

Dia. of shaft,     𝐷 = 10 cm or 0.1m 

Dia. of bearing,           𝐷1 = 10.02 cm ot 0.1002 m 

Length ,                                  𝐿 = 20 cm  or  0.2 m 

 𝜇 of oil  = 0.8 poise =  
0.8

10 
 
𝑁𝑠

𝑚2  

          𝑁 = 500 r.p.m. 

          Power = ? 
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∴       Thickness of oil film, 𝑡 =  
𝐷1−𝐷

2
=  

10.02−10

2
 

  =  
0.02

2
= 0.01 cm = 0.01 × 10−2 m = 0.0001m 

 

Tangential speed of shaft, 𝑉 =  
𝜋𝐷𝑁

60
=  

𝜋×0.1×500

60
= 2.168 m/s 

Shear stress                           𝜏 =  𝜇  
𝑑𝑢

𝑑𝑦
=  𝜇 

𝑉

1
=  

0.8

10
 ×

2.618

0.0001
= 2094.4 𝑁/m2 

∴      Shear force   (F)             =  𝜏 ×Area = 2094.4 × 𝜋𝐷 × 𝐿 

  = 2094.4 × 𝜋 × 0.1 × 0.2 = 131.6 𝑁 

Resistance torque              𝑇 = 𝐹 ×
𝐷

2
= 131.6 ×

0.1

2
= 6.579 𝑁𝑚 

Power  =  
2𝜋𝑁𝑇

60
=

2𝜋×500×6.579

60
= 344.51 𝑊.  Ans. 

 

Problem 7.8   A shaft 150 mm diameter runs in a bearing of length 300 mm with a radial 

clearance of 0.04 mm at 40  r.p.m.  Find the velocity of the oil, if the power required to 

overcome the viscous resistance is 220.725 watts. 

 

Solution.    Given  : 

                                              𝐷 = 150 mm = 0.15m 

                                              𝐿 = 300 mm = 0.3m 

                                              𝑡 = 0.04 mm= 0.04 × 10−3m 

                                            𝑁 = 40 r.p.m. ;  𝐻. 𝑃. = 220.725 watts 

                                            𝑃 =  
𝜇𝜋3𝐷3𝑁2𝐿

60×60×𝑡
      or     220.725 =  

𝜇𝜋3× 0.15 3×(40)2×0.3

60×60×0.04×10−3  

∴                                         𝜇 =  
220.725×60×60×0.04×10−3

𝜋3× 0.15 3×(40)2×0.3
  

𝑁𝑠

𝑚2 

      = 0.632 
𝑁𝑠

𝑚2 = 0.632 × 10 = 6.32 poise.  Ans. 

 

2. Viscous Friction in Footstep Bearings: Viscous Friction in Footstep Bearings: 

Illustrated in Figure 7.13 is a footstep bearing configuration, In a scenario where a 

vertical shaft is spinning . There is a layer of oil between the underside of the shaft and 

the bearing. In this scenario, the radius of the shaft's surface in contact with the oil isn't 

uniform, unlike that in a journal bearing. Consequently, the calculation of viscous 

resistance in a footstep bearing involves the consideration of a small circular ring element 

with a radius of r and a thickness of dr, as depicted in Figure 7.13. 

 

Let     𝑁 = speed of the shaft 

                                                                 𝑡 = Oil film thickness 

            𝑅 = radius belonging to the shaft 

Area of the elementary ring                   = 2𝜋𝑟𝑑𝑟  

Now shear stress is given by                𝑡 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝜇

𝑉

𝑡
  

where  𝑉 is the tangential velocity of shaft at radius 𝑟 and is equal to  

                                                         𝜔 × 𝑟 =
2𝜋𝑁

60
 × 𝑟 

∴                       Shear force on the ring  =   𝑑𝐹 =  𝜏 × area of elementary ring 

                                                                        =  𝜇 ×
2𝜋𝑁

60
×

𝑟

𝑡
× 2𝜋𝑟 𝑑𝑟 =

𝜇

15
 
𝜇𝜋 2𝑁𝑟2

𝑡
 𝑑𝑟 

∴   Torque needed to counteract the Frictional resistance due to viscosity,                               
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Figure 13: Pivot Bearing 

 

𝑑𝑇 = 𝑑𝐹 × 𝑟 
 

                              =
𝜇

15𝑡
 𝜇𝜋2𝑁𝑟2 𝑑𝑟 × 𝑟 =  

𝜇

15𝑡
 𝜇𝜋2𝑁𝑟3 𝑑𝑟            …(7.25) 

 

∴     Total torque required to overcome the viscous resistance, 

     𝑇 =    𝑑𝑇 =   
𝜇

15𝑡
 𝜇𝜋2𝑁𝑟3𝑅

0

𝑅

0
 𝑑𝑟  

         =  
𝜇

15𝑡
 𝜋2𝑁   𝑟3𝑑𝑟 =

𝜇

15𝑡
 𝜋2𝑁  

𝑟4

4
 

0

𝑅

=  
𝜇

15𝑡
 𝜋2𝑁 

𝑅4

4

𝑅

0
 

                                               =  
𝜇

60𝑡
 𝜋2 𝑁𝑅4                        …(7.25A) 

 

∴    Power absorbed ,                             𝑃 =  
2𝜋𝑁𝑇

60
  watts 

           =  
2𝜋𝑁

60
×

𝜇

60𝑡
 𝜋2 𝑁𝑅4 =  

𝜇𝜋 3  𝑁2𝑅4  

60×30𝑡
                                           …(7.26)  

        
        

Problem  9 Determine the torque needed to spin a vertical shaft with an 80 mm diameter 

at a speed of 800 revolutions per minute. The lower end of the shaft is supported by a 

foot-step bearing, with both the shaft end and the bearing surface being flat and separated 

by a 0.75 mm thick oil film. The oil's viscosity is specified as 1.2 poise. 

 

Solution.   Given  : 

Dia. of shaft,  𝐷 = 80 𝑚𝑚 = 0.08𝑚 

∴   𝑅 =  
𝐷

2
=  

0.08

2
= 0.04 𝑚 

   𝑁 = 800 r.p.m. 
 

Oil film thickness,       𝑡 = 0.75𝑚𝑚 = 0.00075 𝑚 

   𝜇 = 1.2 𝑝𝑜𝑖𝑠𝑒 =
1.2

10
 
𝑁𝑠

𝑚2  
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The torque required is given by equation (9.19) or 

   𝑇 =  
𝜇

60𝑡
 𝜋2𝑁𝑅4𝑁𝑚 

      =  
1.2

10
×

𝜋2×800× 0.04 4

60×0.00075
= 0.054 𝑁𝑚. 𝐴𝑛𝑠. 

 

3. Viscous Friction in Collar Bearings: Viscous Friction in Collar Bearings. Fig.14 depicts 

the collar bearing, In this setup, a consistent oil film thickness separates the collar's 

surface from the bearing surface.  

 

Let     N = Rotational speed of the shaft in revolutions per minute  

  𝑅1 =  Inner radius of the collar 

  𝑅2 = Outer radius of the collar 
   t = Oil film thickness  

 
     

Figure 14: Sleeve bearing 

 

Imagine An elementary circular ring having a radius 'r' and a radial width 'dr' on 

the bearing surface. In this scenario, the torque (dT) required to overcome the viscous 

resistance exerted on the basic circular ring corresponds to the formula as presented in the 

equation. (7.25A). or 

 

   dT = 
𝜇

15𝑡
𝜋2𝑁𝑟3 dr 

 ∴ The total torque required to conquer the viscous resistance along the entire collar is. 
 

     T =  𝑑𝑇
𝑅2

𝑅1
=  

𝜇

15𝑡
𝜋2𝑁𝑟3𝑑𝑟 =

𝜇

15𝑡
𝜋2𝑁  

𝑟4

4
 
𝑅1

𝑅2𝑅2

𝑅1
 

        = 
𝜇

15𝑡×4
𝜋2𝑁 𝑅2

4 − 𝑅1
4 =

𝜇

60𝑡
𝜋2𝑁 𝑅2

4 − 𝑅1
4    … (7.27) 

 

 ∴ Power absorbed in overcoming viscous resistance 

     P = 
2𝜋𝑁𝑇

60
=

2𝜋𝑁

60
×

𝜇

60𝑡
𝜋2𝑁 𝑅2

4 − 𝑅1
4  

        = 
𝜇𝜋3𝑁2

60×30𝑡
 𝑅2

4 − 𝑅1
4  watts.     … (7.28)  

 

Problem 9 A collars bearing with an external diameter of 200 mm and an internal 

diameter of 100 mm is employed to handle the axial thrust of a shaft. The collar surface 

and the bearing uphold an oil film with a 0.3 mm thickness in between them. Calculate 

the power expended in overcoming viscous resistance as the shaft rotates at a speed of 

250 revolutions per minute.. Consider the viscosity as μ = 0.9 poise. 
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Solution.    Given  : 

External  Dia.   of collar,  𝐷2 = 200 𝑚𝑚 = 0.2𝑚 

∴   𝑅2 =  
𝐷

2
=

0.2

2
= 0.1 𝑚 

Internal Dia.  of collar, 𝐷1 = 100 𝑚𝑚 = 0.1𝑚  

∵   𝑅1 =  
𝐷1

2
=

0.1

2
= 0.05 𝑚 

Thickness of oil film,        𝑡 =  .3 𝑚𝑚 = 0.0003𝑚 

   𝑁 = 250 𝑟. 𝑝. 𝑚. 

   𝜇 = 0.9 𝑝𝑜𝑖𝑠𝑒 =
0.9

10

𝑁𝑠

𝑚2     

The power required is given by equation (9.22) or 

   𝑃 =  
𝜇𝜋3𝑁2

60×60×𝑡
 [𝑅3

   4 − 𝑅1
  4] 

                                               =  
0.9

10
×

𝜋3×2502×[0.14− 0.05 4]

60×30×0.0003
  

      = 322982 [1 × 10−4] 
                                               = 322982 × 0.00009375 = 30.28 𝑊.   𝐴𝑛𝑠.  

 

VI. TURBULENT FLOW 

 

 Turbulent is a state of flow in which orderly motion of fluid particles collapses to 

from eddies that spread into the entire region of flow. It is rather a state of instability of fluid 

motion caused by movements of adjacent layers at different velocities and the associated 

viscous forces in between. Sources of disturbances that would cause turbulence and eddy 

currents may be varied such as roughness projections on a boundary surface, sharp 

discontinuities in the boundary geometry, the trailing edge of aero foils and zones of 

boundary layer separation. Up to a certain velocity these disturbances are not allowed to 

spread by the damping and stabilizing effect of viscosity. However, beyond that stage even 

small disturbances are not damped out. They move along with the flow spreading into the 

whole region leaving only a thin layer close to the wall. The individual disturbances loose 

their identity and the flow becomes turbulent, that is, one of total disorder. 

 

 An examination of the diffusion of the dye filament in Reynolds experiment would 

suggest that the fluid particles acquire secondary motions in the specified direction transverse 

to the primary flow.  Thus  as a consequence of turbulent flow is in a direction perpendicular 

to the primary flow. Thus the resulting turbulent flow is the superposition of these irregular 

secondary  motion on the primary motion of the stream.  The velocity at any location within 

turbulent flow fluctuates in both magnitude and direction .  In other words, turbulence is three 

dimensional  in character . Strictly speaking, turbulent flow can never be steady as per the 

usual definition .  However, a  recognizable pattern of fluctuations can be observed (see 

Fig.7.15) in the variation of velocity with time so that we may call the flow quasi steady. 

Though it is impossible to describe exactly the random nature of the fluctuations, statistically 

one can think of a time averaged mean velocity , 𝑢.  Then the instantaneous velocity 𝑢  at any 

point can be written equal to the time average velocity plus a fluctuating component 𝑢 ′ which 
is found to be of the order of one per cent of stream velocity. That is, for the three 

components of velocity 

𝑢 = 𝑢 + 𝑢′ ,   𝑣 = 𝑣 + 𝑣′ and 𝑤 = 𝑤 + 𝑤′ 
and 

𝑢 =
1

𝑇
   𝑢 𝑑𝑡

𝑇

0
 etc. 
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In this context, T denotes the duration for which the average is computed. 
 

 
 

Figure 15 

 

 The magnitude of fluctuating component is a measure of the intensity of turbulence. 

From the definition it is clear that the mean of 𝑢 ′ would be zero. But the statistical quantity 

root-mean-square may serve our purpose. Thus we have the intensity of turbulence 

 

                                        Intensity =   𝑢′2 =  
1

𝑇
   𝑢′2𝑑𝑡

𝑇

0
 

1

2
       etc. 

 

which may vary with location and degree of turbulence. The velocity fluctuations in 

the different directions can be measured accurately by the hotwire anemometer. 

 

 

1. Stresses in Turbulent Flow: The normal and shear stresses exist in turbulent flow in its 

own way. The fluctuations of motion practically do not have any impact on the normal 

stress or the pressure. In any pressure measuring device, these turbulent fluctuations get 

damped out and we measure only the mean value which is the one wanted in engineering 

calculations. 

 

      The case of shear stress in turbulent flow is entirely different.  In laminar flow the 

shearing resistance is offered by two factors. One is due to cohesion, the mutual attraction 

between the molecules. The other is due to the interference of the molecules vibrating to 

the amplitude of therir mean free path between layers of different velocities. This is 

termed as molecular activity. The fluctuations in turbulent flow are just analogous to this 

molecular activity but in a macroscopic scale. Lumps of fluids fluctuate in the 

perpendicular direction to the primary flow, collide and exchange momentum due to 

differential velocities, causing considerable dissipation of energy and hence large 

resistance to flow. The momentum exchange due to complex mixing is so great that the 

effective viscosity of the fluid appears hundreds of times as large as molecular viscosity, 

contributing to high frictional losses. The fact is evident from the following observations 

for a circular pipe. Eq. (7.8) states that the loss of head under laminar flow 

 

      hL α  V 
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which  plots as a straight line in Fig.16 As the velocity is increased to bring in 

turbulence, the head loss is observed to increase sharply initially and then to attain a 

greater rate of increase than for laminar flow. Latter analysis revealed that for turbulent 

flow 

                       hL α  Vn 
 

                                                                         
 

Figure 16: Losses in Circular Pipes. 

 

 Where n is close to 2. This is also evident from the fact that momentum and energy 

are transported in the transverse direction by the random motion of turbulent eddies.  

Consequently, a more unifrom velocity distribution is produced  (see Fig 7.17). Since the 

resistance to flow or shear stress at the turbulent flow (because of steeper slope) offers greater 

resistance than laminar flow. 

 

 
 

Figure 17: comparison of Velocity profile for (a) laminar , and (b) turbulent pipe flow. 

 

2. Boussinesq Eddy Viscosity: To account for the increased shear stress due to turbulence, 

many semi empirical methods were proposed. The first of these, given by Bossinesq is a 

turbulent shear stress in terms of an eddy viscosity analogous to the Newton‘s equation of 

viscosity. He wrote the total shear stress as 

 



Futuristic Trends in Mechanical Engineering 

e-ISBN: 978-93-5747-709-3 

IIP Series, Volume 3, Book 6, Part 4, Chapter 4  

LAMINAR AND TURBULENT FLOW 

 

Copyright © 2024 Authors                                                                                                                  Page | 262 

𝜏 =  𝜏𝑙𝑎𝑚𝑖𝑛𝑎𝑟 + 𝜏𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡   

𝜏 =  𝜇 
𝑑𝑢

𝑑𝑦
+  𝜂 

𝑑𝑢

𝑑𝑦
       ………(7.29) 

where  

𝑢 = time averaged mean velocity 

𝑢 = molecular viscosity 

𝜂 =eddy viscosity 

 

      There is only convenience rather than merit to write in the from of Eq. (7.17) 

because the eddy viscosity  𝜂 is not a fixed quantity unlike the molecular viscosity.  It is a 
property of the fluid motion that depended upon the location and the intensity of 

turbulence. Except at the vicinity of the wall, turbulent shear stress 𝜏, is much greater than 

the laminar shear stress 𝜏, so that 𝜇 (d𝑢/𝑑𝑦) is often neglected.  

 

VII. LOSS OF HEAD DUE TO FRICTION IN TURBULENT FLOW-DARCY 

EQUATION 

 

 For turbulent flow in pipes, experimental observations have revealed that the effects 

of viscous friction attributed to the fluid are proportionate to; 

 

I. The pipe length, denoted as "L." 

II. The wetted perimeter, represented as "P." 

III. Vn, where "Vj" signifies the average flow velocity, and "n" is an exponent that ranges 

from 1.5 to 2, depending on factors such as the material and surface characteristics of the 

pipe. For commercial pipes with turbulent flow, n is typically equal to 2. 

Equation for the loss of head resulting from friction in pipes. 

  

 
 

Figure 18 

 

 Fig. 18. shows a horizontal pipe having steady flow, Consider control volume 

enclosed between sections 1 and 2 of the pipe, L distance apart. Where let the intensities of 

pressure be p
1
and p

2
 respectively. By applying Bernouli‘s equation between the sections 1 

and 2, we obtain 

 

                      
p1

𝑤
+

V1
2

2g
+ Z1 =

p2

𝑤
+

V2
2

2g
+ Z2 + hf  

Since                                 V1 = V2 = V and Z1 = Z2 

   Loss of head   =  hf =
p1

𝑤
−

p2

𝑤
 = 

p1

𝜌𝑔
−

p2

𝜌𝑔
        ….(i) 
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i.e., the pressure intensity will be reduced by the frictional resistance in the direction of flow 

and the difference of pressure heads between any two sections is equal to the loss of head due 

to friction between these sections. 

 

Further let ‗f‘ be the frictional resistance per unit area at unit velocity, then frictional 

resistance (F1) 

    F1= f ′ × πdl × V2 

    =  f ′ × PL ×V
2
       ….(ii) 

Where p is the wetted perimeter of the pipe. 

      

The pressure forces at the sectional 1 and 2 are (p1A) and (p2A) respectively. Thus 
resolving all the forces horizontally, we have 

   p1A = p2A + F1      ….(7.30) 

Or                        (p1 − p2)A = 𝑓′ × 𝑃𝐿 ×V
2
        [  ∵  from(ii)  F1=  f ′ × PL ×V

2
] 

Or         (p1 − p2)  = 𝑓′ ×
𝑃

𝐴
× 𝐿𝑉2 

 

Dividing both sides by the specific weight 𝜌g of the flowing fluid 

    
p1−p2

𝜌𝑔
=  

𝑓 ′

𝜌𝑔
×

𝑃

𝐴
𝐿𝑉2 

But                                    hf   =
p1−p2

𝜌𝑔
 , then  

                                          hf   = 
f′

𝜌𝑔
×

P

A
× LV2     ….(iii) 

 

The ratio of cross-sectional area of the flow (wetted area) to the perimeter in contact 

with the fluid (wetted perimeter) i.e.,  
A

P
  is called hydraulic mean depth (H.M.D.) and it is 

represented by m . 

 

Then          hf  = 
f′

𝜌𝑔
×

𝐿𝑉2

m
 

For pipes running full 

          m = 
A

P
=

 
πD 2

4
 

πD
=

D

4
   

Substituting this in the equation for hf    
           

        𝑓 =
4𝑓 ′

ρg

𝐿𝑉2

𝐷
    ….(iv)  

Putting    
f′

𝜌
=

f

2
 where f is known as co-efficient of friction. 

 

                                       𝑓  = 
4fL V2

2gD
     ….(7.31) 

 

                                       𝑓  = 
4fLV2

2gD
     ….(7.31) 

 

    Equation 7.31 is known as Darcy-Weisbach equation .This equation is commonly 

used for finding loss of head due to friction in pipes. 
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Sometimes equation (7.31) can be written as 

hf = (f * L * V^2) / (d * 2g) defines the friction factor, denoted as 'f,' in cases of 

viscous flow. 

 

Equation for the coefficient of friction in relation to shear stress: 

Refer 7.7, 

                             (P1 – P2) A  = Force due to shear stress, τ0 

                             (Where, τ0 = shear s tress at the pipe wall) 

                              = Shear stress (τ0) × surface area 

                              = τ0 × πDL 

Or,                        (P1 – P2)  
𝜋

4
  𝐷2 = τ0 × πDL 

Or,                        (P1 – P2)  
𝐷

4
  = τ0 L 

Or,                        (P1 – P2) =  
4𝜏0  × 𝐿

𝐷
                -----(7.32) 

 

Eqn. (7.31) can be written as   

 hf =  
𝑝1− 𝑝2

𝜌𝑔
 = 

4𝑓𝐿 𝑉2

 𝐷 × 2𝑔
 

Or,                                                       (P1 – P2) = 
4𝑓𝐿  𝑉2

 𝐷 × 2𝑔
 × ρg        ------(7.33) 

 

Equating eqns.  (7.32) and (7.33), we get 
4𝜏0   𝐿

𝐷
  =  

4𝑓𝐿 𝑉2

 𝐷 × 2𝑔
 × ρg 

Or,                                                 τ0  = 
𝑓𝑉2  ×𝜌𝑔

2𝑔
 =  

𝑓𝜌𝑉2

2
   

Or,                                             f =  
2𝜏0

𝜌𝑉2 ----------------------(7.34) 

 

VIII.  HEAD LOSS CAUSED BY VISCOUS FLOW RESISTANCE 

 

The decrease in pressure level , denoted as hf, within A tube with a specific diameter D,  

 

 A viscous fluid flowing through with A fluid with a viscosity of μ is moving with an 

average velocity of u̅ , is determined using the Hagen-Poiseuille formula, represented by 

equation (7.8) as: 

 

hf=  
32𝜇𝑢 𝐿

𝜌𝑔𝐷2             ….(i) 

Where  L =length of pipe  

 

The loss  of head due to friction  is given by  

    𝑓  = 
4fL V2

2gD
  = 

4fL𝑢 2

2gD
     …(ii){ ∵  The velocity within a pipe corresponds to the average 

velocity. ∵ v= 𝑢   } 
 

In this equation, "f" represents the coefficient of friction between the pipe and the fluid. 

Equalizing (i) and (ii), we get   
32𝜇𝑢 𝐿

𝜌𝑔𝐷2  = 
4fL𝑢 2

2gD
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                                        f =  
32𝜇𝑢 𝐿

𝜌𝑔𝐷2  X 
2gD

4L𝑢 2  =
16𝜇

𝑢  .𝜌  .𝐷
  

                                           =16X 
𝜇

𝜌 .𝑉 .𝐷
  = 16X 

1

𝑅𝑒
 

      

 Re =Reynolds number =
𝜌 .𝑉 .𝐷

𝜇
   

 Therefore   f= 
16

𝑅𝑒
   …..(7.35) 

 

Problem 10  Flowing within a pipe of 150 mm in diameter, water exhibits a coefficient of 

friction denoted by f = 0.05. At a location 40 mm distant from the pipe's central axis, the 

shear stress measures 0.01962 N/cm². Our task is to determine the shear stress at the inner 

wall of the pipe. 

 

Solution.    Given   : 

Dia.  of pipe,                    𝐷 = 150 𝑚𝑚 = 0.15𝑚 

frictional coefficient,    𝑓 = 0.05 

Shear stress at 𝑟 = 40 𝑚𝑚, 𝜏 = 0.01962 𝑁/cm2 

Let the shear stress at pipe wall =  𝜏0. 
 

First find whether the flow is viscous or not. The flow will be viscous if Reynold 

number Re  is less than 2000. 

Using equation (7.35),   we get  𝑓 =
16

𝑅𝑒
   or   0.05=  

16

𝑅𝑒
     

∴                  Re =  
16

0.05
= 320 

 

This means flow is viscous. The expression for shear stress in the context of viscous 

flow through a pipe is provided as follows by the equation  (7.2) as 

    𝜏 = −
𝜕𝑝

𝜕𝑥
 
𝑟

2
 

But 
𝜕𝑝

𝜕𝑥
  is constant across a section.  Across a section, there is no variation of x and there is no 

variation of p. 

  ∴ 𝜏 𝛼 𝑟 
 

At the pipe wall, radius = 100 mm and shear stress is 𝜏0 

  ∴ 
τ

r
=

𝜏0

75
     or       

0.01962

40
=  

𝜏0

75
  

  ∴ 𝜏0 =  
75×0.01962

40
= 0.03678 𝑁/𝑐𝑚2. Ans. 

 

Exercise Questions: 

 

1. Define the terms: viscosity, kinematic viscosity gradient and pressure gradient. 

2. What do you mean by ―viscous flow‖? 

3. Drive an expression for the velocity distribution for viscous flow through a circular pipe. 

Also sketch the velocity distribution and shear stress distribution across the section of the 

pipe. 

4. Prove that the maximum velocity in the circular pipe for viscous flow is equal to two 

times the average velocity of the flow.    (Delhi university, December 2002) 

5. Find an expression for the loss of head of viscous fluid flowing through a circular pipe 
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6. What is Hagen poiseuille‘s formula? Derive an expression for Hagen poiseuille‘s 

formula. 

7. Prove that the velocity distribution for viscous flow between two parallel plates when 

both plates are fixed across a section is parabolic in nature. Also [prove that the maximum 

velocity is equal to one and a half times the average velocity. 

8. Show that the difference of pressure head for a given length of the two parallel plates 

which are fixed and through which viscous fluid is flowing is given by  

hf=12µūL/Þgt2 

Where µ =viscosity of fluid,                                                 ū = average velocity, 

t =distance between two parallel plates,             L = length of the plates, 

9. Define the terms: kinetic energy correction factor and momentum correction factor. 

10. Prove that for viscous flow through a circular pipe the kinetic energy correction factor is 

equal to 2 while momentum correction factor=4/3. 

11. A shaft is rotating in a journal bearing. The clearance between the shaft and the bearing 

filled with a viscous resistance. 

12. Prove that power absorbed in overcoming viscous resistance in footstep bearing is given 

by  

P=µπ3N2R4/60*30t 

Where R = Radius of the shaft,                                               N = speed of the shaft, 

t = clearance between shaft and footstep bearing,          µ = viscosity of fluid.                                 

13. Establish that the coefficient of friction for viscous flow through a circular pipe can be 

expressed as. 

f =16/Re     where R =Reynolds number.       

 

Demonstrate that the coefficient of viscosity, as determined by the dash-pot arrangement, 

can be described as,  

         µ = 4Wt3/3πLD3V 

Where     W = weight of the piston,           t = clearance between dash-pot and piston, 

L = length of piston,                         D = diameter of piston, 

V = velocity of piston. 

14. What are the different methods of determining the co-efficient of viscosity of liquid ? 

Describe any two methods in details. 

15. Prove that the loss of pressure head for the viscous flow through a circular pipe is given 

by 

             hf=32µūL/Þgb2 

Where ū = average velocity,     w = specific weight. 

16. For a laminar steady flow, prove that the pressure gradient in direction of motion is equal 

to the shear gradient normal to the direction of motion. 

17. Describe Reynolds experiments to demonstrate the two types of flow. 

18. For the laminar flow through a circular pipe ,prove that: 

 The shear stress variation across the section of the pipe is linear and 

 The velocity variation is parabolic. 
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Objective Questions 

 

1.  1. The torque required to overcome viscous resistance of a footstep bearing is (where μ = 

Viscosity of the oil, N = Speed of the shaft, R = Radius of the shaft, and t = Thickness of 

the oil film) 

A.  

 

B.  

 

C. 

 

D. 

 

 

Answer: Option D 

 

2. The torque required to overcome viscous resistance of a collar bearing is (where R1 and 

R2 = External and internal radius of collar) 

 

A.  

 

B.  

 

C. 

 

D. 

 

 

Answer: Option D 

 

3. 65. The power absorbed (in watts) in overcoming the viscous resistance of a footstep 

bearing is 

 

A.  

 

B.  

 

C. 

 

D. 

 

 

Answer: Option B 
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4. In a footstep bearing, if the speed of the shaft is doubled, then the torque required to 

overcome the viscous resistance will be 

 

A.  Double 

B.  four times 

C. eight times 

D. sixteen times 

 

Answer: Option A 

 

5. The loss of pressure head in case of laminar flow is proportional to 
 

 

A.  Velocity B.  (velocity)
2
 

C. (velocity)
3
 D. (velocity)

4
 

 

Answer: Option A 
 

   

 

6. The loss of head due to viscosity for laminar flow in pipes is (where d = Diameter of 

pipe, l = Length of pipe, v = Velocity of the liquid in the pipe, μ = Viscosity of the liquid, 

and w = Specific weight of the flowing liquid) 

 

A.  

 

B.  

 

C. 

 

D. 

 

 

Answer: Option D 

 

7. In a footstep bearing, if the radius of the shaft is doubled, then the torque required to 

overcome the viscous resistance will be 

 

A.  Double 

B.  four times 

C. eight times 

D. sixteen times 

 

Answer: Option D 
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