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Abstract 

 

 It is undoubtful that artificial 

intelligence (AI) is being the trend of 

computer science and this trend is still 

ongoing in the far future even though 

technologies are being developed suddenly 

fast because computer science does not reach 

the limitation of approaching biological 

world yet. Machine learning (ML), which is a 

branch of AI, is a spearhead but not a key of 

AI because it sets first bricks to build up an 

infinitely long bridge from computer to 

human intelligence, but it is also vulnerable 

to environmental changes or input errors. 

There are three typical types of ML such as 

supervised learning, unsupervised learning, 

and reinforcement learning (RL) where RL, 

which is adapt progressively to 

environmental changes, can alleviate 

vulnerability of machine learning but only 

RL is not enough because the resilience of 

RL is based on iterative adjustment 

technique, not based on naturally inherent 

aspects like data mining approaches and 

moreover, mathematical fundamentals of RL 

lean forwards swing of stochastic process. 

Fortunately, artificial neural network, or 

neural network (NN) in short, can support all 

three types of ML including supervised 

learning, unsupervised learning, and RL 

where the implicitly regressive mechanism 

with high order through many layers under 

NN can improve the resilience of ML. 

Moreover, applications of NN are plentiful 

and multiform because three ML types are 

supported by NN; besides, NN training by 

backpropagation algorithm is simple and 

effective, especially for sample of data 

stream. Therefore, this study research is an 

introduction to NN with easily 

understandable explanations about 

mathematical aspects under NN as a 

beginning of stepping into deep learning 

which is based on multilayer NN. Deep 

learning, which is producing amazing results 
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in the world of AI, is undoubtfully being both 

spearhead and key of ML with expectation 

that ML improved itself by deep learning will 

become both spearhead and key of AI, but 

this expectation is only for ML researchers 

because there are many AI subdomains are 

being invented and developed in such a way 

that we cannot understand exhaustedly. It is 

more important to recall that NN, which 

essentially simulates human neuron system, 

is appropriate to the philosophy of ML that 

constructs an infinitely long bridge from 

computer to human intelligence. 

 

Keywords: artificial neural network (ANN), 

neural network (NN), machine learning 

(ML), artificial intelligence (AI). 
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I.  INTRODUCTION 
 

 Artificial neural network (ANN) is the mathematical model based on biological neural 

network but neural network (NN) in this research always indicates artificial neural network. 

NN consists of a set of processing units which communicate together by sending signals to 

each other over a number of weighted connections (Kröse & Smagt, 1996, p. 15). Each unit is 

also called neuron, cell, node, or variable which is quantified by a real variable. Each 

weighted connection, which is considered a neural cord, is often quantified by a real 

parameter called weight or connection weight. According to Kröse & Smagt, each unit is 

responsible for receiving input from neighbors or external sources and using this input to 

compute an output signal which is propagated to other units (Kröse & Smagt, 1996, p. 15). 

The most important thing here is that the signal propagation is done by the means of weighed 

connections which are imitated as biological neurotransmission with neurons and neural 

cords. According to Kröse & Smagt (Kröse & Smagt, 1996, pp. 15-16), there are three types 

of units: 

 

 Input units receive data from outside the network. These units structure input layer. 

As a convention, there is one input layer. In literature, input layer is not counted, 

which will be explained later. 

 Hidden units own input and output signals that remain within NN. These units 

structure hidden layer. There can be one or more hidden layers. 

 Output units send data out of the network. These units structure output layer. As a 

convention, there is one output layer. 

 

 Please distinguish input unit from input and distinguish output unit from output 

because input is the input value of any unit and output is the output value of any unit. These 

are conventions in this research. Units in NN are also considered variables. The figure 

(Wikipedia, Artificial neural network, 2009) below shows a simple structure of an NN with 

three layers such as input layer, hidden layer, and output layer. The structure of NN is often 

called topology. 

 
 

Figure 1:  Simpler topology of NN with three layers such as input layer, hidden layer, and 

output layer 
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 However, the simplest topology has two layers such as input layer and output layer 

where output layer is also hidden layer. Later on, the NN having such simplest layer is called 

single layer NN which will be explained later. Note that the main reference of this report 

research is the book “An Introduction to Neural Networks” by Ben Kröse and Patrick van der 

Smagt (Kröse & Smagt, 1996). 

 

According to Daniel Rios (Rios), there are two main topologies (structures) of NN: 

 

 Feedforward NN is directed acyclic graphic in which flow of signal from input units 

to output units is one-way flow and so, there is no feedback connection. The NN in 

this section is feedforward NN. As a convention, the ordering of layers is counted 

from left to right, in which the leftmost one is input layer, the middle ones are hidden 

layers, and the rightmost one is output layer. 

 Recurrent NN is the one whose graph (topology) contains cycles and so, there are 

feedback connections. 

 

 It is necessary to evolve NN by modifying the weights of connections so that they 

become more accurate. In other words, such weights should not be fixed by experts. NN 

should be trained by feeding it teaching patterns and letting it change its weights. This is 

learning process or training process. According to Daniel Rios (Rios), there are three types of 

learning methods: 

 

 Supervised Learning: According to Daniel Rios (Rios), the network is trained by 

matching its input and its output patterns. These patterns are often known as classes 

which can be represented by binary values, integers for nominal indices, or real 

numbers. 

 Unsupervised Learning: The network is trained in response to clusters of patterns 

behind the input. According to Daniel Rios (Rios), there is no a priori set of categories 

into which the patterns are to be classified. 

 Reinforcement Learning: The learning algorithms receive partially information along 

with input from environments and then, adjust partially and progressively the 

weighted connections by adaptive way to such input. Reinforcement learning is the 

intermediate form between supervised learning and unsupervised learning. 

 

 This introduction section focuses on supervised learning in which input and output are 

realistic quantities (real numbers). For NN, the essence of supervised learning is to improve 

weighted connections by matching input and output. Learning NN process is also called 

training NN process as usual. Given unit i, let xi and yi denote input and output of unit i, 

which are real numbers. In NN literature, a unit will be activated if its output is determined 

and so the output yi is also called activation of unit i. If a unit is input unit (in input layer) 

then its input contributes to input of NN. If a unit is output unit (in output layer) then its 

output contributes to output of NN. Each connection between two successive units such as 

unit i and unit j is defined by the weight wij determining effect of unit i on unit j. In the 

normal topology, an output unit is composition of other hidden units which in turn are 

compositions of others input units. The composition (aggregation) of a unit is represented as 

a weighted sum which will be evaluated to determine the output of this unit. The process of 

computing the output of a unit includes two following steps (Han & Kamber, 2006, p. 331): 
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 An adder called summing function sums up all the inputs multiplied by their 

respective weights. It is essential to compute the weighted sum. This activity is 

referred to as linear combination. 

 An activation function controls amplitude of output of a unit. This activity aims to 

determine and assert output of a unit. Note that outputs of previous units are inputs of 

current unit. 

 

Figure 2 (Han & Kamber, 2006, p. 331) describes the process of computing output of a unit. 

 
 

Figure 2: Process of computing output of a unit 

 

 For example, as seen in figure 1.2, given a concerned unit k, suppose there are 

previous units whose outputs yj (s) are considered as inputs of unit k. According to the 

process of computing output of a unit, we have following equation (Han & Kamber, 2006, p. 

331), (Kröse & Smagt, 1996, pp. 16-17) for computing output value of a unit. 

 

𝑥𝑘 =  𝑤𝑗𝑘 𝑦𝑗

𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓𝑘 𝑥𝑘 

 (1.1) 

Or shortly: 

𝑦𝑘 = 𝑓𝑘   𝑤𝑗𝑘 𝑦𝑗

𝑖

+ 𝜃𝑘  

 

 The equation above for output processing is called propagation rule. Note, wjk is 

weight of the connection from unit j to unit k and θj is bias of unit j while fj(.) is activation 

function acting on unit j. If all units use the same form of activation function, we can denote 

f(.) = fj(.). 

𝑥𝑘 =  𝑤𝑗𝑘 𝑦𝑗

𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓 𝑥𝑘 

 

 

As a convention, propagation rule can be denoted by succinct way as follows: 

𝑦𝑘 = 𝑓  𝑥𝑘 =  𝑤𝑗𝑘 𝑦𝑗

𝑗

+ 𝜃𝑘  (1.2) 

 

 The parameters of propagation rule are weights wjk and biases θk in which weights are 

most important. Conversely, it is possible to consider propagation rule as function of 
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variables wjk and θk. In a distributed environment, NN can be evolved asynchronously when 

the computing processes on different units can be computed by distributed way. Given time 

point t, propagation rule at time point t + 1 is rewritten as follows: 

 

𝑦𝑘 𝑡 + 1 = 𝑓  𝑥𝑘 𝑡 + 1 =  𝑤𝑗𝑘 𝑦𝑗  𝑡 

𝑗

+ 𝜃𝑘  (1.3) 

 

 The formulation of propagation rule with time points emphasizes the process of 

changing NN in time series but its meaningfulness is not changed. 

 

 As a convention, input units in input layer are indexed by i (for instance, xi and yi), 

hidden units in hidden layer are indexed by h (for instance, xh and yh), and output units in 

output layer are indexed by o (for instance, xo and yo). Therefore, indices j, k, l, etc. indicate 

normal units having both input and output. However, in some cases, the convention of input 

indices i, hidden indices h, and output indices o may not be applied, for example, when 

writing pseudo code for learning NN algorithm. For input units, we assume that xi = yi and θi 

= 0. A NN is valid if it has two or more layers and so there is a convention that a n-layer NN 

has n+1 actual layers, which means that input layer is not counted for this convention. This 

convention is reasonable because propagation rule is not applied to input units. The simplest 

NN is single layer NN owning one input layer and one output layer where the output layer 

can be considered as hidden layer. 

 

 Output values of units are arbitrary, but they should range from 0 to 1 (sometimes –1 

to 1 range). In general, every unit k has following aspects: 

 

 Each unit k has input xk and output yk. Moreover, let vk be the actual value of unit k 

taken from experts, environment, database, states, etc. The actual value vk can be 

equal to or different from the output vk with note that vk is derived from propagation 

rule. The actual value vk is called desired output of unit k. When a unit k is put in NN, 

which means that it connects to other units via weighted connections, then unit k is 

called clamped in NN. Besides, clamped units also are ones that are concerned in 

training process or some special tasks. Input of a clamped unit k is denoted sk. By 

default, all units are clamped and so, the clamped input sk is the same to the input xk as 

sk = xk by default. 

 A set of units j connects to it. Each connection is quantified by a weight wjk. 

 A bias value θk will be added to the weighted sum. 

 The weighted sum is computed by summing up all inputs modified by their respective 

weights. Summing function or adder is responsible for this summing task. 

 Its output yk is outcome of activation function f(.) on weighted sum. Activation 

function is crucial factor in NN. The combination of summing function and activation 

function constitutes propagation rule, but propagation rule can be more complicated 

with some enhancements. 

 

 Given unit k, there are many desired outputs of unit k, for example, vk
(1)

, vk
(2)

,…, and 

hence, given a pattern p (Kröse & Smagt, 1996, p. 19) there is a desired output vk
(p)

 

corresponding to pattern p. For easily understandable explanation, if vk
(p)

 is taken from a 

database table, p indicates the p
th

 row in the table. As a convention, let xk
(p)

, yk
(p)

, vk
(p)

, and sk
(p)
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be input, output, desired output, clamped input of unit k within the p pattern, respectively or 

they can be called the p
th

 input, output, desired output, and clamped input of unit k, 

respectively. With pattern p, propagation rule is rewritten exactly as follows: 

 

𝑠𝑘
 𝑝 

=  𝑤𝑗𝑘 𝑦𝑗
 𝑝 

𝑗∈𝑁 𝑘 

+ 𝜃𝑘

𝑦𝑘
 𝑝 

= 𝑓  𝑠𝑘
 𝑝 

 

 (1.4) 

 

 Where N(k) denotes a set of previous (clamped) units to which the current clamped 

unit k connects. Given time point t, propagation rule is rewritten fully as follows: 

 

𝑠𝑘
 𝑝  𝑡 + 1 =  𝑤𝑗𝑘 𝑦𝑗

 𝑝  𝑡 

𝑗∈𝑁 𝑘 

+ 𝜃𝑘

𝑦𝑘
 𝑝  𝑡 + 1 = 𝑓  𝑠𝑘

 𝑝  𝑡 + 1  

 

 

 Propagation rule essentially transforms inputs to outputs but an output yk may not 

totally equal to desired output vk when it is often approximated to vk. Propagation rule with 

optimal weights and optimal bias is a good enough presentation of NN when NN tries its best 

to approach the desired function v(.) that produces desired outputs vk = v(sk) (= v(xk)). 

Therefore, in NN literature, representation power (Kröse & Smagt, 1996, p. 20) implies the 

approximation of NN and the desired function v(.) and so, the ideology under any learning 

NN algorithms is to make such approximation. 

 

 There are some other conventions for learning NN from sample or training dataset. 

The set of inputs x1, x2,…, xk,… is denoted as x = (x1, x2,…, xk,…)
T
 which is called input 

vector where the superscript “T” denotes transposition operator of vector and matrix. The set 

of outputs y1, y2,…, yk,… is denoted as y = (y1, y2,…, yk,…)
T
 which is called output vector. 

The set of desired outputs v1, v2,…, vk,… is denoted as v = (v1, v2,…, vk,…)
T
 which is called 

desired output vector. The set of clamped inputs s1, s,…, sk,… is denoted as s = (s1, s2,…, 

sk,…)
T
 which is called clamped input vector. Input vector, output vector, desired vector, and 

clamped input vector with p pattern are denoted x
(p)

, y
(p)

, v
(p)

, and s
(p)

, respectively. The set of 

input vector over entire input layer and desired output vector over entire output layer 

composes a sample or training dataset D = {x
(p)

, v
(p)

} for learning NN where p = 1, 2, 3, etc. 

By default, all units are clamped in NN and so we have D = {x
(p)

, v
(p)

} = {s
(p)

, v
(p)

} by default. 

 

 Activation function f(.), which is an important factor of NN, is squashing function 

which “squashes” a large weighted sum into possible smaller values ranging from 0 to 1 

(sometimes –1 to 1 range). According to Daniel Rios (Rios), there are some typical activation 

functions: 

 

 Threshold function takes on value 0 if weighted sum is less than 0 and otherwise. The 

formula of threshold function is: 

𝑓 𝑥 =  
1 if 𝑥 ≥ 0
0 if 𝑥 < 0

  

 Piecewise-linear function takes on values according to amplification factor in a 

certain region of linear operation. The formula of piecewise-linear function is: 



Futuristic Trends in Artificial Intelligence 

e-ISBN: 978-93-6252-373-0 

IIP Series, Volume 3, Book 5, Part 1, Chapter 3 

TUTORIAL ON ARTIFICIAL NEURAL NETWORK 

 

Copyright © 2024 Authors                                                                                                                          Page | 30 

𝑓 𝑥 =

 
 
 

 
 0 if 𝑥 ≤ −

1

2

𝑥 if −
1

2
≤ 𝑥 ≤

1

2

1 if 
1

2
≤ 𝑥

  

 Sigmoid function or logistic function takes on values in range [0, 1] or [–1, 1]. A 

popular formula of sigmoid function is: 

𝑓 𝑥 =
1

1 + 𝑒−𝑥
 (1.5) 

Where e
(.)

 or exp(.) denotes exponent function. Exponential logistic function is the 

most popular activation function. 

 

 Recall that the essence of learning NN (training NN) is to improve weighted 

connections by matching input and output. Given a weight wjk from unit j to unit k, a new 

version of wjk after learning process at time point t is updated by weight deviation Δwjk as 

follows: 

𝑤𝑗𝑘  𝑡 + 1 = 𝑤𝑗𝑘  𝑡 + ∆𝑤𝑗𝑘  

 

Or shortly: 
𝑤𝑗𝑘 = 𝑤𝑗𝑘 + ∆𝑤𝑗𝑘  (1.6) 

 

 The equation above is called weight update rule and hence, weight update rule 

focuses on how to calculate weight deviation Δwjk which is also called the change in weight. 

Learning NN algorithms also improve biases beside improving weights. Given bias θk of unit 

k, a new version of θk after learning process at time point t is updated by bias deviation Δθk as 

follows: 

𝜃𝑘 𝑡 + 1 = 𝜃𝑘 𝑡 + ∆𝜃𝑘  
Or shortly: 

𝜃𝑘 = 𝜃𝑘 + ∆𝜃𝑘  (1.7) 

 

 The equation above is called bias update rule and hence, bias update rule focuses on 

how to calculate bias deviation Δθk which is also called the change in bias. In general, a 

normal learning NN algorithm needs to specify both weight update rule and bias update rule 

because both of them determine propagation rule. Because weight update rule and bias update 

rule are based on weight deviation and bias deviation, these deviations Δwjk and Δθk can be 

used to represent these rules. 

 

 The most popular learning NN algorithm is backpropagation algorithm, but we should 

skim some simpler learning algorithms first. Two common simpler learning algorithms are 

Perceptron and Adaline. Both of them are based on Hebbian rule and delta rule. Hebbian rule 

indicates that Δwjk (also wjk) is proportional to product of output of unit j and output of unit k 

as follows (Kröse & Smagt, 1996, p. 18): 
∆𝑤𝑗𝑘 = 𝛾𝑦𝑗𝑦𝑘  (1.8) 

 

 Where the positive constant γ which is called learning rate (0 < γ ≤ 1) specifies power 

of the proportionality, which relates to speed of learning process. In simplest case, it is 1 as γ 

= 1. Both yj and yk are results of propagation rule. Let vk be desired output of unit k from 
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environment or database, delta rule indicates that Δwjk (also wjk) is proportional to product of 

output value of unit j and output deviation of unit k as follows (Kröse & Smagt, 1996, p. 18): 

 
∆𝑤𝑗𝑘 = 𝛾𝑦𝑗  𝑣𝑘 − 𝑦𝑘  (1.9) 

 

 Obviously, Hebbian rule and delta rule are weight update rules. After researching 

learning NN algorithm, we will recognize that delta rule is derived from stochastic gradient 

descent (SGD) method for minimizing squared error with least squares method. Moreover, it 

is possible to consider delta rule as an improved Hebbian rule and thus, Hebbian is the base 

for learning NN algorithms. 

 

 Recall that the most popular NN algorithm is backpropagation algorithm whereas two 

simpler learning algorithms are Perceptron and Adaline. Perceptron algorithm is used to train 

a simple single layer NN called Perceptron. For instance, Perceptron has some input units and 

one output unit. Without loss of generality, Perceptron has two input units whose (input) 

values are denoted x1 and x2 and one output unit whose (output) value is denoted y with note 

that y is binary {–1, 1} and bias of the output unit is θ, as seen in figure 1.3 (Kröse & Smagt, 

1996, p. 23). 

 
 

Figure 3:  Perceptron topology 

 

 As a convention, we can call input unit x1, input unit x2, output unit y, and bias θ 

although they are values. Propagation rule of Perceptron is (Kröse & Smagt, 1996, p. 23): 

 
𝑥 = 𝑤1𝑥1 + 𝑤1𝑥1 + 𝜃

𝑦 = 𝑓 𝑥 =  
1 if 𝑥 > 0

−1 otherwise
  (1.10) 

 

Which is, indeed, a binary classifier for supervised learning whose inputs are x1 and x2 and 

whose output is the binary class {–1, 1}. Classification equation from the Perceptron 

propagation rule is w1x1 + w2x2 + θ = 0. Weight update rule of Perceptron is: 

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 , ∀𝑖 = 1,2     
 

Let v ∈ {–1, 1} be desired value of unit y from environment or database, Perceptron learning 

algorithm calculates weight deviation Δwi as follows (Kröse & Smagt, 1996, pp. 24-25): 

∆𝑤𝑖 =  
𝑥𝑖𝑣 if 𝑦 ≠ 𝑣

0 if 𝑦 = 𝑣
 , ∀𝑖 = 1,2     (1.11) 

Therefore, weight update rule of Perceptron is slightly similar to Hebbian rule. Bias update 

rule of Perceptron is: 

𝜃 = 𝜃 + ∆𝜃 
 

Perceptron learning algorithm calculates bias deviation Δθi as follows (Kröse & Smagt, 1996, 

p. 25): 
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∆𝜃 =  
𝑣 if 𝑦 ≠ 𝑣
0 if 𝑦 = 𝑣

  (1.12) 

 

For example, with initialized values w1 = 1, w2 = 1, and θ = 0, given sample x1 = 1, x2 = 2, 

and v = 1, Perceptron weights and biases are updated as follows: 

𝑥 = 𝑤1𝑥1 + 𝑤1𝑥1 + 𝜃 = 3 

𝑦 = 1 due to 𝑥 > 0 
 

 Adaline developed by Widrow and Hoff (Kröse & Smagt, 1996, p. 27), which is 

abbreviation of adaptive linear element, is an extension of Perceptron, whose inputs and 

outputs are real numbers. Of course, Adaline is a single layer NN. Therefore, the output unit y 

is linear combination of the input units xi (s). Propagation rule of Adaline is (Kröse & Smagt, 

1996, p. 28): 

𝑦 =  𝑤𝑖𝑥𝑖

𝑖

+ 𝜃 (1.13) 

 

 Obviously, activation function of Adaline is identical function. Suppose Adaline is 

learned from the sample {x
(p)

, v
(p)

} where each v
(p)

 is the p
th

 desired output which is 

corresponding to the p
th

 instance y
(p)

 at pattern p. By default, all units are clamped and so, the 

clamped input sk is the same to the input xk as sk = xk by default such that {x
(p)

, v
(p)

} = {s
(p)

, 

v
(p)

}. The total error given this sample is the sum of squared deviations between desired 

outputs and outputs as follows (Kröse & Smagt, 1996, p. 28): 

 

𝜀 𝑤𝑖 , 𝜃 =  𝜀 𝑝  𝑤𝑖 , 𝜃 

𝑝

 (1.14) 

Where (Kröse & Smagt, 1996, p. 28), 

𝜀 𝑝  𝑤𝑖 , 𝜃 =
1

2
 𝑣 𝑝 − 𝑦 𝑝  

2
=

1

2
 𝑣 𝑝 −   𝑤𝑖𝑥𝑖

 𝑝 

𝑖

+ 𝜃  

2

 (1.15) 

 

 Note, ε
(p)

(wi, θ), which is function of wi and θ, is the squared error at pattern p or the 

p
th

 squared error in short. According to least squares method, the optimal (wi
**

, θ
**

)
T
 is 

minimizer of the total error. 

 𝑤𝑖
∗∗, 𝜃∗∗ = argmin

 𝑤 𝑖 ,𝜃 
𝜀 𝑤𝑖 , 𝜃  

 

By feeding successively each {x
(p)

, v
(p)

} or summing all squared errors ε
(p)

(wi, θ), it is possible 

to calculate a minimizer (wi
*
, θ

*
) at each pattern p, which minimizes the p

th
 squared error 

ε
(p)

(wi, θ). 

 𝑤𝑖
∗, 𝜃∗ = argmin

 𝑤 𝑖 ,𝜃 
𝜀 𝑝  𝑤𝑖 , 𝜃  (1.16) 

 

 After feeding all patterns one by one, the final minimizer (wi
*
, θ

*
)
T
 is expected to 

minimize the total squared error ε(wi, θ) like (wi
**

, θi
**

). Stochastic gradient descent (SGD) 

method is used to search for the maximizer (wi
*
, θ

*
)
T
 with the target function ε

(p)
(wi, θ). SGD 

pushes candidate solution along with a so-called descending direction multiplied with length 

γ of such descending direction where descending direction is the opposite of gradient of 

ε
(p)

(wi, θ). 
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 𝑤𝑖 , 𝜃  𝑝 =  𝑤𝑖 , 𝜃  𝑝 − 𝛾∇𝜀 𝑝  𝑤𝑖 , 𝜃 

∇𝜀 𝑝  𝑤𝑖 , 𝜃 =  
𝜕𝜀 𝑝  𝑤𝑖 , 𝜃 

𝜕𝑤𝑖
,
𝜕𝜀 𝑝  𝑤𝑖 , 𝜃 

𝜕𝜃
 

 (1.17) 

 

Note, the gradient of ε
(p)

(wi, θ) denoted ∇ε
(p)

(wi, θ) is row vector of partial derivatives of 

ε
(p)

(wi, θ) (Kröse & Smagt, 1996, p. 28). Due to (Kröse & Smagt, 1996, pp. 28-29): 

 

𝜕𝜀 𝑝  𝑤𝑖 , 𝜃 

𝜕𝑤𝑖
= −𝑥𝑖

 𝑝 
 𝑣 𝑝 − 𝑦 𝑝   

We have: 

∇𝜀 𝑝  𝑤𝑖 , 𝜃 = − 𝑥𝑖
 𝑝 

 𝑣 𝑝 − 𝑦 𝑝  , 𝑣 𝑝 − 𝑦 𝑝   

 

As a result, weight deviation and bias deviation are determined based on γ and the gradient of 

ε
(p)

(wi, θ) as follows (Kröse & Smagt, 1996, p. 29): 

 

∆𝑤𝑖
 𝑝 

= −𝛾
𝜕𝜀 𝑝  𝑤𝑖 , 𝜃 

𝜕𝑤𝑖
= 𝛾𝑥𝑖

 𝑝 
 𝑣 𝑝 − 𝑦 𝑝   (1.18) 

 

 In NN literature, γ is called learning rate which implies speed of the learning NN 

algorithm. Recall that the equation above for weigh deviation and bias deviation above is 

derived from the squared error function ε
(p)

(wi, θ) at pattern p and so, it is easy to extend such 

equation for the total squared error function 𝜀 𝑤𝑖 , 𝜃 =  𝜀 𝑝  𝑤𝑖 , 𝜃 𝑝  over all patterns: 

 

∆𝑤𝑖 =  ∆𝑤𝑖
 𝑝 

𝑝

=  𝛾𝑥𝑖
 𝑝 

 𝑣 𝑝 − 𝑦 𝑝  

𝑝

 

∆𝜃 =  ∆𝜃 𝑝 

𝑝

=  𝛾 𝑣 𝑝 − 𝑦 𝑝  

𝑝

 

 

 The extension is easy to be asserted because the squared error function ε
(p)

(wi, θ) and 

the total squared error function ε(wi, θ) are second-order functions so that SGD is applied 

easily to the two function without loss of generality. As a result, weight update rule and bias 

update rule of Adaline are: 

 
𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖  (1.19) 

Where, 

𝑦 =  𝑤𝑖𝑥𝑖

𝑖

+ 𝜃 

Obviously, Adaline learning algorithm follows delta rule. 

 

 By extending Adaline we obtain weight update rule and bias update rule for normal 

NN in general case. Recall that propagation rule for normal NN is: 

𝑥𝑘 =  𝑤𝑗𝑘 𝑦𝑗

𝑗

+ 𝜃𝑘

𝑦𝑘 = 𝑓 𝑥𝑘 
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 Without loss of generality, the pattern p is removed from the formulation, but it exists 

in training sample for learning algorithms. Because propagation rule is only applied to hidden 

units and output units and so only weights and biases of hidden units and output units are 

learned, of course. Because only output units have desired outputs, we estimate weights and 

bias of output units first and then, turn back to estimate weights and biases of hidden units 

according to backward direction. Given output unit o whose output and desired output are yo 

and vo, the squared error function of output unit o for normal NN is (Kröse & Smagt, 1996, p. 

34): 

𝜀 𝑦𝑜 = 𝜀 𝑤𝑕𝑜 , 𝜃𝑜 =
1

2
 𝑣𝑜 − 𝑦𝑜 2 (1.20) 

Where, 

𝑦𝑜 = 𝑓  𝑥𝑜 =  𝑤𝑕𝑜𝑦𝑕

𝑕

+ 𝜃𝑜  

 

 Note that all previous outputs yh were determined. Moreover, by default, all units are 

clamped and so, the clamped input so is the same to the input xo as so = xo by default. The 

squared error function is also called loss function. Recall that the total squared error is the 

sum of many squared errors over all patterns but here we focus on the squared error without 

loss of generality because these squared errors are Lipschitz continuous second-order 

functions which are fed to SGD, which will be explained in the next section mentioning 

convergence of SGD in detail. 

 

𝜀 𝑦𝑜 =  𝜀 𝑝  𝑦𝑜 

𝑝

=  
1

2
 𝑣𝑜

 𝑝 
− 𝑦𝑜

 𝑝 
 

2

𝑝

 

In other words, here we focus on one pattern such that: 

𝜀 𝑦𝑜 = 𝜀 𝑤𝑕𝑜 , 𝜃𝑜 = 𝜀 𝑝  𝑦𝑜 =
1

2
 𝑣𝑜

 𝑝 
− 𝑦𝑜

 𝑝 
 

2

=
1

2
 𝑣𝑜 − 𝑦𝑜 2 

 

 Recall that weight deviation Δwho and bias deviation Δθo are determined based on the 

gradient of the squared error function ε(yo) according to stochastic gradient descent (SGD) 

method for minimizing the squared error function ε(yo). 

 

 𝑤𝑕𝑜 , 𝜃𝑜 =  𝑤𝑕𝑜 , 𝜃𝑜 − 𝛾∇𝜀 𝑤𝑕𝑜 , 𝜃𝑜  
 

 Note, the gradient of ε(yo) with regard to who and θo is row vector of partial derivatives 

of ε(yo) with regard to who and θo as follows: 

 

∇𝜀 𝑦0 = ∇𝜀 𝑤𝑕𝑜 , 𝜃𝑜 =  
𝜕𝜀 𝑦0 

𝜕𝑤𝑕𝑜
,
𝜕𝜀 𝑦0 

𝜕𝜃𝑜
  

  

 By SGD, weight deviation Δwho and bias deviation Δθo are products of learning rate 

and descending direction of ε(yo) which is the opposite of the gradient ∇ε(who, θo). 

∆𝑤𝑕𝑜 = −𝛾
𝜕𝜀 𝑦𝑜 

𝜕𝑤𝑕𝑜
 

∆𝜃𝑜 = −𝛾
𝜕𝜀 𝑦𝑜 

𝜕𝜃𝑜
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 Due to chain rule in derivation: 

 
𝜕𝜀 𝑦0 

𝜕𝑤𝑕𝑜
=

𝜕𝜀 𝑦0 

𝜕𝑦𝑜

𝜕𝑦𝑜

𝜕𝑥𝑜

𝜕𝑥𝑜

𝜕𝑤𝑕𝑜
= − 𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑥𝑜 𝑦𝑕  

𝜕𝜀 𝑦0 

𝜕𝜃𝑜
=

𝜕𝜀 𝑦0 

𝜕𝑦𝑜

𝜕𝑦𝑜

𝜕𝑥𝑜

𝜕𝑥𝑜

𝜕𝜃𝑜
= − 𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑥𝑜  

 

We obtain weight deviation Δwho and bias deviation Δθo of any output unit as follows: 

 

∆𝑤𝑕𝑜 = 𝛾𝑦𝑕 𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑥𝑜           (1.21) 

 

Where f’(xo) is derivative of activation function f(.) at xo. Obviously, 
𝜕𝜀 𝑦0 

𝜕𝑦𝑜
= − 𝑣𝑜 − 𝑦𝑜 ,

𝜕𝑦𝑜

𝜕𝑥𝑜
= 𝑓 ′ 𝑥𝑜 ,

𝜕𝑥𝑜

𝜕𝑤𝑕𝑜
= 𝑦𝑕 ,

𝜕𝑥𝑜

𝜕𝜃𝑜
= 1 

 

Let (Kröse & Smagt, 1996, p. 34), 

 

𝛿0 = −
𝜕𝜀 𝑦0 

𝜕𝑥𝑜
= −

𝜕𝜀 𝑦0 

𝜕𝑦𝑜

𝜕𝑦𝑜

𝜕𝑥𝑜
=  𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑥𝑜  (1.22) 

 

 The quantity δo is called error of output unit in literature. The derivative f’(xo) should 

be replaced by f’(yo) because xo should be squashed into yo so that it will not be out of value 

space. As a result, the quantity δo is improved as follows: 

 

𝛿0 =  𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑦𝑜  
 

We have the succinct equation of weight deviation Δwho and bias deviation Δθo. 

 
∆𝑤𝑕𝑜 = 𝛾𝑦𝑕𝛿𝑜

∆𝜃𝑜 = 𝛾𝛿𝑜
 (1.23) 

  

 Recall that the equation above for weigh deviation and bias deviation is derived from 

the squared error function ε
(p)

(yo) at pattern p and so, it is easy to extend such equation for the 

total squared error function 𝜀 𝑦𝑜 =  𝜀 𝑝  𝑦𝑜 𝑝  over all patterns: 

 

∆𝑤𝑕𝑜 =  ∆𝑤𝑕𝑜
 𝑝 

𝑝

=  𝛾𝑦𝑕
 𝑝 

𝛿𝑜
 𝑝 

𝑝

∆𝜃𝑜 =  ∆𝜃𝑜
 𝑝 

𝑝

=  𝛾𝛿𝑜
 𝑝 

𝑝

 

 

 The extension is easy to be asserted because the squared error function ε
(p)

(yo) and the 

total squared error function ε(yo) are second-order functions so that SGD is applied easily to 

the two functions without loss of generality. 

 

 Obviously, we determine weight update rule and bias update rule for output units as 

follows: 
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𝑤𝑕𝑜 = 𝑤𝑕𝑜 + ∆𝑤𝑕𝑜  

𝜃𝑜 = 𝜃𝑜 + ∆𝜃𝑜  
 

 Now we turn back to estimate weights and bias of a hidden unit h according to 

backward direction with suppose that hidden unit h is connected to a set of output units o. 

Therefore, the squared error function ε(yh) of hidden unit h is the sum of output errors ε(yo) 

with regard to such set of output units, as follows: 

 

𝜀 𝑦𝑕 =  𝜀 𝑦𝑜 

𝑜

 (1.24) 

 

Each output squared error ε(yo) were aforementioned: 

𝜀 𝑦𝑜 =
1

2
 𝑣𝑜 − 𝑦𝑜 2 

Note, 

𝑦𝑜 = 𝑓  𝑥𝑜 =  𝑤𝑕𝑜𝑦𝑕

𝑕

+ 𝜃𝑜  

 

 By default, all units are clamped and so, the clamped input sh is the same to the input 

xh as sh = xh by default. Recall that the total squared error is the sum of many squared errors 

over all patterns but here we focus on the squared error without loss of generality because 

these squared errors are Lipschitz continuous second-order functions which are fed to SGD. 

 

𝜀 𝑦𝑕 =  𝜀 𝑝  𝑦𝑕 

𝑝

=   𝜀 𝑝  𝑦𝑜 

𝑜𝑝

 

Where, 

 

𝜀 𝑝  𝑦𝑜 =
1

2
 𝑣𝑜

 𝑝 
− 𝑦𝑜

 𝑝 
 

2

 

In other words, we focus on one pattern such that: 

 

𝜀 𝑦𝑕 = 𝜀 𝑝  𝑦𝑕 =  𝜀 𝑝  𝑦𝑜 

𝑜

=  𝜀 𝑦𝑜 

𝑜

=  
1

2
 𝑣𝑜 − 𝑦𝑜 2

𝑜

 

 

 Recall that weight deviation Δwjh and bias deviation Δθh are determined based on the 

gradient of the squared error function ε(yh) according to stochastic gradient descent (SGD) 

method for minimizing the squared error function ε(yh). 

 

 𝑤𝑗𝑕 , 𝜃𝑕 =  𝑤𝑗𝑕 , 𝜃𝑕 − 𝛾∇𝜀 𝑤𝑗𝑕 , 𝜃𝑕  

Note, the gradient of ε(yh) with regard to wjh and θh is row vector of partial derivatives of ε(yh) 

with regard to wjh and θh as follows: 

∇𝜀 𝑦𝑕 = ∇𝜀 𝑤𝑗𝑕 , 𝜃𝑕 =  
𝜕𝜀 𝑦𝑕 

𝜕𝑤𝑗𝑕
,
𝜕𝜀 𝑦𝑕 

𝜕𝜃𝑕
  

 

It is necessary to calculate the gradient ∇ε(wjh, θh). Firstly, we have: 
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𝜕𝜀 𝑦𝑕 

𝜕𝑥𝑕
=

𝜕𝜀 𝑦𝑕 

𝜕𝑦𝑕

𝜕𝑦𝑕

𝜕𝑥𝑕
=

𝜕𝜀 𝑦𝑕 

𝜕𝑦𝑕
𝑓 ′ 𝑥𝑕  

 

Recall that, according to propagation rule, xh is: 

𝑥𝑕 =  𝑤𝑗𝑕𝑦𝑗

𝑗

+ 𝜃𝑕  

𝑦𝑕 = 𝑓 𝑥𝑕  

It is necessary to calculate the derivative 
𝜕𝜀  𝑦𝑕  

𝜕𝑦𝑕
. Indeed, we have: 

𝜕𝜀 𝑦𝑕 

𝜕𝑦𝑕
=  

𝜕𝜀 𝑦𝑜 

𝜕𝑥𝑜

𝜕𝑥𝑜

𝜕𝑦𝑕
𝑜

 

Due to: 

𝜕𝜀 𝑦𝑜 

𝜕𝑥𝑜
= −𝛿𝑜  

 

We obtain: 

 
𝜕𝜀 𝑦𝑕 

𝜕𝑦𝑕
= −  𝑤𝑕𝑜𝛿𝑜

𝑜

 

 

This implies: 
𝜕𝜀 𝑦𝑕 

𝜕𝑥𝑕
= −𝑓 ′ 𝑥𝑕  𝑤𝑕𝑜𝛿𝑜

𝑜

 

 

As a result, the gradient of the squared error function ε(yh) with regard to wjh and θh is: 

∇𝜀 𝑦𝑕 = ∇𝜀 𝑤𝑗𝑕 , 𝜃𝑕 =  
𝜕𝜀 𝑦𝑕 

𝜕𝑤𝑗𝑕
,
𝜕𝜀 𝑦𝑕 

𝜕𝜃𝑕
  

 

Where, 

𝜕𝜀 𝑦𝑕 

𝜕𝑤𝑗𝑕
=

𝜕𝜀 𝑦𝑕 

𝜕𝑥𝑕

𝜕𝑥𝑕

𝜕𝑤𝑗𝑕
= −𝑓 ′ 𝑥𝑕   𝑤𝑕𝑜𝛿𝑜

𝑜

 𝑦𝑗  

𝜕𝜀 𝑦𝑕 

𝜕𝜃𝑕
=

𝜕𝜀 𝑦𝑕 

𝜕𝑥𝑕

𝜕𝑥𝑕

𝜕𝜃𝑕
= −𝑓 ′ 𝑥𝑕  𝑤𝑕𝑜𝛿𝑜

𝑜

 

 

Note, 

𝜕𝑥𝑕

𝜕𝑤𝑗𝑕
=

𝜕

𝜕𝑤𝑗𝑕
  𝑤𝑗𝑕𝑦𝑗

𝑗

+ 𝜃𝑕 = 𝑦𝑗  

𝜕𝑥𝑕

𝜕𝜃𝑕
=

𝜕

𝜕𝜃𝑕
  𝑤𝑗𝑕𝑦𝑗

𝑗

+ 𝜃𝑕 = 1 
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 Therefore, by SGD, weight deviation Δwjh and bias deviation Δθh are inversely 

proportional to the gradient of the squared error function ε(yh) multiplied with learning rate as 

follows: 

∆𝑤𝑗𝑕 = −𝛾
𝜕𝜀 𝑦𝑕 

𝜕𝑤𝑗𝑕
= 𝛾𝑦𝑗 𝑓

′ 𝑥𝑕  𝑤𝑕𝑜𝛿𝑜

𝑜

 (1.25) 

 

 Obviously, we determine weight update rule and bias update rule for hidden units as 

follows: 

𝑤𝑗𝑕 = 𝑤𝑗𝑕 + ∆𝑤𝑗𝑕  

 

 In general, given any output unit h and any hidden unit o, weight update rule and bias 

update rule in the most general case of learning NN are represented as follows: 

 
∆𝑤𝑕𝑜 = 𝛾𝑦𝑕𝛿𝑜

∆𝜃𝑜 = 𝛾𝛿𝑜

∆𝑤𝑗𝑕 = 𝛾𝑦𝑗 𝛿𝑕

∆𝜃𝑕 = 𝛾𝛿𝑕

 (1.26) 

Where, 
𝛿𝑜 =  𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑥𝑜 

𝛿𝑕 = 𝑓 ′ 𝑥𝑕  𝑤𝑕𝑜𝛿𝑜

𝑜

 (1.27) 

Note, 

𝑦𝑜 = 𝑓  𝑥𝑜 =  𝑤𝑕𝑜𝑦𝑕

𝑕

+ 𝜃𝑜  

𝑦𝑕 = 𝑓  𝑥𝑕 =  𝑤𝑗𝑕𝑦𝑗

𝑗

+ 𝜃𝑕  

 

 The quantity δh is called error of hidden unit in literature. The equation above is an 

extension of delta rule. The derivatives f’(xo) and f’(xh) should be replaced by f’(yo) and f’(yh) 

because xo and xh should be squashed into yo and yh so that they will not be out of value space. 

As a result, the quantities δo and δh are improved as follows: 

𝛿0 =  𝑣𝑜 − 𝑦𝑜 𝑓 ′ 𝑦𝑜  

𝛿𝑕 = 𝑓 ′ 𝑦𝑕  𝑤𝑕𝑜𝛿𝑜

𝑜

 

Recall that the equation above for weigh deviation and bias deviation is derived from the 

squared error function ε
(p)

(yh) at pattern p and so, it is easy to extend such equation for the 

total squared error function 𝜀 𝑦𝑕 =  𝜀 𝑝  𝑦𝑕 𝑝  over all patterns: 

∆𝑤𝑕𝑜 =  ∆𝑤𝑕𝑜
 𝑝 

𝑝

=  𝛾𝑦𝑕
 𝑝 

𝛿𝑜
 𝑝 

𝑝

 

∆𝜃𝑜 =  ∆𝜃𝑜
 𝑝 

𝑝

=  𝛾𝛿𝑜
 𝑝 

𝑝

 

∆𝑤𝑗𝑕 =  ∆𝑤𝑗𝑕
 𝑝 

𝑝

=  𝛾𝑦𝑗
 𝑝 

𝛿𝑕
 𝑝 

𝑝
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∆𝜃𝑕 =  ∆𝜃𝑕
 𝑝 

𝑝

=  𝛾𝛿𝑕
 𝑝 

𝑝

 

Where, 

𝛿𝑜
 𝑝 

=  𝑣𝑜
 𝑝 

− 𝑦𝑜
 𝑝 

 𝑓 ′  𝑥𝑜
 𝑝 

 

𝛿𝑕
 𝑝 

= 𝑓 ′  𝑥𝑕
 𝑝 

  𝑤𝑕𝑜
 𝑝 

𝛿𝑜
 𝑝 

𝑜

 

 

 The extension is easy to be asserted because the squared error function ε
(p)

(yh) and the 

total squared error function ε(yh) are second-order functions so that SGD is applied easily to 

the two functions without loss of generality. 

 

 For learning any previous unit j connecting to unit k, the backward estimation is done 

similarly with note that unit k plays the role of output unit for unit j. The essence of a learning 

NN algorithm is back propagation process from the last layer (output layer) backwards the 

first layer (input layer). The final stage of this common learning NN algorithm is to specify 

the derivative f’(x) of activation function, which depends on concrete applications. A popular 

activation function is sigmoid function f(x) = 1 / (1 + exp(–x)) whose derivative is: 

 

𝑓 ′ 𝑥𝑘 =
𝑒−𝑥𝑘

 1 + 𝑒−𝑥𝑘 2
=

1

1 + 𝑒−𝑥𝑘
 1 −

1

1 + 𝑒−𝑥𝑘
 = 𝑓 𝑥𝑘  1 − 𝑓 𝑥𝑘  = 𝑦𝑘 1 − 𝑦𝑘  

The derivative f’(xk) should be replaced by f’(yk) because xk should be squashed into yk so that 

it will not be out of value space. As a result, the derivative f’(xk) is improved as follows: 

 

𝑓 ′ 𝑥𝑘 = 𝑧𝑘 1 − 𝑧𝑘  
Where, 

𝑧𝑘 = 𝑓 𝑥𝑘  
Therefore, weight update rule and bias update rule for sigmoid function are: 

 
∆𝑤𝑕𝑜 = 𝛾𝑦𝑕𝛿𝑜

∆𝜃𝑜 = 𝛾𝛿𝑜

∆𝑤𝑗𝑕 = 𝛾𝑦𝑗 𝛿𝑕

∆𝜃𝑕 = 𝛾𝛿𝑕

 

Where, 
𝛿𝑜 =  𝑣𝑜 − 𝑦𝑜 𝑦𝑜 1 − 𝑦𝑜  

𝛿𝑕 = 𝑦𝑕 1 − 𝑦𝑕  𝑤𝑕𝑜𝛿𝑜

𝑜

 (1.28) 

 

Recall that δo and δh are also called errors of output unit and hidden unit, respectively. 

𝐸𝑟𝑟𝑜 = 𝛿𝑜  

𝐸𝑟𝑟𝑕 = 𝛿𝑕  
 

 Now it is easy to implement an iteration algorithm for learning NN with sigmoid 

function (logistic function), which is called backpropagation algorithm. Moreover, such 

backpropagation algorithm is the representation of traditional learning NN algorithm and so 

please pay attention to it. Recall that a learning NN process is also called training NN process 

in NN literature. For easily understandable explanation, there are some new notations. Given 
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current unit j and n previous units i connecting to unit j, let Oi, Ij and Oj be output of unit i, 

input of unit j, and output of unit j. Obviously, we have Oi = yi, Ij = xj = sj, and Oj = yj. These 

notations are necessary for describing pseudo code of backpropagation algorithm because 

output units and hidden units in some cases are treated similarly in the algorithm. Therefore, 

the convention of input indices i, hidden indices h, and output indices o may not be applied 

here. Propagation rule is written according to these notations (Han & Kamber, 2006, p. 331) 

for computing the output value of a unit as follows: 

 

𝐼𝑗 =  𝑤𝑖𝑗 𝑂𝑖

𝑛

𝑖=1

+ 𝜃𝑗  

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗
 

 

 For backpropagation algorithm, weight update rule and bias update rule of any unit j 

are represented as follows: 

∆𝑤𝑖𝑗 = 𝛾𝑂𝑖𝐸𝑟𝑟𝑗  

∆𝜃𝑜 = 𝛾𝐸𝑟𝑟𝑗  

 

 Given actual value (desired value) Vj of unit j and a set of units k to which unit j 

connects, we have: 

𝐸𝑟𝑟𝑗 =  

 𝑉𝑗 − 𝑂𝑗  𝑂𝑗  1 − 𝑂𝑗   for output unit 𝑗

𝑂𝑗  1 − 𝑂𝑗   𝑤𝑗𝑘 𝐸𝑟𝑟𝑘
𝑘

 for hidden unit 𝑗 
  

 

 Backpropagation algorithm (backward propagation algorithm) is described here along 

with an example of document classification (Nguyen, 2022), which is implementation of 

propagation rule, weight update rule, and bias update rule.  Suppose a sample consists of 

many data rows and each row has many attributes. There is a so-called class attribute which 

is used to group (classify) rows. All attributes except the class attribute are often represented 

as input units in NN and the class attribute is often represented as output unit in NN. When 

feedforward NN is used to classify document then, rows represent documents and non-class 

attributes are terms; in this case, the sample becomes a matrix nxp, which have n rows and p 

columns with respect to n document vectors and p terms. This sample for document 

classification is called corpus. Backpropagation algorithm (Han & Kamber, 2006, pp. 330-

333) is also a famous supervised learning algorithm for classification, besides learning 

feedforward NN. Therefore, backpropagation algorithm here is applied to classify the corpus 

as an example of supervised learning by NN (Nguyen, 2022). It processes iteratively data 

rows in training corpus and compares network’s prediction for each row to actual class of the 

row. For each time it feeds a training row, weights are modified in order to minimize error 

between network’s prediction and actual class. The modifications are made in backward 

direction, from output layer through hidden layer down to input layer. Backpropagation 

algorithm includes four main steps such as initializing the weights, propagating input values 

forward, propagating errors backward, and updating weights and biases (Han & Kamber, 

2006, pp. 330-333). The following table describes backpropagation algorithm for learning 

NN by pseudo-code like programming language. 

 

Table 1: Backpropagation algorithm for learning NN with sigmoid activation 
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1.  Initializing the Weights: Weights wij of all connections between units are initialized as 

random real numbers which should be in space [0, 1]. Each bias θi associated to each unit 

is also initialized, which is 0 as usual. 

 

While terminating condition is not satisfied 

For each data row in corpus 

 

2.   Propagating Input Values Forward: Training data row is fed to input layer. 

For each input unit i, its input value denoted Ii and its output value denoted Oi are the 

same. 

𝑂𝑖 = 𝐼𝑖  
End for each input unit i 

For each hidden unit j or output unit j, its input value Ij is the weighted sum of all output 

values of units from previous layer. The bias is also added to this weighted sum. 

 

𝐼𝑗 =  𝑤𝑖𝑗 𝑂𝑖

𝑖

+ 𝜃𝑗  

Where wij is the weight of connection from unit i in previous layer to unit j, Oi is output 

value of unit i from previous layer and θj is bias of unit j. The output value of hidden unit 

or output unit Oj is computed by applying activation function to its input value (weighted 

sum). Suppose activation function is sigmoid function. We have: 

 

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗
 

End for each hidden unit j or output unit j 

 

3.  Propagating Errors Backward: The error is propagated backward by updating the 

weights and biases to reflect the error of network’s prediction.  

For each output unit j, its error Errj is computed as below: 

𝐸𝑟𝑟𝑗 = 𝑂𝑗  1 − 𝑂𝑗   𝑉𝑗 − 𝑂𝑗   

Where Vj is the real value of unit j in training corpus; in other words, Vj is the actual class. 

This error is the δo aforementioned. 

End for each output unit j 

For each hidden unit j from the last hidden layer to the first hidden layer, the weighted 

sum of the errors of other units connected to it in the next higher layer is considered when 

its error is computed. So the error of hidden unit j is computed as below: 

𝐸𝑟𝑟𝑗 = 𝑂𝑗  1 − 𝑂𝑗   𝐸𝑟𝑟𝑘𝑤𝑗𝑘

𝑘

 

Where wjk is the weight of the connection from hidden unit j to a unit k in next higher 

layer and Errk is the error of unit k. This error is the δh aforementioned. 

End for each hidden unit j 

 

4.   Updating Weights and Biases is based on the errors. 

For each weight wij over the whole NN. The weights are updated so as to minimize the 

errors. Given Δwij is the change in weight wij, the weight wij is updated as below: 

∆𝑤𝑖𝑗 = 𝛾 ∗ 𝐸𝑟𝑟𝑗𝑂𝑖  
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𝑤𝑖𝑗 = 𝑤𝑖𝑗 + ∆𝑤𝑖𝑗  

Where γ is learning rate ranging from 0 to 1. Learning rate helps to avoid getting stuck at 

a local minimum in decision space and helps to approach to a global minimum (Han & 

Kamber, 2006, pp. 332-333). 

End for each weight wij in the whole NN 

For each bias θj over the whole NN. The bias θj of hidden or output unit j is updated as 

below: 

∆𝜃𝑗 = 𝛾 ∗ 𝐸𝑟𝑟𝑗  

𝜃𝑗 = 𝜃𝑗 + ∆𝜃𝑗  

Where γ is learning rate ranging from 0 to 1 (0 < γ ≤ 1). 

End for each bias θj 

 

End for each data row in corpus 

End while terminating condition is not satisfied with note that there are two common 

terminating conditions: 

 

 All Δwij in some iteration are smaller than given threshold. 

 Or, the number of iterations is large enough. 

 Or, iterating through all possible training data rows. 

-  

 

 The trained (learned) NN derived from backpropagation algorithm is the classifier of 

NN. Now the application of NN into document classification is described right here. 

 

 Given a corpus (sample), in which there are a set of classes C = {computer science, 

math}, and a set of terms T = {computer, programming language, algorithm, derivative}. 

Every document (vector) is represented as a set of input variables. Each term is mapped to an 

input variable whose value is term frequency (tf). So the input layer consists of four input 

units: “computer”, “programming language”, “algorithm” and “derivative”. 

 

 The hidden layer is constituted of two hidden units: “computer science”, “math”. 

Values of these hidden units range in interval [0, 1]. The output layer has only one unit 

named “document class” whose value also ranges in interval [0, 1] where value 1 denotes that 

document belongs totally to “computer science” class and value 0 denotes that document 

belongs totally to “math” class. The evaluation function used in network is sigmoid function. 

Suppose our original topology is feedforward NN in which all weights are initialized 

arbitrarily and all biases are zero. Note that such feedforward NN shown in following figure 

is the one that has no cycle in its model. 
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Figure 4:  The NN for document classification 

 

 Note that units C, P, A and D denote terms “computer”, “programming language”, 

“algorithm”, and “derivative”, respectively. Units S and M denote “computer science” class 

and “math” class, respectively. Unit L denotes “document class”. It is easy to infer that if 

output value of unit L is greater than 0.5 then, it is likely that document belongs to “computer 

science” class. 

 

 Suppose the given corpus 𝒟  = {doc1.txt, doc2.txt, doc3.txt, doc4.txt, doc5.txt, 

doc6.txt}. The training corpus (training data) is shown in following table in which cell (i, j) 

indicates the number of times that term j (column j) occurs in document i (row i); in other 

words, each cell represents a term frequency and each row represents a document vector.  

 

Table 2:  Training corpus – Term frequencies of documents 

 

 computer 
programming 

language 
algorithm derivative class 

doc1.txt 5 3 1 1 1 

doc2.txt 5 5 40 50 0 

doc3.txt 20 5 20 55 0 

doc4.txt 20 55 5 20 1 

doc5.txt 15 15 40 30 0 

doc6.txt 35 10 45 10 1 

 

 Note that the “class” column has binary values where value 1 expresses “computer 

science” class and value 0 expresses “math” class. 

 

 It is required to normalize term frequencies. Let tf11=5, tf12=3, tf13=1, and tf14=1 be the 

frequencies of terms “computer”, “programming language”, “algorithm”, and “derivative”, 

respectively of document “doc1.txt”, for example, these terms are normalized as follows: 

𝑡𝑓11 =
𝑡𝑓11

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

5

5 + 3 + 1 + 1
= 0.5 

𝑡𝑓12 =
𝑡𝑓12

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

3

5 + 3 + 1 + 1
≈ 0.3 
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𝑡𝑓13 =
𝑡𝑓13

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

1

5 + 3 + 1 + 1
= 0.1 

𝑡𝑓14 =
𝑡𝑓14

𝑡𝑓11 + 𝑡𝑓12 + 𝑡𝑓13 + 𝑡𝑓14
=

1

5 + 3 + 1 + 1
= 0.1 

 

Following table shows normalized term frequencies in corpus 𝒟. 

 

Table 3: Training corpus – Normalized term frequencies 

 

 computer programming 

language 

algorithm derivative 
class 

D1 0.5 0.3 0.1 0.1 1 

D2 0.05 0.05 0.4 0.5 0 

D3 0.2 0.05 0.2 0.55 0 

D4 0.2 0.55 0.05 0.2 1 

D5 0.15 0.15 0.4 0.3 0 

D6 0.35 0.1 0.45 0.1 1 

 

 Data rows in the table above representing normalized document vectors are fed to our 

original NN in the aforementioned figure for supervised learning. Backpropagation algorithm 

is used to train network, as described in the aforementioned table. 

 

 Let IC, IP, IA, ID, IS, IM, and IL be input values of units C, P, A, D, S, M, and L. Let OC, 

OP, OA, OD, OS, OM, and OL be output values of units C, P, A, D, S, M, and L. Let θS, θM, and 

θL be biases of units S, M, and L. Suppose all biases are initialized by zero, we have 

θS=θM=θL=0. Let wCS, wCM, wPS, wPM, wAS, wAM, wDS, wDM, wSL, and wML be weights of 

connections (arcs) from C to S, from C to M, from P to S, from P to M, from A to S, from A to 

M, from D to S, from D to M, from S to L, and from M to L. According to the origin neural 

network depicted in the figure above, we have wCS=0.7, wCM=0.3, wPS=0.6, wPM=0.4, 

wAS=0.4, wAM=0.6, wDS=0.3, wDM=0.7, wSL=0.8, and wML=0.2. 

 

 From the corpus shown in table above, the first document D1=(0.5, 0.3, 0.1, 0.1) is fed 

into backpropagation algorithm. It is required to compute the output values OS, OM, OL and 

update connection weights. For simplicity, activation function is sigmoid function 𝑓 𝑥 =
1

1+𝑒−𝑥 . According to propagation rule (Han & Kamber, 2006, p. 331) for computing output 

value of a unit, we have: 

 

OC=IC=0.5 

OP=IP=0.3 

OA=IA=0.1 

OD=ID=0.1 

𝐼𝑆 = 𝑤𝐶𝑆𝑂𝐶 + 𝑤𝑃𝑆𝑂𝑃 + 𝑤𝐴𝑆𝑂𝐴 + 𝑤𝐷𝑆𝑂𝐷 + 𝜃𝑠

= 0.7 ∗ 0.5 + 0.6 ∗ 0.3 + 0.4 ∗ 0.1 + 0.3 ∗ 0.1 + 0 = 0.6 
 

𝑂𝑆 = 𝜇 𝐼𝑆 =
1

1 + exp −𝐼𝑠 
=

1

1 + exp −0.6 
≈ 0.65 
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𝐼𝑀 = 𝑤𝐶𝑀𝑂𝐶 + 𝑤𝑃𝑀𝑂𝑃 + 𝑤𝐴𝑀𝑂𝐴 + 𝑤𝐷𝑀𝑂𝐷 + 𝜃𝑀

= 0.3 ∗ 0.5 + 0.4 ∗ 0.3 + 0.6 ∗ 0.1 + 0.7 ∗ 0.1 + 0 = 0.4 
 

𝑂𝑀 = 𝜇 𝐼𝑀 =
1

1 + exp −𝐼𝑀 
=

1

1 + exp −0.4 
≈ 0.6 

𝐼𝐿 = 𝑤𝑆𝐿𝑂𝑆 + 𝑤𝑀𝐿𝑂𝑀 + 𝜃𝐿 = 0.8 ∗ 0.65 + 0.2 ∗ 0.6 + 0 ≈ 0.64 
 

𝑂𝐿 =
1

1 + exp −𝐼𝐿 
=

1

1 + exp −0.64 
≈ 0.65 

 

 

Let VL be value of output unit L. Because D1 belongs to “computer science” class, we have: 

𝑉𝐿 = 1 
 

Let ErrL, ErrS, and ErrM be errors of units L, S, and M, respectively. According to the 

equation for updating error of output unit, we have: 

 

𝐸𝑟𝑟𝐿 = 𝑂𝐿 1 − 𝑂𝐿  𝑉𝐿 − 𝑂𝐿 = 0.65 ∗  1 − 0.65 ∗  1 − 0.65 ≈ 0.08 
 

According to the equation for updating error of hidden units, we have: 

 

𝐸𝑟𝑟𝑆 = 𝑂𝑆 1 − 𝑂𝑆 𝐸𝑟𝑟𝐿𝑊𝑆𝐿 = 0.65 ∗  1 − 0.65 ∗ 0.08 ∗ 0.8 ≈ 0.01 

𝐸𝑟𝑟𝑀 = 𝑂𝑀 1 − 𝑂𝑀 𝐸𝑟𝑟𝐿𝑊𝑀𝐿 = 0.6 ∗  1 − 0.6 ∗ 0.08 ∗ 0.2 ≈ 0 
 

According to the equation for updating connection weights given learning rate γ=1, we have: 

 

𝑤𝐶𝑆 = 𝑤𝐶𝑆 + ∆𝑤𝐶𝑆 = 𝑤𝐶𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐶 = 0.7 + 1 ∗ 0.01 ∗ 0.5 ≈ 0.71 

𝑤𝐶𝑀 = 𝑤𝐶𝑀 + ∆𝑤𝐶𝑀 = 𝑤𝐶𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐶 = 0.3 + 1 ∗ 0 ∗ 0.5 ≈ 0.3 

𝑤𝑃𝑆 = 𝑤𝑃𝑆 + ∆𝑤𝑃𝑆 = 𝑤𝑃𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝑃 = 0.6 + 1 ∗ 0.01 ∗ 0.3 ≈ 0.6 

𝑤𝑃𝑀 = 𝑤𝑃𝑀 + ∆𝑤𝑃𝑀 = 𝑤𝑃𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝑃 = 0.4 + 1 ∗ 0 ∗ 0.3 ≈ 0.4 

𝑤𝐴𝑆 = 𝑤𝐴𝑆 + ∆𝑤𝐴𝑆 = 𝑤𝐴𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐴 = 0.4 + 1 ∗ 0.01 ∗ 0.1 ≈ 0.4 

𝑤𝐴𝑀 = 𝑤𝐴𝑀 + ∆𝑤𝐴𝑀 = 𝑤𝐴𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐴 = 0.6 + 1 ∗ 0 ∗ 0.1 ≈ 0.6 

𝑤𝐷𝑆 = 𝑤𝐷𝑆 + ∆𝑤𝐷𝑆 = 𝑤𝐷𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆𝑂𝐷 = 0.3 + 1 ∗ 0.01 ∗ 0.1 ≈ 0.3 

𝑤𝐷𝑀 = 𝑤𝐷𝑀 + ∆𝑤𝐷𝑀 = 𝑤𝐷𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀𝑂𝐷 = 0.7 + 1 ∗ 0 ∗ 0.1 ≈ 0.7 

𝑤𝑆𝐿 = 𝑤𝑆𝐿 + ∆𝑤𝑆𝐿 = 𝑤𝑆𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿𝑂𝑆 = 0.8 + 1 ∗ 0.08 ∗ 0.65 ≈ 0.85 

𝑤𝑀𝐿 = 𝑤𝑀𝐿 + ∆𝑤𝑀𝐿 = 𝑤𝑀𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿𝑂𝑀 = 0.2 + 1 ∗ 0.08 ∗ 0.6 ≈ 0.25 
 

According to the equation for updating biases θS, θM, and θL, we have: 

𝜃𝑆 = 𝜃𝑆 + ∆𝜃𝑆 = 𝜃𝑆 + 1 ∗ 𝐸𝑟𝑟𝑆 = 0 + 1 ∗ 0.01 = 0.01 

𝜃𝑀 = 𝜃𝑀 + ∆𝜃𝑀 = 𝜃𝑀 + 1 ∗ 𝐸𝑟𝑟𝑀 = 0 + 1 ∗ 0 = 0 

𝜃𝐿 = 𝜃𝐿 + ∆𝜃𝐿 = 𝜃𝐿 + 1 ∗ 𝐸𝑟𝑟𝐿 = 0 + 1 ∗ 0.08 = 0.08 
  

 In similar way, remaining documents D2=(0.05, 0.05, 0.4, 0.5), D3=(0.05, 0.05, 0.4, 

0.5) , D4=(0.2, 0.05, 0.2, 0.55), D5=(0.15, 0.15, 0.4, 0.3), and D6=(0.35, 0.1, 0.45, 0.1) are fed 

into backpropagation algorithm so as to calculate the final output values OS, OM, OL and 

update final connection weights. The following table shows results from this training process 

based on backpropagation algorithm. 
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Table 4:  Results from training process based on backpropagation algorithm 

 

 Inputs Outputs Weights Biases 

D1 

IC=0.5 

IP=0.3 

IA=0.1 

ID=0.1 

OS=0.65 

OM=0.60 

OL=0.65 

wCS=0.70 

wCM=0.30 

wPS=0.60 

wPM=0.40 

wAS=0.40 

wAM=0.60 

wDS=0.30 

wDM=0.70 

wSL=0.85 

wML=0.25 

θS=0.01 

θM=0.00 

θL=0.08 

D2 

IC=0.05 

IP=0.05 

IA=0.40 

ID=0.50 

OS=0.60 

OM=0.65 

OL=0.71 

wCS=0.70 

wCM=0.30 

wPS=0.60 

wPM=0.40 

wAS=0.39 

wAM=0.59 

wDS=0.29 

wDM=0.69 

wSL=0.76 

wML=0.40 

θS=–0.02 

θM=–0.01 

θL=–0.07 

D3 

IC=0.05 

IP=0.05 

IA=0.40 

ID=0.50 

OS=0.60 

OM=0.64 

OL=0.67 

wCS=0.70 

wCM=0.30 

wPS=0.60 

wPM=0.40 

wAS=0.38 

wAM=0.59 

wDS=0.27 

wDM=0.68 

wSL=0.68 

wML=0.41 

θS=–0.04 

θM=–0.03 

θL=–0.22 

D4 

IC=0.20 

IP=0.05 

IA=0.20 

ID=0.55 

OS=0.62 

OM=0.60 

OL=0.62 

wCS=0.70 

wCM=0.30 

wPS=0.61 

wPM=0.41 

wAS=0.38 

wAM=0.59 

wDS=0.27 

wDM=0.68 

wSL=0.73 

wML=0.55 

θS=–0.03 

θM=–0.02 

θL=–0.13 

D5 

IC=0.15 

IP=0.15 

IA=0.40 

ID=0.30 

OS=0.60 

OM=0.63 

OL=0.65 

wCS=0.70 

wCM=0.30 

wPS=0.61 

wPM=0.40 

wAS=0.37 

θS=–0.05 

θM=–0.04 

θL=–0.28 
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wAM=0.58 

wDS=0.27 

wDM=0.68 

wSL=0.64 

wML=0.41 

D6 

IC=0.35 

IP=0.10 

IA=0.45 

ID=0.10 

OS=0.61 

OM=0.61 

OL=0.60 

wCS=0.70 

wCM=0.30 

wPS=0.61 

wPM=0.40 

wAS=0.38 

wAM=0.59 

wDS=0.27 

wDM=0.68 

wSL=0.70 

wML=0.56 

θS=–0.04 

θM=–0.03 

θL=–0.18 

 

 According to the training results shown in the table above, the weights and biases of 

origin NN are changed. It means that NN is already trained. Thus, the following figure 

expresses the NN learned by backpropagation algorithm. 

 

 
 

Figure 5:  Trained neural network 

 

 The trained NN depicted in the figure above is the typical classifier of classification 

method based on neural work. 

 

 Suppose the numbers of times that terms “computer”, “programming language”, 

“algorithm” and “derivative” occur in document D are 40, 30, 10, and 20, respectively. We 

need to determine which class document D is belongs to. D is normalized as term frequency 

vector. 

D = (0.4, 0.3, 0.1, 0.2) 

 

 Recall that the trained neural network depicted in the figure above has connection 

weights wCS=0.7, wCM=0.3, wPS=0.61, wPM=0.4, wAS=0.38, wAM=0.59, wDS=0.27, wDM=0.68, 

wSL=0.7, wML=0.56 and biases θS=–0.04, θM=–0.03, θL=–0.18. It is required to compute the 

output values OS, OM, and OL. For simplicity, activation function is sigmoid function 
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𝜇 𝑥 =
1

1+𝑒−𝑥 . According to the equation (Han & Kamber, 2006, p. 331) for computing the 

output value of a unit, we have: 

 

𝐼𝑆 = 𝑤𝐶𝑆𝑂𝐶 + 𝑤𝑃𝑆𝑂𝑃 + 𝑤𝐴𝑆𝑂𝐴 + 𝑤𝐷𝑆𝑂𝐷 + 𝜃𝑠

= 0.7 ∗ 0.4 + 0.61 ∗ 0.3 + 0.38 ∗ 0.1 + 0.27 ∗ 0.2 − 0.04 ≈ 0.52 
 

𝑂𝑆 = 𝜇 𝐼𝑆 =
1

1 + exp −𝐼𝑠 
=

1

1 + exp −0.52 
≈ 0.63 

 

𝐼𝑀 = 𝑤𝐶𝑀𝑂𝐶 + 𝑤𝑃𝑀𝑂𝑃 + 𝑤𝐴𝑀𝑂𝐴 + 𝑤𝐷𝑀𝑂𝐷 + 𝜃𝑀

= 0.3 ∗ 0.4 + 0.4 ∗ 0.3 + 0.59 ∗ 0.1 + 0.68 ∗ 0.2 − 0.03 ≈ 0.41 

𝑂𝑀 = 𝜇 𝐼𝑀 =
1

1 + exp −𝐼𝑀 
=

1

1 + exp −0.41 
≈ 0.6 

 

𝐼𝐿 = 𝑤𝑆𝐿𝑂𝑆 + 𝑤𝑆𝑀𝑂𝑀 + 𝜃𝐿 = 0.7 ∗ 0.63 + 0.56 ∗ 0.6 − 0.18 ≈ 0.6 
 

𝑂𝐿 =
1

1 + exp −𝐼𝐿 
=

1

1 + exp −0.6 
≈ 0.65 

 

Because OL is greater than 0.5, it is more likely that document D = (0.4, 0.3, 0.1, 0.2) belongs 

to class “computer science”. 

 

 

II. CONVERGENCE OF LEARNING ALGORITHM 
 

 Recall that there are two rules for learning NN such as Hebbian rule and delta rule 

where Hebbian rule is inspired from Hebbian theory developed by Donald Hebb in his 1949 

book “The Organization of Behavior” and delta rule is derived from stochastic gradient 

descent (SGD) method in solving optimization problem. Moreover, delta rule can be 

considered as an improved Hebbian rule. Backpropagation algorithm is based on SGD for 

updating weights and biases. In this section we research convergence of Hebbian rule and 

delta rule (also SGD). The NN convergence implies that a concrete learning algorithm like 

propagation algorithm will converge to optimal solutions that are optimal weights after a 

limit number of iterations. Therefore, the NN convergence is stability of learning NN 

algorithm. Essentially, Hebbian rule and delta rule explain the same meaningfulness. 

Although weights and biases are the main objects of learning algorithms, other parameters 

affecting the convergence such as learning rate are discussed too. These parameters are called 

augmented parameters. 

  

 Hebbian theory (Wikipedia, Hebbian theory, 2003) is a neuropsychological theory in 

which Hebb stated that when two neurons (neural cells) communicate together via a synapsis, 

activities of the presynaptic cell stimulate the postsynaptic cell. In other words, the synapsis 

of two neurons will be consolidated if the two neurons are stimulated simultaneously and 

frequently. This phenomenon is called synaptic plasticity. Therefore, Hebbian rule in 

machine learning will increase connection weight of two units proportional to two values of 

the two units (Wikipedia, Hebbian theory, 2003). 
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𝑤𝑗𝑘 = 𝑥𝑗 𝑥𝑘  

 

 The weight wjk represents the synaptic plasticity of the presynaptic unit j and the 

postsynaptic unit k. Hebbian rule for learning NN is specified exactly as follows: 

 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗 𝑦𝑘  

 

 Note, the positive constant γ which is called learning rate specifies the power of 

proportional whereas yj and yk are outputs of unit j and unit k. Of course, weight deviation 

Δwjk represents the synaptic plasticity too. The convergence of Hebbian rule implies that that 

a concrete learning algorithm that follows Hebbian rule will converge to optimal weights 

after a limit number of iterations. For easily understandable explanation and without loss of 

generality, given a single layer NN with output unit (output value) y and n input units (input 

values) xi like aforementioned Perceptron. Suppose bias is zero, propagation rule is: 

 

𝑦 =  𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 

 

 We will study the convergence of the following Hebbian rule for learning weight 

vector w = (w1, w2,…, wn)
T
 with x = (x1, x2,…, xn)

T
. 

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 = 𝑤𝑖 + 𝑥𝑖𝑦 
 

 There is an theorem in (Kröse & Smagt, 1996) stated that if there exists a set of 

optimal weights {w
*
} so that propagation rule y = (w

*
)
T
x is satisfied then any iterative 

learning algorithm that converges to an optimal weight (may be or may not be w
*
) has a 

limited number of iterations. Suppose wi is initialized 0 and so, after t time points over t 

iterations of the iterative learning algorithm, by recurring calculation wi at time point t as 

follows: 

𝑤𝑖 𝑡 = 𝑡𝑥𝑖𝑦 
Where, 

𝑦 =  𝒘∗ 𝑇𝒙 =  𝑤𝑖
∗𝑥𝑖

𝑛

𝑖=1

 

So, we have: 

𝒘 𝑡 = 𝑡𝑦𝒙 
 

Suppose the optimal weight of the iterative learning algorithm is denoted as w
*
, cosine of w(t) 

and w
*
 is: 

cos 𝒘 𝑡 , 𝒘∗ =
𝑡𝑦𝒙𝑇𝒘∗

 𝑡𝑦 𝒙  𝒘∗ 
=  𝑡𝑦

𝒙𝑇𝒘∗

 𝒙  𝒘∗ 
=  𝑡

 𝒙𝑇𝒘∗ 
3

2

 𝒙  𝒘∗ 
 

 

If t approaches +∞ then cosine of w(t) and w
*
 approaches +∞, which raises a contradiction. 

 

lim
𝑡→∞

cos 𝒘 𝑡 , 𝒘∗ = +∞ > 1 
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 Therefore, the iterative learning algorithm must stop at some finite t iterations with 

the optimal weight w
*
. This proof which is also described in (Kröse & Smagt, 1996, pp. 25-

26) only asserts the iterative limitation of any converged algorithm but it does not assert 

existence of the optimal solution w
*
. So, we need to research the delta rule which is an 

improved version of Hebbian rule. 

 

 Recall that delta rule is derived from stochastic gradient descent (SGD) method which 

is known as a stochastic approximation of gradient descend method on which the traditional 

backpropagation algorithm is based. Here, the convergence of delta rule implies the 

convergence of SGD. Extended delta rule derived from SGD is: 

 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗 𝛿𝑘  

 

Where, 

𝛿𝑘 =  

 𝑣𝑘 − 𝑦𝑘 𝑓 ′ 𝑥𝑘  for ouput unit

𝑓 ′ 𝑥𝑘  𝑤𝑘𝑙𝛿𝑙

𝑙

 for hidden unit
  

 

 Essentially, Hebbian rule and delta rule explain the same meaningfulness where the 

extended delta rule is more general and hence, please pay more attention to the convergence 

of extended delta rule. Now we skim through SGD which is stochastic approximation of 

gradient descent (GD) method. Given target function f(w), GD is an iterative algorithm that 

moves the parameter w along descending direction which is the opposite of gradient of f(w) at 

every time point (or iteration) t until reaching the optimizer w
*
. 

 

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓 𝒘𝑡  
 

 Note, γt is length of descending direction at time point t, which is also called learning 

rate. Moreover, f(w) receives some data x as input. 

𝑓 𝒘 = 𝑓 𝒘 𝒙  
 

 

 For learning NN with weight update rule and bias update rule, f(w) is the squared 

error function ε(.) whose parameters are weights. In general case w is vector. When f(w) is 

averaged sum of a large number of member target functions fi(wi) (De Sa, 2021, p. 1): 

𝑓 𝒘 =
1

𝑛
 𝑓𝑖 𝒘𝑖 

𝑛

𝑖=1

 

 Where w is composed of many parts as w = (w1, w2,…, wn)
T
. However, without loss of 

generality, we can denote fi(w) by convention that fi(w) only acts on its part wi while 

considering other parts wj where j≠i as constants or ignoring them in its analytic formulation, 

as follows: 

𝑓 𝒘 =
1

𝑛
 𝑓𝑖 𝒘 

𝑛

𝑖=1

 (2.1) 

 Anyhow, an important aspect is that the gradient of f(w) is always averaged sum of 

gradients of all fi(w) as follows: 
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∇𝑓 𝒘 =
1

𝑛
 ∇𝑓𝑖 𝒘 

𝑛

𝑖=1

 (2.2) 

 

 If n is too large for a very complicated gradient ∇f(w) to be calculated at one time then, 

SGD is a variant of GD by replacing the whole gradient ∇f(w) by every member gradient 

∇fi(w). Suppose there is a sample {x1, x2,…, xN,…} where xi is corresponding to some fk(.), 

SGD will feed these xi (s) one by one or batch by batch (De Sa, 2021, p. 1) for each time 

point t to learn w. 
𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓𝑖 𝑡

 𝒘𝑡  (2.3) 

 

 Where 𝑓𝑖 𝑡 (.) is some fk(.) corresponding to the data xi in the sample. For instance, if 𝑖 𝑡  

= k given data point xi at time point t then, xi will be fed to the member function fk(wt) = fk(wt 

| xi) at time point t. Moreover, if xi is fed to a set of m member functions, for example {f1(), 

f2(.),…., fm(.)} at one time then, it is possible to consider that xi is fed m times, each time 

point for one member function, without loss of generality. Because 𝑖 𝑡  is selected among n 

member functions fi(w), probability distribution of 𝑖 𝑡  is even as follows (De Sa, 2021, p. 2): 

𝑃 𝑖 𝑡 =
1

𝑛
, ∀𝑖 𝑡  

 

 This probability distribution is called selective distribution. It is more important that 

wt follows a so-called stochastic distribution below: 

𝒘𝑡 ∼ 𝑔 𝒘𝑡  
 

 The stochastic distribution g(wt) implies wt is moved randomly because data xi is 

provided randomly for SGD. Shortly, the stochastic process of SGD is represented by both 

stochastic distribution and selective distribution, but stochastic distribution is more important 

because data will be provided randomly by format of data stream in real time applications. 

The iterative feeding process is very important because it makes SGD adaptive to real time 

applications where large data is provided by series of small packets. Moreover, these packets 

do not cover all fi(w) at one providing time. Besides, the iterative feeding process makes SGD 

feasible to calculate a gradient ∇𝑓𝑖 𝑡
 𝒘𝑡  with some data xi (or package xi) at one time. 

 

 In order to assure the convergence of SGD, we need to research Lipschitz continuity. 

Recall that if function fi(.) is Lipschitz continuous then, given any two vector w1 and w2 we 

have (Wikipedia, Lipschitz continuity, 2001): 

 𝑓𝑖 𝒘1 − 𝑓𝑖 𝒘2  ≤ 𝐿𝑖 𝒘1 − 𝒘2  
 

 Where Li is Lipschitz constant. In this research, notation |.| denotes absolute value of 

scalar, norm of vector (magnitude of vector, module of vector, length of vector), determinant 

of matrix, and cardinality of set where notation ||.|| denotes only norms. Norm in Euclidean 

space is denoted ||.||2, which is default norm and so we implies ||.|| = ||.||2 if there is no 

additional information. If w is zero vector, we have: 

 

 𝑓𝑖 𝒘  ≤ 𝐿𝑖 𝒘  or  𝑓𝑖 𝒘  2 ≤ 𝐿 𝒘 2 
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 The convergence condition for SGD is that gradient of every member function fi(w) 

must be Lipschitz continuous and bounded. This condition is called bounded Lipschitz 

continuous gradient condition, as follows: 

 

 
 𝑓𝑖 𝒘1 − 𝑓𝑖 𝒘2  ≤ 𝐿𝑖 𝒘1 − 𝒘2 

 ∇𝑓𝑖 𝒘  ≤ 𝐺𝑖

 , ∀𝑖, 𝒘1 , 𝒘2 , 𝒘 (2.4) 

 

Where Li is a Lipschitz constant and Gi is constant. Let G be the maximum one among all Gi, 

we have: 

 
 𝑓𝑖 𝒘1 − 𝑓𝑖 𝒘2  ≤ 𝐿𝑖 𝒘1 − 𝒘2 

 ∇𝑓𝑖 𝒘  ≤ 𝐺
 , ∀𝑖, 𝒘1, 𝒘2, 𝒘 

 

 

 The bounded condition of gradient ||∇fi(w)|| ≤ G is not strict because we can restrict 

magnitude of this gradient when implementing SGD, for example, ∇fi(w) is normalized as 

follows: 

∇𝑓𝑖 𝒘 =
∇𝑓𝑖 𝒘 

 ∇𝑓𝑖 𝒘  
 

 

 There is an important property in the theory of Lipschitz continuity which stated that a 

function is Lipschitz continuous if and only if its derivative is bounded (Wikipedia, Lipschitz 

continuity, 2001). Note that Lipschitz continuity is stronger than continuously differentiable 

aspect and so derivative of Lipschitz continuous function is always existent. Because every 

gradient ∇fi(w) is Lipschitz continuous, its derivative ∇2
fi(w) which is Hessian matrix 

(second-order derivative) of fi(w) is bounded according to the important property, as follows: 

 
 ∇2𝑓𝑖 𝒘  ≤ 𝐻𝑖 , ∀𝑖, 𝒘 (2.5) 

 

 Where Hi is a constant. When ∇2
fi(w) is matrix, please research documents (Wikipedia, 

Matrix norm, 2003) about norm of matrix which is not determinant of matrix. Besides, 

according to such important property, the bounded Lipschitz continuous gradient condition is 

equal to the condition that all fi(w) and their gradients ∇fi(w) are Lipschitz continuous. The 

bounding of ∇2
fi(w) as ||∇2

fi(w)|| ≤ Hi derives (De Sa, 2021, p. 2): 

 

 𝒘𝑇∇2𝑓𝑖 𝒘 𝒘 ≤  𝒘𝑇  ∇2𝑓𝑖 𝒘   𝒘 ≤ 𝐻𝑖 𝒘 2 
 

 Suppose Hessian matrix ∇2
fi(w) is a set of basic vectors of a vector space that is image 

of Euclidean space, hence, ∇2
fi(w) represents a mapping with note that |w

T∇2
fi(w)w| is square 

of the norm of w in the vector space specified by ∇2
fi(w) whereas |w|

2
 is square of the norm of 

w in Euclidean space. In other words, here ∇2
fi(w) shrinks vector space. Obviously, we also 

have: 

 𝒘𝑇∇2𝑓 𝒘 𝒘 ≤ 𝐻 𝒘 2 
 

Where H is a constant too, due to: 
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 𝒘𝑇∇2𝑓 𝒘 𝒘 =  𝒘𝑇
1

𝑛
 ∇2𝑓𝑖 𝒘 

𝑛

𝑖=1

𝒘 =
1

𝑛
  𝒘𝑇∇2𝑓𝑖 𝒘 𝒘

𝑛

𝑖=1

 ≤
1

𝑛
  𝒘𝑇∇2𝑓𝑖 𝒘 𝒘 

𝑛

𝑖=1

≤  
1

𝑛
 𝐿𝑖

𝑛

𝑖=1

  𝒘 2 = 𝐻 𝒘 2 

 

Where let, 

𝐻 =
1

𝑛
 𝐻𝑖

𝑛

𝑖=1

 

 

 Recall that SGD is an iterative algorithm which feeds data xi (s) one by one or batch 

by batch (De Sa, 2021, p. 1) for each time point t to learn w. 

 

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡∇𝑓𝑖 𝑡
 𝒘𝑡  

 

 In order to prove the convergence of SGD, we need to prove that the expectation of 

norm of the stochastic gradient ∇f(wt) approaches 0 when t approaches positive infinity 

because a local optimizer such as minimizer or maximizer which is stable point is the point at 

which ∇f(wt) is zero with note that the expectation is associated with the stochastic 

distribution g(wt) and selective distribution P(𝑖 𝑡). In general, we will prove the equation as 

follows: 

 
lim
𝑡→∞

𝐸  ∇𝑓 𝒘𝑡   = 0 (2.6) 

Or, 

lim
𝑡→∞

𝐸  ∇𝑓 𝒘𝑡  
2 = 0 

 

 This proof was made, available, and provided by Christopher De Sa (De Sa, 2021) in 

the course of Principles of Large-Scale Machine Learning Systems, College of Computing 

and Information Science, Cornell University. By expending f(wt+1) at wt according to Taylor’s 

theorem, there is a ξt between wt and wt+1 such that (De Sa, 2021, p. 2): 

 

𝑓 𝒘𝑡+1 = 𝑓  𝒘𝑡 − 𝛾𝑡∇𝑓𝑖 𝑡
 𝒘𝑡   

= 𝑓 𝒘𝑡 −  𝛾𝑡∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡 +
1

2
 𝛾𝑡∇𝑓𝑖 𝑡

 𝒘𝑡  
𝑇

∇2𝑓 𝜉𝑡  𝛾𝑡∇𝑓𝑖 𝑡
 𝒘𝑡   

≤ 𝑓 𝒘𝑡 − 𝛾𝑡  ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡 +
𝛾𝑡

2𝐻

2
 ∇𝑓𝑖 𝑡

 𝒘𝑡  
2
 

 Due to  𝒘𝑇∇2𝑓 𝒘 𝒘 ≤ 𝐻 𝒘 2  

≤ 𝑓 𝒘𝑡 − 𝛾𝑡  ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡 +
𝛾𝑡

2𝐺2𝐻

2
 

 Due to  ∇𝑓𝑖 𝒘  ≤ 𝐺  
 

The inequation above was also proved by Wang (Wang, 2016) in another way. This implies: 

 

𝛾𝑡  ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡 ≤ 𝑓 𝒘𝑡 − 𝑓 𝒘𝑡+1 +
𝛾𝑡

2𝐺2𝐻

2
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 Taking expectation on both sides of the inequation above by both stochastic 

distribution g(wt) and selective distribution P(𝑖 𝑡), we have: 

𝛾𝑡𝐸   ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡  𝑔 𝒘𝑡 , 𝑃 𝑖 𝑡  ≤ 𝐸 𝑓 𝒘𝑡 − 𝑓 𝒘𝑡+1  𝑔 𝒘𝑡 , 𝑃 𝑖 𝑡  +
𝛾𝑡

2𝐺2𝐻

2
 

 

 Please pay attention that γt is independent from both stochastic distribution g(wt) and 

selective distribution P(𝑖 𝑡 ). Because f(wt) and f(wt+1) are independent from the selective 

distribution P(𝑖 𝑡), we have: 

 

𝛾𝑡𝐸   ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡  𝑔 𝒘𝑡 , 𝑃 𝑖 𝑡  ≤ 𝐸 𝑓 𝒘𝑡 − 𝑓 𝒘𝑡+1  𝑔 𝒘𝑡  +
𝛾𝑡

2𝐺2𝐻

2
 

 

Due to (De Sa, 2021, p. 2): 

𝑃 𝑖 𝑡 =
1

𝑛
, ∀𝑖 𝑡  

 

We have: 

𝐸   ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡  𝑔 𝒘𝑡 , 𝑃 𝑖 𝑡  =   𝑃 𝑖 𝑡 = 𝑖   ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇

∇𝑓 𝒘𝑡 𝑔 𝒘𝑡 𝑑𝒘𝑡 

𝑛

𝑖=1𝒙𝑡

 

 

=    𝑃 𝑖 𝑡 = 𝑖  ∇𝑓𝑖 𝑡
 𝒘𝑡  

𝑇
𝑛

𝑖=1

 ∇𝑓 𝒘𝑡 𝑔 𝒘𝑡 𝑑𝒘𝑡

𝒙𝑡

 

 

=   
1

𝑛
  ∇𝑓𝑖 𝑡

 𝒘𝑡  
𝑇

𝑛

𝑖=1

 ∇𝑓 𝒘𝑡 𝑔 𝒘𝑡 𝑑𝒘𝑡

𝒙𝑡

=   ∇𝑓 𝒘𝑡  
𝑇
∇𝑓 𝒘𝑡 𝑔 𝒘𝑡 𝑑𝒘𝑡

𝒙𝑡

 

 

 Due to ∇𝑓 𝒘𝑡 =
1

𝑛
 ∇𝑓𝑖 𝑡

 𝒘𝑡 

𝑛

𝑖=1

  

 

=   ∇𝑓 𝒘𝑡  
2𝑔 𝒘𝑡 𝑑𝒘𝑡

𝒙𝑡

= 𝐸  ∇𝑓 𝒘𝑡  
2 𝑔 𝒘𝑡   

 

This implies: 

𝛾𝑡𝐸  ∇𝑓 𝒘𝑡  
2 𝑔 𝒘𝑡  ≤ 𝐸 𝑓 𝒘𝑡 − 𝑓 𝒘𝑡+1  𝑔 𝒘𝑡  +

𝛾𝑡
2𝐺2𝐻

2
 

 

As a convention, g(wt) is the default distribution and so it is implied in the expectation and so 

we can denote: 

𝛾𝑡𝐸  ∇𝑓 𝒘𝑡  
2 ≤ 𝐸 𝑓 𝒘𝑡 − 𝑓 𝒘𝑡+1  +

𝛾𝑡
2𝐺2𝐻

2
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Summing both sides of the equation above via T iterations of SGD, we have (De Sa, 2021, p. 

2): 

 𝛾𝑡𝐸  ∇𝑓 𝒘𝑡  
2 

𝑇−1

𝑡=0

≤  𝐸 𝑓 𝒘𝑡 − 𝑓 𝒘𝑡+1  

𝑇−1

𝑡=0

+
𝐺2𝐻

2
 𝛾𝑡

2

𝑇−1

𝑡=0

= 𝑓 𝒘0 − 𝑓 𝒘𝑇 +
𝐺2𝐻

2
 𝛾𝑡

2

𝑇−1

𝑡=0

 

 

Suppose the optimization problem is minimization problem, let f
*
 is the expected optimal 

value such that f
*
 ≤ f(wT) for all T, we have (De Sa, 2021, p. 2): 

 

 𝛾𝑡𝐸  ∇𝑓 𝒘𝑡  
2 

𝑇−1

𝑡=0

≤ 𝑓 𝒘0 − 𝑓∗ +
𝐺2𝐻

2
 𝛾𝑡

2

𝑇−1

𝑡=0

 

 

Suppose the probability that SGD runs the τ = t iteration is (De Sa, 2021, p. 3): 

 

𝑃 𝜏 = 𝑡 =
𝛾𝑡

 𝛾𝑘
𝑇−1
𝑘=0

 

The expected gradient (averaged gradient) over T iteration represented at some time point τ is 

(De Sa, 2021, p. 3): 

 

𝐸  ∇𝑓 𝒘𝜏  
2 =  𝐸  ∇𝑓 𝒘𝑡  

2 𝑃 𝜏 = 𝑡 

𝑇−1

𝑡=0

=
1

 𝛾𝑘
𝑇−1
𝑘=0

 𝛾𝑡𝐸  ∇𝑓 𝒘𝑡  
2 

𝑇−1

𝑡=0

 

 

This implies (De Sa, 2021, p. 3): 

𝐸  ∇𝑓 𝒘𝜏  
2 ≤

1

 𝛾𝑡
𝑇−1
𝑡=0

 𝑓 𝒘0 − 𝑓∗ +
𝐺2𝐻

2
 𝛾𝑡

2

𝑇−1

𝑡=0

  (2.7) 

  

 

If fixing learning rate such that γt = γ, we have (De Sa, 2021, p. 3): 

𝐸  ∇𝑓 𝒘𝜏  
2 ≤

𝑓 𝒘0 − 𝑓∗

𝑇𝛾
+

𝛾𝐺2𝐻

2
 

 

Due to: 

lim
𝜏→∞

 
𝑓 𝒘0 − 𝑓∗

𝑇𝛾
+

𝛾𝐺2𝐻

2
 = lim

𝑇→∞
 
𝑓 𝒘0 − 𝑓∗

𝑇𝛾
+

𝛾𝐺2𝐻

2
 =

𝛾𝐺2𝐻

2
≠ 0 

 

 The convergence of SGD is not proved yet because the problem here is that γt (0 < γ ≤ 

1) is larger than γt
2
 and γt is dependent on time points. Therefore, suppose let γt is inversely 

proportional to time point t as follows (De Sa, 2021, p. 3): 

 

𝛾𝑡 =
1

 𝑡 + 1
 (2.8) 

We have (De Sa, 2021, p. 3): 
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 𝛾𝑡

𝑇−1

𝑡=0

=  
1

 𝑡 + 1

𝑇−1

𝑡=0

≅  
1

 𝑥
𝑑𝑥

𝑇

0

= 2 𝑇 

 𝛾𝑡
2

𝑇−1

𝑡=0

=  
1

𝑡 + 1

𝑇−1

𝑡=0

≅  
1

𝑥
𝑑𝑥

𝑇

0

= log 𝑇 + 1  

 

We have: 

0 ≤ 𝐸  ∇𝑓 𝒘𝜏  
2 ≤

2 𝑓 𝒘0 − 𝑓∗ + 𝐺2𝐻 log 𝑇 + 1 

4 𝑇
= 𝒪  

1

 𝑇
  (2.9) 

 

Due to: 

lim
𝜏→∞

 
2 𝑓 𝒘0 − 𝑓∗ + 𝐺2𝐻 log 𝑇 + 1 

4 𝑇
 = lim

𝑇→∞
𝒪  

1

 𝑇
 = 0 

We obtain: 

lim
𝜏→∞

𝐸  ∇𝑓 𝒘𝜏  
2 = 0 

 

 As a result, we assert that SGD will converge if all member functions fi(w) and their 

gradients ∇2
fi(w) are Lipschitz continuous with note that the learning rate which is an 

augmented important parameter of NN must be inversely proportional to time points 

(iterations). Obviously, these conditions are satisfied with squared error function with 

decreased learning rate because squared error function and its gradient are Lipschitz 

continuous. The condition of decreased learning rate is not hazard by setting it to be inversely 

proportional to time point. In other words, the convergence of delta rule is asserted with 

Lipschitz continuity. 

 

III. RECURRENT NETWORK 
 

 Default NN is feedforward NN in which there is no circle in the network, which 

means that there is no feedback connection from next layers back to previous layers. 

Conversely, recurrent neural network (RNN) (Kröse & Smagt, 1996, p. 47) allows such 

feedback connection, which means that an output unit or hidden unit can connect to a 

previous hidden unit directly or indirectly. Because input layer is fixed or not counted in the 

network, feedback connections exist among only hidden units and output units. In general, 

there are two types of feedback connections: 

 

 An output unit or a hidden unit is connected directly to a previous hidden unit in 

previous layer. 

 An output unit or a hidden unit is connected directly to an immediate unit which in 

turn connects to a previous hidden unit in previous layer. 

 

 Most of traditional RNNs follows the second type of feedback connection. Moreover, 

as usual immediate units connect to hidden units of the first hidden layer. In other words, 

such immediate units play the role of input units and so, they are called extra input units 

which compose an extra input layer. Some RNNs can call extra input unit by other names, for 

example, state unit or context unit.  Some RNNs may modify backpropagation algorithm for 
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learning NN via modifying weight update rule and bias update rule but some others may not 

change the learning NN algorithm. However, propagation rule is not changed. Now we 

should skim some traditional RNNs along with their learning algorithms. 

 

 Jordan network developed by Jordan 1986 (Kröse & Smagt, 1996, p. 48) establishes 

that outputs (activation values) of output units are fed backwards the so-called state units 

playing the role of input units where state units in turn connect directly to the first hidden 

units. In other words, Jordan network follows the second type of feedback connection and the 

extra input units are called state units, as follows (Kröse & Smagt, 1996, p. 48): 

 

 
Figure 6: Jordan network 

 

 In Jordan network, the layer of state units is called state layer. The connection 

weights between output units and state units are fixed by +1 (Kröse & Smagt, 1996, p. 48) 

and so backpropagation algorithm does not modify these weights. 

 Elman network developed by Elman 1990 (Kröse & Smagt, 1996, pp. 48-49) 

establishes that outputs (activation values) of hidden units are fed backwards the so-called 

context units playing the role of input units where context units in turn connect directly to the 

first hidden units. In other words, Elman network follows the second type of feedback 

connection and the extra input units are called context units, as follows (Kröse & Smagt, 

1996, p. 49): 
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Figure 7: Elman network 

 

 In Elman network, the layer of context units is called context layer. The main 

difference between Elman network and Jordan network is that Elman network makes 

feedback connections between hidden units and extra input units whereas Jordan network 

makes feedback connections between output units and extra input units. However, like Jordan 

network, the connection weights from hidden units to context units in Elman network are 

fixed by +1 (Kröse & Smagt, 1996, pp. 48-49). In general, both Jordan network and Elman 

network can be trained by backpropagation algorithm. 

 

 Hopfield network developed by Hopfield 1982 (Kröse & Smagt, 1996, pp. 50-53), 

which is very different from Jordan network and Elman network, establishes connections 

between all units. In other words, all units in Hopfield network play the role of both input 

units and output units and so it is a kind to auto-associator network (Kröse & Smagt, 1996, p. 

51), which can be considered following the first type of feedback connections where each 

feedback connection occurs directly between two units. 

 
Figure 8:  Hopfield network 

 

It is possible to say that auto-associator network is a special NN in which hidden units vanish. 

Therefore, backpropagation algorithm cannot be applied into learning Hopfield network, 

which requires another learning algorithm that will be mentioned later. Because Hopfield 

network leans forward learning processes in time series, its propagation rule should be 

written in time point t as follows (Kröse & Smagt, 1996, p. 51): 
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𝑥𝑘 𝑡 + 1 =  𝑤𝑗𝑘 𝑦𝑗  𝑡 

𝑗≠𝑘

+ 𝜃𝑘  

 

𝑦𝑘 𝑡 + 1 = 𝑓 𝑥𝑘 𝑡 + 1  =  

+1 if 𝑥𝑘 𝑡 + 1 > 𝑈𝑘

−1 if 𝑥𝑘 𝑡 + 1 < 𝑈𝑘

𝑦𝑘 𝑡  otherwise

              (3.1)  

 

Where Uk is a threshold. It is easy to recognize that units in Hopfield network are binary {1, –

1}. If time point is not concerned, Hopfield propagation rule is written as follows: 

 

 

𝑥𝑘 =  𝑤𝑗𝑘 𝑦𝑗

𝑗≠𝑘

+ 𝜃𝑘  

S 

uppose there are n units, weights in Hopfield network form a square nxn weight matrix W = 

(wij)nxn with convention that wii = 0 which implies that a unit does not connect with itself. 

 

𝑊 =  

𝑤11 𝑤12 ⋯ 𝑤1𝑛

𝑤21 𝑤22 ⋯ 𝑤2𝑛

⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 𝑤𝑛𝑛

  

 

Bias vector of Hopfield is n-elements vectors of n bias θk as follows: 

Θ =  𝜃1 , 𝜃2 , … , 𝜃𝑛 𝑇 
 

A unit k is called stable at time point t if its output is not changed at time point t as follows: 
𝑦𝑘 𝑡 = 𝑦𝑘 𝑡 − 1  

 
(3.2) 

If time point is not concerned, a unit k is stable if its yk is not changed from the previous value. 

 

 At the time Hopfield network was invented, it was used to model associative memory, 

which means that after its weights are trained from sample, units can become stable as 

persistent memory. Therefore, given a input vector x = (x1, x2,…, xn)
T
, after applying Hebbian 

rule many times, the associative memory can be reached at which all units are stable, which 

can be considered as training process of Hopfield network. 

 

 

Table 5:   Learning Hopfield network 
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 Jordan network, Elman network, and Hopfield network are traditional and typical 

RNN. In this research, I also propose another RNN called fishbone neural network (FBNN) in 

which there are feedback connections from output units to extra input units called memory 

units like Jordan network. Besides, each hidden unit can have an outside connection to an 

outside unit. Such outside connection is called rib connection because it attaches from a main 

unit such as hidden unit and output unit. Such outside unit to which the rib connection 

attaches is called rib unit. Connections from input layer to hidden layers to output layer 

structure the backbone of FBNN, which are called backbone connections. Recall that rib 

connections cannot attach to input units but they can attach to both hidden units and output 

units. Following is figure of FBNN. 
 

 
 

Figure 9: Fishbone neural network (FBNN) 
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 An important aspect is that a rib connection is forward connection from a main unit 

(hidden unit or output unit) to a rib unit so that propagation rule can move right direction. Rib 

connections are associated with rib weights and backbone connections are associated with 

backbone weights. Backpropagation algorithm is applied into learning FBNN as usual with 

note that the algorithm does not go beyond rib units even though rib units connect with other 

FBNNs. The purpose of rib connection is that, for solving some problems, a set of many 

FBNNs are created and communicated together via rib connections. In other words, a FBNN 

connects with another FBNN via rib unit and rib connection. The set of many FBNNs is 

considered as a fish school and each FBNN is considered as a fish. The following figure 

depicts the connection between two FBNNs via rib unit and rib connection. 

 

 
 

Figure 10 : Two FBNNs connect together 

 

 Note, by rib connection mechanism, a FBNN can connect with many FBNNs. In other 

words, a fish can communicate with many ones. Recall that, for solving a concrete problem, a 

set of many FBNNs are created and communicated together via rib connections. Every FBNN 

solves the problem by itself and then shares results or information with other FBNNs by 

propagation rule so that the other FBNNs can improve solutions of the concrete problem. The 

mechanism of social intelligence can improve the capacity of NN in solving complex 

problems where solutions of many FBNN can converge to an optimal solution. 
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IV.  SELF-ORGANIZING NETWORK 
 

 Standard feedforward neural network (feedforward NN) as well as recurrent neural 

network (RNN) need both inputs and desired outputs in sample for matching in training. In 

other words, feedforward NN and RNN focus on supervised learning where outputs like 

attributes, classes, etc. play the role of supervisors who direct the training process. 

Backpropagation algorithm is a well-known supervised learning algorithm, especially for 

learning feedforward NN. Given an input x, supervised learning algorithms improve weights 

and biases in order to make an approximation to the desired output function v(x) = v. 

However, in case that there is no desired outputs v as supervisors, learning algorithms must 

process only inputs x, which raises a domain of unsupervised learning. There are many 

applications as well as algorithms for unsupervised learning like clustering, vector 

quantization, dimensionality reduction, and feature extraction where clustering and feature 

extraction are very popular in computer science. Especially, feature extraction is crucial to 

any recognition applications. Self-organizing network (SON) is designed to solve the 

problem of unsupervised learning without desired outputs. This section focuses on SON 

along with unsupervised learning algorithms. The term “self-organizing” in SON implies that 

SON controls its topology as well as weights and biases by itself without desired outputs. 

 

 The most popular SON is competitive SON with competitive learning which is similar 

to clustering in which competitive learning will select output unit (s) appropriate to inputs of 

input units. In other words, competitive learning aims to divide inputs into clusters and each 

cluster is represented by a selected output unit. All inputs in the same cluster share the same 

output unit. A simple competitive SON is a feedforward NN having two layers in which all 

input units i connect to all output unit o where given input vector x = (xi) there is only one 

output unit o is valid, which is called activated output unit or winner (Kröse & Smagt, 1996, 

pp. 57-58). 

 
Figure 11: Simple network of competitive learning 

 

 The winner can be considered as cluster if competitive SON aims to clustering data. 

There are two methods for winner selection such as dot product method and Euclidean 

distance method. According to dot product method, because the bias is assumed to be 0, 

propagation rule becomes dot product as follows (Kröse & Smagt, 1996, p. 58): 

𝑦𝑜 = 𝑥𝑜 =  𝑤𝑖𝑜𝑥𝑖

𝑖

= 𝒘𝑜
𝑇𝒙 (4.1) 
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 Where x = (xi) = (x1, x2,…, xn,…)
T
 is input vector and wo = (w1o, w2o,…, wno,…)

T
 

whereas yo  

is output of output unit o. Note, activation function f(.) is not applied to this competitive 

learning. The winner o is the output unit o whose output is maximum (Kröse & Smagt, 1996, 

p. 58). 
∀𝑜′ ≠ 𝑜, 𝑦𝑜 ′ ≤ 𝑦𝑜  (4.2) 

 

After the winner was selected, its output is activated to be zero as yo = 1 and other outputs of 

output units are deactivated to be zero as 𝑦𝑜 ′  = 0 (Kröse & Smagt, 1996, p. 58). 
𝑦𝑜 = 1

∀𝑜′ ≠ 𝑜, 𝑦𝑜 ′ = 0
 (4.3) 

 

 Within dot product method, only weight vector wo = (w1o, w2o,…, wno,…)
T
 of the 

winner o is updated to be moved forward the input vector x and then normalized, as follows 

(Kröse & Smagt, 1996, p. 58): 

𝒘𝑜 =
𝒘𝑜 + 𝛾 𝒙 − 𝒘𝑜 

 𝒘𝑜 + 𝛾 𝒙 − 𝒘𝑜  
 (4.4) 

 

 The denominator of equation above is used to normalize the winner weight vector wo 

where notation ||.|| denotes Euclidean norm. Note, γ (0 < γ ≤ 1) is learning rate as usual. 

 

 Similarly, Euclidean distance method selects the winner based on Euclidean distance 

between output weight vector and input vector. Therefore, the winner o is the output unit o 

that Euclidean distance between the output weight vector wo and the input vector x is 

minimum, which means that the winner o is the nearest to the input vector x. 

 
∀𝑜′ ≠ 𝑜,  𝒘𝑜 ′ − 𝒙 ≥  𝒘𝑜 − 𝒙  (4.5) 

 

 After the winner was selected, its output is activated to be zero as yo = 1 and other 

outputs of output units are deactivated to be zero as 𝑦𝑜 ′  = 0. 
𝑦𝑜 = 1

∀𝑜′ ≠ 𝑜, 𝑦𝑜 ′ = 0
 

 

 Like dot product method, only weight vector wo = (w1o, w2o,…, wno,…)
T
 of the winner 

o is updated to be moved forward the input vector x but such winner weight vector is often 

not normalized. 
𝒘𝑜 = 𝒘𝑜 + 𝛾 𝒙 − 𝒘𝑜  

 
(4.6) 

 Note, γ (0 < γ < 1) is learning rate as usual. Indeed, the winner weight vector updating 

conforms to delta rule. Indeed, the squared error of output unit o is: 

𝜺 𝑦𝑜 = 𝜺 𝒘𝑜 =

 

 
 
 
 
 

1

2
 𝑤1𝑜 − 𝑥1 2

1

2
 𝑤2𝑜 − 𝑥2 2

⋮
1

2
 𝑤𝑛𝑜 − 𝑥𝑛 2

⋮  

 
 
 
 
 

 (4.7) 
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 Gradient of the squared error of output unit o with regard to wio, known as tangent 

vector of ε(wo), is: 

∇𝜺 𝒘𝑜 =
𝑑𝜺 𝒘𝑜 

𝑑𝑤𝑖𝑜
=

 

 
 

𝑥1 − 𝑤1𝑜

𝑥2 − 𝑤2𝑜

⋮
𝑥𝑛 − 𝑤𝑛𝑜

⋮  

 
 

= 𝒙 − 𝒘𝑜  (4.8) 

 

 Note, 
𝑑𝜺 𝒘𝑜  

𝑑𝒘𝑜
 is Jacobian matrix but the equation above expresses tangent vector for 

easily understandable explanation. 

𝑑𝜺 𝒘𝑜 

𝑑𝒘𝑜
=  

𝑥1 − 𝑤1𝑜 0 ⋯ 0
𝑥2 − 𝑤2𝑜 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝑥𝑛 − 𝑤𝑛𝑜 0 ⋯ 0

  

 

 Obviously, the rule of updating winner weight vector wo = wo + γ(x – wo) is result of 

stochastic gradient descent (SGD) method and so, its convergence is asserted as same as the 

theorem is stated in (Kröse & Smagt, 1996, p. 60). However, there is a question that how the 

error between output unit o and input unit i is defined as ½(wio - xi)
2
 rather than ½(wioxo – xi)

2
. 

Exactly, the error is ½(wioxo – xi)
2
 but xo is assumed to be 1 as xo = yo = 1 because the output 

unit o is assumed to be the winner and hence, we have ½(wioxo – xi)
2
 = ½(wio*1 – xi)

2
 = ½(wio 

- xi)
2
. Competitive SON can be extended with many layers, which is learned by 

backpropagation algorithm based on SGD without modification. 

 

 Kohonen network is an extension of competitive SON, in which outputs of output 

units are ordered. For instance if input vector x = (x1, x2,…, xi,…, xm) is a vector in real vector 

space ℝm
 and output vector y = (y1, y2,…, yo,…, yn) is a vector in real vector space ℝn

, there 

are some orderings which are defined in ℝm
 and ℝn

. Based on such orderings, the concept of 

neighborhood is defined. Given two output units o and o’, a so-called neighborhood function 

g(o, o’) is defined so that it should be inversely proportional to distance between o and o’. 

For example, g(o, o’) is defined based on exponential function as follows: 

 
𝑔 𝑜, 𝑜′ = exp − 𝑦𝑜 − 𝑦𝑜 ′  2  (4.9) 

 

 Note, g(o, o) or g(o’, o’) is always 1 regardless of how to define g(o, o’). Two output 

units o and o’ are neighbors together if their neighborhood function g(o, o’) is large enough 

(larger than a threshold) or their distance is small enough (smaller than a threshold). Winner 

selection methods such as dot product method and Euclidean distance method are still applied 

into Kohonen network but the rule of updating winner weight vector is extended to neighbors 

of the winner unit o. Concretely, for the winner o, we still have: 

𝒘𝑜 = 𝒘𝑜 + 𝛾 𝒙 − 𝒘𝑜  
For any other output units o’ which are neighbors of the winner o, their weight vector is 

updated as follows: 
𝒘𝑜 ′ = 𝒘𝑜 ′ + 𝛾𝑔 𝑜, 𝑜′  𝒙 − 𝒘𝑜 ′  , ∀𝑜′ ∈ 𝑛𝑏 𝑜  (4.10) 

 

 Note, nb(o) is a set of units which are neighbors of the winner o where the 

neighborhood is determined based on neighborhood function g(o, o’) or Euclidean distance. 

Kohonen network can be extended with many layers, which is learned by backpropagation 
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algorithm based on SGD without modification except that putting neighborhood function g(o, 

o’) into the updating rule of output units as the equation above. 

 

V. REINFORCEMENT LEARNING 
 

 Recall that there are three main types of machine learning where machine learning is a 

branch of artificial intelligence (AI): 

 

 Supervised learning matches inputs and outputs to find out rules and knowledge 

where the outputs direct such knowledge searching. Classification is a popular 

supervised learning algorithm. 

 Unsupervised learning analyzes inputs so as to discover patterns under the inputs. 

Such patterns do not obey any output because simply there is no output in 

unsupervised learning. Clustering is a popular unsupervised learning algorithm. 

 Reinforcement learning (RL) draws and finetunes adaptively and progressively rules 

and knowledges from environment. Control theory, game theory, robotics applications 

are typical examples of RL. 

 

 Neural network (NN) supports all three main types of machine learning where 

feedforward NN supports supervised learning and self-organizing network supports 

unsupervised learning, which is mentioned in previous sections. Fortunately, NN also 

supports RL where concepts and algorithms of RL are implemented in NN. Therefore, we 

should skim what RL is. In general, RL has two main objects such as an agent and an 

environment. When the environment issues a state, the agent will make an action that 

responds to such state and then, the environment gives feedback to the agent by a reward as 

benefit or penalty for the agent’s action (Chandrakant, 2023). The purpose of RL is to 

maximize the reward such that the agent’s action is most appropriate to the environment’s 

state; in other words, RL maximizes the benefit of action given state. The mapping between 

state and action is called policy and so, essentially, RL finds out optimal policy. This 

interaction of agent and environment repeats progressively until the optimal policy is reached. 

The following figures (Chandrakant, 2023) sketches RL. 

 

 
Figure 12: Overview of reinforcement learning 

  

 There are two types of RL such as model-based RL and model-free RL (Chandrakant, 

2023). As the hint of these names, model-based RL (Chandrakant, 2023) uses explicitly some 

mathematical model to interpret and explain RL shown by the overview figure above whereas 

model-free RL (Chandrakant, 2023) takes advantages of experiences to simulate the 

interaction between agent and environment when mathematical model is unknown or not 

supported. We research model-based RL first and model-free RL later. Therefore, Markov 

decision process (MDP) is a popular mathematical model which is applied into explaining 

and implementing model-based RL. MDP uses some results from dynamic programming 
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(Wikipedia, Dynamic programming, 2002) for maximizing value function which is 

cumulative reward in essentially besides taking advantages of Markov property that the 

probability of future state depends only on current state. So, the environment in MDP follows 

Markov property. The following figures sketches RL and MDP. 

 

 
 

Figure 13: Roadmap of RL methodologies 

 

 From the figure above, this section mentions MDP because MDP is the most popular 

mathematical model for RL. An MDP (Wikipedia, Markov decision process, 2004) consists 

of 4 main components as follows (Wikipedia, Reinforcement learning, 2002): 

 

 Let S be a set of states of environment and let s be any state belonging to S. Let st be 

the state at time point t. 

 Let A be a set of actions of agent and let a be any action belonging to A. Let at be the 

action at time point t. 

 Let Pa(s, s’) = P(st+1 = s’ | st = s, at = a) be the transition probability at time point t 

from the current state st = s to the next state st+1 = s’ given action at = a. This 

transition probability is conditional probability. A set of all transition probabilities for 

all states given an action compose a transition probability matrix Pa. The transition 

probability implies that Markov property where the probability of next state s’ 

depends only on current state s. 

 Let Ra(s, s’) be the immediate reward that the environment issues immediately when 

the agent does the current action at = a such that the current state st = s is changed 

immediately to the next state st+1 = s’. Reward function is the heart of model-based 

RL. 

 

 From the MDP model, the mapping from state to action is called policy which is 

modeled by a so-called policy function a = π(s). The essence of MDP is to train policy 

function a = π(s) to be optimal, which in turn maximizes a so-called value function based on 

the immediate reward function Ra(s, s’) which is a component of MDP. Note, maximization 

of value function is derived from dynamic programming. For any state s, value function V(s) 

is expectation of reward function Ra(s, s’) multiplied with discount factor αt under the 

transition distribution Pa(s, s’). Therefore, V(s) is also called discounted reward expectation, 

which is determined from s = 𝑠𝑡𝑘
 at some tk

th
 time point to infinity. 

 

𝑉 𝑠 = 𝑠𝑡𝑘
 = 𝐸   𝛾𝑡𝑅𝑎𝑡

 𝑠𝑡 , 𝑠𝑡+1 

+∞

𝑡=𝑡𝑘

 =  𝛾𝑡𝑅𝑎𝑡
 𝑠𝑡 , 𝑠𝑡+1 𝑃𝑎𝑡

 𝑠𝑡 , 𝑠𝑡+1 

+∞

𝑡=𝑡𝑘

 (5.1) 
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Where, 

𝑎𝑡 = 𝜋 𝑠𝑡  
 

Proof, 

𝑉 𝑠 = 𝑠𝑡𝑘
 = 𝐸   𝛾𝑡𝑅𝑎𝑡

 𝑠𝑡 , 𝑠𝑡+1 

+∞

𝑡=𝑡𝑘

 =  𝛾𝑡𝑅𝑎𝑡
 𝑠𝑡 , 𝑠𝑡+1 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑠𝑡−1, … , 𝑠𝑡𝑘

, 𝑎𝑡 

+∞

𝑡=𝑡𝑘

 

=  𝛾𝑡𝑅𝑎𝑡
 𝑠𝑡 , 𝑠𝑡+1 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 

+∞

𝑡=𝑡𝑘

 

(Due to Markov property) 

=  𝛾𝑡𝑅𝑎𝑡
 𝑠𝑡 , 𝑠𝑡+1 𝑃𝑎𝑡

 𝑠𝑡 , 𝑠𝑡+1 

+∞

𝑡=𝑡𝑘

∎ 

 

 The discount factor αt (0 < αt ≤ 1) indicates that a reward 𝑅𝑎𝑡
 𝑠𝑡 , 𝑠𝑡+1  can be delayed 

at time point t. The longer the delay is, the smaller discount factor is and so, only the first 

reward 𝑅𝑎𝑡𝑘
 𝑠𝑡 , 𝑠𝑡+1  gains highest discount factor 𝛾𝑡𝑘

. If 𝛾𝑡𝑘
 = 1 then, the first reward 

𝑅𝑎𝑡𝑘
 𝑠𝑡 , 𝑠𝑡+1  is immediate reward such that 𝑅𝑎𝑡𝑘

 𝑠𝑡 , 𝑠𝑡+1  which is reserved. Discount factor 

should be inversely proportional to time point, for example αt = 1 / (t+1). The equation above 

is the general case of value function with infinite expectation. Dynamic programming solves 

problem of MDP for finding optimal policy by firstly, redefining value function V(s) 

recursively as follows (Wikipedia, Markov decision process, 2004): 

 

𝑉 𝑠 =  𝑃𝜋 𝑠  𝑠, 𝑠′  𝑅𝜋 𝑠  𝑠, 𝑠′ + 𝛼𝑉 𝑠′  

𝑠′

 (5.2) 

 

 Now value function is determined by a finite sum and so, it is called discounted 

reward sum in which s ∈ S, a ∈ A, and both S and A are finite sets. In first view, discount 

factor α is fixed but, actually, it is decreased in time because of the recursion inside the 

formulation of finite V(s) and hence, only the immediate rewards Rπ(s)(s, s’) are reserved. 

Consequently, policy function π(s) is updated as maximizer regarding value function as 

follows (Wikipedia, Markov decision process, 2004): 

 

𝜋 𝑠 = argmax
𝑎

  𝑃𝑎 𝑠, 𝑠′  𝑅𝑎 𝑠, 𝑠′ + 𝛼𝑉 𝑠′  

𝑠′

  (5.3) 

 An implementation of MDP learning is an iterative algorithm so that whenever the 

environment feeds back a next state st+1 and gives back a reward 𝑅𝑎𝑡
 𝑠𝑡 , 𝑠𝑡+1  for the agent’s 

action at at the current state st (time point t), the iterative algorithm will update value and 

policy as follows: 
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Table 6: Markov decision process learning for model-based reinforcement learning 

 
Value update rule: 

𝑉 𝑠𝑡 =  𝑃𝑎𝑡
 𝑠𝑡 , 𝑠′  𝑅𝑎𝑡

 𝑠𝑡 , 𝑠′ + 𝛼𝑉 𝑠′  

𝑠′

 

Policy update rule: 

𝜋 𝑠𝑡 = argmax
𝑎

  𝑃𝑎 𝑠𝑡 , 𝑠′  𝑅𝑎 𝑠𝑡 , 𝑠′ + 𝛼𝑉 𝑠′  

𝑠′

  

 

 A possible terminated condition for the iterative algorithm is that all states are stable, 

which means that there is no change in policy function π(s). However, RL does not require 

mandatorily terminated conditions because it aims to adapt to the environment. Note that all 

values V(s) and Ra(s, s’) for all s, s’, and a are initialized by 0. Of course, the agent’s action at 

at the current state st is based on the policy function at = π(st) where st is raised by the 

environment. 

 

 There is no problem for model-based RL with MDP but it is hazard for model-free RL 

where none of transition distribution and reward function is specified explicitly. Fortunately, 

Q-learning (Wikipedia, Q-learning, 2004) is applied into solving the lack of mathematical 

model in model-free RL in which there is no transition probability Pa(s, s’) and reward 

function Ra(s, s’). With Q-learning, model-free RL broadens its applications, especially 

neural network learning. At time point t, the environment still gives back a reward Rt in 

model-free RL but such Rt is only a value which is not the function Ra(s, s’) in model-based 

RL. Given time point t, value function V(s) in model-based RL is replaced by Q-value Q(st, at) 

for model-free RL and such Q-value is learned as follows (Wikipedia, Q-learning, 2004): 

 

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛾  𝑅𝑡 + 𝛼 max
𝑎

𝑄 𝑠𝑡+1 , 𝑎 − 𝑄 𝑠𝑡 , 𝑎𝑡   (5.4) 

Where γ (0 < γ ≤ 1) is learning rate. The equation above is called Bellman equation.  

 

Therefore, whenever the environment feeds back a next state st+1 and gives back a reward Rt 

for the agent’s action at at the current state st (time point t). the iterative algorithm of Q-

learning for model-free RL is described as follows: 

 

Table 7: Q-learning for model-free reinforcement learning 

 
Q-value update rule: 

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛾  𝑅𝑡 + 𝛼 max
𝑎

𝑄 𝑠𝑡+1 , 𝑎 − 𝑄 𝑠𝑡 , 𝑎𝑡   

Policy update rule: 

𝜋 𝑠𝑡 = argmax
𝑎

𝑄 𝑠𝑡 , 𝑎  

  

 Note that all Q-values Q(s, a) for all s and a are initialized by 0. A possible terminated 

condition for the iterative algorithm is that all states are stable, which means that there is no 

change in policy function π(s). Of course, the agent’s action at at the current state st is 

selected based on the policy function at = π(st) where st is raised by the environment. 
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 According to (Chandrakant, 2023), when neural network (NN) is used to implement 

MDP, it is a feedforward NN whose input units represent environment’s states and whose 

output units represent agent’s actions. The number of hidden layers indicates complexity of 

RL with note that deep learning, which is a modern machine learning, is implemented by a 

NN having as many as possible hidden layers. Because a NN for RL often needs more than 

one hidden layer for improving accuracy of learning method with high complexity, the 

combination of NN and RL is often called deep reinforcement learning (DRL). There is a 

question why the high complexity with many hidden layers will improve the learning 

accuracy. The reason is that the essence of any learning NN algorithm is to make an 

approximation of the desire function v(x) where x is inputs, and the approximation can be 

represented by an estimation function u(x). Essentially, the estimation function u(x) is a 

nonlinear regression function because propagation rule goes through layered weights with 

multiplications and summing. Because the number of hidden layers is proportional to the 

order of the regression function u(x), increasing such order is obviously to increase the 

accuracy of u(x) in estimation. Therefore, deep learning and deep reinforcement learning 

(DRL) attracts attention of many recent researches about artificial intelligence. 

 

 It is easier to combine NN with RL by Q-learning where inputs represent 

environment’s states and outputs represent agent’s actions. 

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑥𝑘 𝑡 , 𝑦𝑘 𝑡   

 

 Where xk(t) = st and yk(t) = at are input and output of unit k at time point t. Regarding 

NN, Q-value is Q-function of xk(t) and yk(t). There are two ways for coding NN for RL: 

 

 Each input unit represents a state and each output unit represents an action. This 

coding is appropriate to multi-state and multi-action RL. 

 Each input unit represents a possible value of state and each output unit represents a 

possible value of action. In this coding, inputs and outputs are binary. 

 

 Backpropagation algorithm is still valid for learning feedforward NN with Q-function. 

Whenever the environment feeds back a next state st+1 and gives back a reward Rk(t) for the 

agent’s action at = yk(t) at the current state xk(t) = st, the Q-function is updated as follows: 

 

𝑄 𝑥𝑘 𝑡 , 𝑦𝑘 𝑡  = 𝑅𝑘 𝑡 + 𝛼 max
𝑘

𝑄0 𝑥𝑘 𝑡 , 𝑦𝑘 𝑡   

 

 Where α is discount factor and vk is desired output. Note that index k in the 

maximization expression max𝑘 𝑄0 𝑥𝑘 𝑡 , 𝑦𝑘 𝑡   indicates browsing units in the same layer 

of current unit. There is a question what Q0(xk(t), yk(t)) is. Indeed, according to an invention 

of OpenAI (Choudhary, 2019), Q0(xk(t), yk(t)) is the function Q(xk(t), yk(t)) of a so-called 

target network which is the duplicate of current NN but parameters of target network such as 

weights and biases are kept intact for a period T of time points. After every period T, 

parameters of target networks are updated by copying from parameters of current NN. 

Therefore, the target network represents next states st+1 in Q-learning. The following figure 

depicts the target network for Q-learning (Choudhary, 2019). 
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Figure 14:  Target network for Q-learning 

 

 Because yk is function of xk due to activation function yk = f(xk), Q-function in NN is 

considered as function of yk as follows: 

 

𝑄 𝑦𝑘 𝑡  = 𝑅𝑘 𝑡 + 𝛼 max
𝑘

𝑄0 𝑦𝑘 𝑡   

 

The deviation of Q-function for unit k at time point t is: 

 

∆𝑄 𝑦𝑘 𝑡  = 𝑅𝑘 𝑡 + 𝛼 max
𝑘

𝑄0 𝑦𝑘 𝑡  − 𝑄 𝑦𝑘 𝑡   

 

 If the time point t is implicit by default for backpropagation algorithm feeding sample 

time point by time point, the deviation is rewritten as follows: 

 
∆𝑄 𝑦𝑘 = 𝑅𝑘 + 𝛼 max

𝑘
𝑄0 𝑦𝑘 − 𝑄 𝑦𝑘  (5.5) 

 

 Note that the expression max𝑘 𝑄0 𝑦𝑘  is constant with regard to yk. Recall that index 

k in the maximization expression max𝑘 𝑄0 𝑦𝑘  indicates browsing units in the same layer of 

current unit inside the target network. If there is only one unit in such layer by some specific 

NN coding for RL, it is possible to browse possible outputs of unit k inside the target network. 

In the equation of ΔQ(yk) above, only Q(yk) is function of yk. The simplest way is to set Q-

function as identity function Q(yk) = yk. Derivative of ΔQ(yk) with regard to xk is: 

 
𝑑∆𝑄 𝑦𝑘 

𝑑𝑥𝑘
=

𝑑∆𝑄 𝑦𝑘 

𝑑𝑦𝑘

𝑑𝑦𝑘

𝑑𝑥𝑘
= −𝑄′ 𝑦𝑘 𝑓 ′ 𝑥𝑘  (5.6) 

 

 The squared error function is square of deviation ΔQ(.). For instance, the squared 

error function of output unit o is: 

𝜀 𝑦𝑜 =
1

2
 ∆𝑄 𝑦𝑜  

2
=

1

2
 𝑅𝑜 + 𝛼 max

𝑜
𝑄0 𝑦𝑜 − 𝑄 𝑦𝑜  

2

 (5.7) 

 

 The squared error function ε(yh) of hidden unit h is the sum of output errors ε(yo) with 

regard to such set of output units, as follows: 

𝜀 𝑦𝑕 =  𝜀 𝑦𝑜 

𝑜

 

By applying stochastic gradient descend (SGD) as usual, we obtain weight update rule and 

bias update rule according to backpropagation algorithm, as follows: 

 

∆𝑤𝑗𝑘 = 𝛾𝑦𝑗 𝛿𝑘  

Where, 
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𝛿𝑘 =

 
 
 
 
 

 
 
 
  𝑅𝑘 + 𝛼 max

𝑘
𝑄0 𝑦𝑘 − 𝑄 𝑦𝑘  𝑄′ 𝑦𝑘 𝑓 ′ 𝑥𝑘 

for ouput unit
 
 

𝑄′ 𝑦𝑘 𝑓 ′ 𝑥𝑘  𝑤𝑘𝑙𝛿𝑙

𝑙

for hidden unit

  (5.8) 

 

Recall that: 

𝑑∆𝑄 𝑦𝑘 

𝑑𝑥𝑘
= −𝑄′ 𝑦𝑘 𝑓 ′ 𝑥𝑘  

 

Moreover, Q-functions for output units are updated by Q-learning as usual: 

𝑄 𝑦𝑜 = 𝑄 𝑦𝑜 + 𝛾  𝑅𝑜 + 𝛼 max
𝑜

𝑄0 𝑦𝑜 − 𝑄 𝑦𝑜   (5.9) 

 

 Indeed, Q-learning is also derived from SGD too. In NN literature, Q-function is also 

called the critic (Kröse & Smagt, 1996, p. 76). The sample for deep reinforcement learning 

with NN is {x
(p)

, R
(p)

} where input vector x
(p)

 is a set of states and R
(p)

 is a set of rewards of 

output units at p pattern. Agent’s actions are outputs yk from computations inside NN and 

next states st+1 are represented by the target network. 

 

IV. CONCLUSIONS 
 

 The philosophical essence of neural network (NN) is synaptic plasticity of human 

neuron system and the technical essence of NN is nonlinear regression mechanism by 

multiplicative overlap of summing weights through many layers. The perfect nonlinear 

regression function, which is target of NN learning, is approximated by the multiplicative 

overlap of applying propagation rule (being linear function if ignoring activation function) 

many times, which can be considered as an interpolation of the nonlinear function by many 

linear functions via a complex topology. The approximation will be unfeasible or ineffective 

unless there is support of stochastic descent gradient method. Moreover, the approximation is 

made smoother by activation function. This is the reason that deep learning with multiple 

layers will increase effectiveness and accuracy of NN because deep learning increases order 

of such nonlinear regression model. Moreover, the partition of NN into layers where there is 

an output layer implicitly reflects analytic and synthetic mechanism which is appropriate to 

high processing applications like image processing. The evolution of NN via Hebbian rule 

and delta rule learning which simulates human neuron system is appropriate to intelligent 

applications like control applications and game applications. In general, the ability of NN 

extensions is fully promising, especially NN is combined with evolutionary programming 

field such as genetic algorithm and social intelligence. When NN focuses on individual 

intelligence via human brain, there is a so-called social intelligence which is a subdomain of 

evolutionary programming field where social intelligence focuses on the intelligence inside a 

group of individuals via interactions. The combination of individual intelligence and social 

intelligence issues a multi-faceted overview of biological world as aforementioned in the 

abstract that machine learning (ML), which is a branch of artificial intelligence (AI), sets first 

bricks to build up an infinitely long bridge from computer to human intelligence. This great 
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construction may be more feasible a little bit by concerning such multi-faceted biological 

problem when AI also computer science does not reach the limitation of approaching miracle 

biological phenomenon yet. Fishbone NN mentioned in this research is a theoretical trial of 

the combination of individual intelligence and social intelligence. 
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