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Abstract 
 

 Lung cancer is the second highest 

occurrence and lowest survival rate cancer. It is 

due to its late-stage diagnosis, poor prognosis, 

and intra-tumoral heterogeneity nature. Further, 

the drug delivery to the lung is challenging and 

it affects the treatment effectiveness. They 

release chemokines and cytokines from the 

tumor microenvironment (TME). To improve 

the effectiveness of treatment, researchers 

emphasize personalized genomic targeting 

adjuvant therapies along with conventional 

ones. This study explored the different genomic 

changes occur due to the prime etiological 

factors, their reported treatment profile, and 

nanocarrier roles and strategies to improve the 

treatment profile’s effectiveness by striving for 

TME. A biofunctionalized nanocarrier 

stimulates biosystem interaction, cellular 

uptake, immune system escape, and vascular 

changes for penetration into the TME. 

Inorganic metal compounds scavenge reactive 

oxygen species (ROS) through their 

photothermal effect. Stroma, hypoxia, pH, and 

immunity-modulating agents conjugated or 

modified nanocarriers co-administered with 

condition-modulating agents can regulate 

extracellular matrix (ECM), Cancer-associated 

fibroblasts (CAF),Tyro3, Axl, and Mertk 

receptors (TAM) regulation, regulatory T-cell 

(Treg) inhibition, and myeloid-derived 

suppressor cells (MDSC) inhibition. Again, 

biomimetic conjugation or the surface 

modification of nanocarriers using ligands can 

enhance active targeting to the genome by 

bypassing the TME. A carrier system with 

biofunctionalized inorganic metal compounds 

and organic compound complex-loaded drugs is 

convenient for lung-targeted therapy. 
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I. INTRODUCTION 

 

According to the World Health Organization (WHO), lung cancer is the second-

highest diagnosis (11.4%), and the leading cause of death (18%) among all forms of cancer in 

2020 [1]. The 5-year survival rate of lung cancer patients worldwide was 19% during 2010–

2014. A few countries, like Japan (33%), Israel (27%), and the Republic of Korea (25%), had 

a higher survival rate [2]. The prime reasons for the low survival rate are late-stage diagnosis, 

lack of awareness, socioeconomic conditions, environmental contamination, and the 

metastatic and intra-tumoral heterogeneity nature of the tumor [3–6].  

 

The common etiological factors for lung cancer development are tobacco smoking 

(causes 80% of cases in the United States and other countries), occupational asbestos 

exposure (5–10% globally), cannabis or marijuana smoking (4% in the USA in 2002–2014), 

radon exposure (10% in the Western World), air pollution, group 1 carcinogen arsenic 

exposure, inflammation and cellular damage during respiratory infection, chronic obstructive 

pulmonary disease-related inflammation and scarring, and family history of lung cancer [7–

15]. Other associated increased risk factors for lung cancer are systemic sclerosis patients, 

smoker breast cancer survivor, HIV infected patients with idiopathic pulmonary fibrosis, 

certain fibrotic pneumoconioses patients, and lung cancer survivor.  

 

These etiological agents have different free radicals, reactive oxygen species, gaseous 

free radicals, and reactive electrophiles that depending upon the dose, dimension, bio 

durability, and surface reactivity, react with nitrogen and oxygen atoms lesions in DNA, 

modify a few nucleotide to distort the basic pattern of base pairing leads to incorrect 

nucleotides incorporation during replication [16-22]. Cell repair mechanism can repair the 

abduct DNA damage, but the escape portions change the coding of the DNA. Repeated 

exposure to etiological factors instruments to a series of genomic changes like copy number 

variations (CNVs), single-nucleotide variations (SNVs), and insertions/deletions (INDELs) of 

exomes in the autosomal chromosome lead to permanent change in the sequence and that 

start to from the primary tumor followed by metastasis via circulating tumor cells [23-25]. 

Genetic mutations affect protein synthesis and disrupt the cell cycle progression and promote 

carcinogenesis. The study of circulatory tumor cells for metastatic cancer & genomics of the 

tumor cells for the non-invasive types helps in diagnosis & prognosis purposes. Circulating 

tumor cell analysis is helpful for the prediction of disease progression, survivability of 

patients, and personalized therapy as cell-free DNA fragments found in peripheral blood [23-

28]. With the advancement of technology, single-cell whole-genome amplification (WGA) 

and whole exomes sequencing (WES) methods are helpful to detect genomic changes [27, 

29].  

 

In concise, lung cancer occurs through either one or combination of the factors like 

mutation of protoncogene, tumor suppressor genes, DNA repair gene dysfunction, erosion of 

apoptotic mechanism, limitless telomere replication, sustained angiogenesis, increment of 

invasion & metastasis, and escape from immunity [29-37]. 

 

Histologically, lung cancer is classified into non-small cell lung cancer (NSCLC, 

85%), and small cell lung cancer (SCLC, 13%) [38]. Further, NSCLC subdivides into lung 

adenocarcinoma (40%), squamous cell carcinoma (25–30%), and large cell carcinoma (5–
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10%) [36–38]. In 2015, WHO modified the classification of lung cancer based on 

immunohistochemistry, genetic studies for the personalized treatment strategies, and small 

biopsy and cytologic samples [39–41]. This new classification objective is to overcome drug 

resistance, intracellular accumulation, metastasis, invasion, side effects, toxicity, and develop 

a more personalized novel treatment regime [42]. The current treatment regime depends upon 

the stage of cancer progression, health of the patients, and affordability at the time of 

diagnosis. The different treatment methods are surgery (wedge resection, segmental 

resection, lobectomy, and pneumonectomy), radiation therapy, chemotherapy, stereotactic 

body radiotherapy, targeted drug therapy, immunotherapy, and palliative care.  

 

Though the advancement of the treatment regime impacted the treatment profile, late-

stage diagnosis (metastasis stage) creates a burden [3, 4, 5]. So, the emphasis has increased 

on chemotherapy and pathway-blocking agents through targeted drug delivery systems for 

advanced-stage patients [43]. 

 

Chemotherapy is a prominent therapy to control the growth of cancer cells. It can be 

used before and after surgery in NSCLC patients and with targeted or radiation therapy in the 

late stage of cancer. Excessive toxicity makes it controversial regarding the effective use of 

chemotherapeutic agents in lung cancer treatment. Chemotherapeutic agents can damage the 

DNA or RNA of cancer cells to inhibit their reproduction. The common adverse effects of 

chemotherapy are nausea, vomiting, sore mouth, weight change, and hair loss [44, 45].  

 

Targeting therapy is designed to alter the specific abnormalities in the cancer cells and 

their microenvironment. This therapy acts as adjuvant in early as well as late stage of the 

disease progression. It involves targeting specific genes or proteins using a drug-loaded 

carrier system to deliver into a projected site. A modification of the carrier system enhances 

the efficacy of the drug at the targeted site. The limitations of conventional therapy can be 

overcome by using targeted drug delivery systems. It may causes site-specific nano-toxicity 

and minimal toxicity to surrounding cells. Optimization of targeted drug delivery is one of 

the biggest challenges [42, 46–49]. 

 

As the cancer is an acquired disease of genetic alteration, nucleic acids have a 

promising treatment profile for the same. This genetic alteration can be improved using the 

delivery of DNA and other nucleic acids to control the genetic expression profile of target 

cells. The delivery of nucleic acid to the targeted cell is challenging due to its instability, off-

target effects, and traversal of biological barriers [50].  The delivery of nucleic acids to the 

targeted site can be achieved using nucleic acid cargo or nanocarrier as the nucleic acid 

vehicle.  

 

 

II. ETIOLOGICAL FACTORS PATHOPHYSIOLOGY TO AFFECT GENETIC 

MAKE UPS: 

 

1. Smoking: Smoke is a mixture of numerous chemicals with carcinogenic, toxic potential, 

stable free radicals, reactive oxygen species (ROS), and gaseous free radical species [51]. 

Tobacco smoke contains at least 69 cancer-causing agents like Beryllium, Cadmium, 

Nickel, Polonium-210, tobacco-specific nitrosamine out of 250 harmful chemicals 

amongst the 7000 chemicals [51, 55]. The free radicals of the smoke (up to 10
15

 – 10
17

/ 
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puff) increases the release of oxidants, damage the oxidative barriers and airway repair 

capability [56, 57]. Direct-acting carcinogens or reactive electrophiles react with nitrogen 

and oxygen atoms lesions in DNA, modify certain nucleotides to distort the basic pattern 

of base pairing. It leads to incorrect nucleotides incorporation during replication [58, 59]. 

The liver enzymes activate indirect-acting carcinogens by introducing electrophilic 

centers to the inactive form of carcinogen. Though, liver enzyme takes part to detoxify 

obnoxious chemicals, it also activates indirect-acting carcinogens. Detoxification begins 

with a series of oxidation reactions catalyzed by cytochrome P-450 [59]. Cytochrome P-

450 enzymes- lipoxygenase, cyclo-oxygenase, myeloperoxidases, and monoamine 

oxidases infrequently metabolized these carcinogens to intermediate metabolites. 

Glutathiones, sulfatases, or uridine-5′-diphosphate-glucuronosyltransferases (U5′DPGT) 

detoxify the intermediate metabolites. But a small amount of metabolite secreted reacts 

covalently at guanine & adenine of DNA to produce metabolic activation [60, 61]. 

Carcinogens like polycyclic aromatic hydrocarbons (PAHs), 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK) need metabolic activation for their carcinogenic functions. 

Metabolic DNA methyl abducts, produce from the metabolic activation react with alpha-

hydroxylase, and produces 7-methylguanine or O6 methyl-guanine, which are the 

precursor or risk factors of lung cancer [60-62]. Cell repair mechanism can repair the 

abduct DNA damage, but few portions escape and change the coding of the DNA. Cell 

apoptosis can remove the miscoding gene, but permanent mutation on the oncogene or 

tumor suppressor gene can lead to lung cancer. The commonly mutated proto-oncogene 

& tumor suppressor genes are- KRAS (∼30%), EGFR (4%), EML4 ALK (2%), P53 

(>50%), P16(>70%), STK11 (11%)  fragile histidine triad protein (F-HIT), T790M [60-

62]. 

 

2. Asbestos Exposure: Asbestos exposure increases the risks for developing mesothelioma, 

bronchogenic carcinoma, and lung cancer. It causes pulmonary fibrosis, pleural 

abnormalities, alveolar epithelial cell apoptosis by ATP-dependent process characterized 

as membrane blebbing, cell shrinkage, nuclear chromatin condensation, and DNA 

fragmentation [63-66]. The fiber of asbestos cause’s toxicity & carcinogenesis depends 

upon the dose, dimension, bio durability, surface reactivity, and the genetic background 

of the host exposed. High asbestos doses over short periods promote acute neutrophil-

predominant inflammation, whereas low doses over prolonged exposure periods 

accumulate in the body. These accumulated asbestos fibers are cyto-toxic to human 

mesothelial cells (HM). Asbestos-exposed HM activates poly (ADP-ribose) polymerase, 

secrete H2O2, deplete ATP, and translocate high-mobility group box1 protein (HMGB1) 

from the nucleus to cytoplasm and the extracellular space. HMGB1 promotes alveolar 

macrophage (AM) -predominant chronic inflammation. Chronic inflammation leads to 

cytokines (TNF-α) release and mutagenic reactive oxygen species from the inflammatory 

cells [65, 67, 68]. Mutation on the BLM gene affects the helicase activity negatively and 

the permeability of the mitochondrial membrane [69]. But, BLM protein causes an anti-

proliferative effect in the presence of P53. Mutated BLM gene affects p53 mediated 

growth inhibition [70]. Other genes that are affected by asbestos exposures are- BIRC4, 

BMP2, CD44, CSNK2A1, CSTB, BTG2, CALU, BIRC5, ADD3, CASP8, KRAS, 

MARK1, NFKB2, pRB, YAP, JUN, MYC, BAP1, GSTM1, etc [69, 71, 72]. 
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3. Radon Exposure: Radon is a chemically inert radioactive natural gas. It seeps out from 

closed spaces like underground mines and rocks [73]. Radioactive compounds convert to 

electrically charged radon progeny like lead isotope, alpha, and beta radioactive isotope 

[74]. They can bind with the tiny dust and aerosol particle of air and can ingest into the 

lung [75]. The adherence of the fusion dust particle to the epithelial cells of lung linings 

can change or damage the DNA either by radiation interaction or by free radicals [76]. It 

is a linear energy transfer with low penetration capability. Alpha radioactive particles can 

transfer more energy to root a sizeable number of ionizing events [77]. Recently many 

pathways have suggested radon exposure carcinoma. Various studies have reported the 

role of mutations of the p53 and p16 tumor suppressor loci, but no particular locus has 

proven to be predominant. But, RAGE and S100A6 proteins have a role in radon-induced 

inflammation, fibrosis, and carcinogenesis [78-82]. 

 

4. Cannabis Smoking: The concentration of carcinogenic poly-aromatic hydrocarbons in 

cannabis smoke is up to twice the concentration of tobacco smoke
 
[83]. The forms of 

cannabis products are flower or herb (marijuana), resin (hashish), and oil (hashish oil) 

[84]. Due to smaller butt size and deep holding after smoking leads to deposition & 

accumulation of carcinogenic products at the lower respiratory tract [83, 85, 86]. These 

enhance the absorption of carbon monoxide from cannabis joints [86]. The absorbed 

carbon monoxide in the lungs competes & displaces oxygen to bind with hemoglobin and 

forms carboxy-hemoglobin. It may result in hypoxia and cause the production of free 

oxygen radicals and lipid per oxidation. Hypoxia may be followed by re-oxygenation and 

reperfusion injury [87, 88]. Even exposure to hypoxia may lead to replication arrest 

during both the initiation- elongation phases and decreased levels of nucleotides. DNA 

damage response of hypoxia can induce p53 dependent apoptosis [89]. Cells experiencing 

hypoxia/re-oxygenation are sensitive to lose the DNA damage response like Chk1, ATM, 

ATR, and PARP [90]. Again, marijuana smoke condenses have more than 150 PAHs, 

which can damage the coding of DNA. Repeated exposure can damage the tumor 

suppressor gene and proto-oncogene [89]. 

 

5. Air Pollution: The incomplete combustion of fossil fuel, biofuel, farming fuel, cooking 

fuel, industrial dust, desert dust, transports lead to an increase in the release of particulate 

matter (PM). Particulate matter like PM2.5 and PM10 are common in the air [91, 92]. 

Other common forms of outdoor air pollution include- nitrogen dioxide, sulfur dioxide, 

ozone gas, carbon monoxide, polycyclic aromatic hydrocarbons. These particles can 

increase pulmonary disease incidences. Already researcher has reported that PM2.5 can 

trigger asthma, COPD, lung cancer through activating different pathways [93]. It can 

activate AMP-activated protein kinase (AMPK) catalytic subunit α1, signal transducer 

and activator of transcription (STAT)-1, vascular endothelial growth factor receptor 

(VEGF), Mitogen-activated protein kinase (MAPK), nuclear factor κB (NF-κB), and 

interleukin (IL)-8 signaling [92, 94]. These results in systemic inflammation, endothelial 

cell apoptosis, and an increased risk of lung cancer [95, 96]. 

 

6. Arsenic Exposure: Arsenic exposure changes the cellular mechanism. Arsenic exposure 

exhibit genotoxicity and break the DNA double-strand, chromosomal damage in the 

primary epithelial lung cells. It increases the ROS level, which leads to the angiogenesis 

process [97, 98, 99]. Arsenic impairs the DNA repair process by binding to DNA repair 

proteins and enhances genetic instability. Again, it can alter the microRNA expression, 
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epigenetic change, and histone structure changes [100, 101]. It leads to the promotion of 

cell proliferation & carcinogenic properties [97]. 

 

7. Heritable Factors: According to the study on 44788 twin, researchers found that the risk 

of development of lung cancer is 7.7 and 6.7 fold more on monozygotic and dizygotic 

twins, respectively (concordance rate in twins 0.10-0.11) [102, 103]. Again, another study 

reveals that shared environments and lifestyles affect the onset of lung cancer, not the 

genetic factors [103, 104]. 

 

III. LUNG CANCER: GENES AND GENOME 

 

According to the hypothesis, repeated exposure to etiological factors leads to lung 

epithelium dysplasia, and over a period genetic mutations occur. Genetic mutations affect 

protein synthesis and disrupt the cell cycle progression and promote carcinogenesis.  

Different etiological factor affects the copy number, single-nucleotide, and 

insertions/deletions (INDELs) of exomes in the autosomal chromosome to start from the 

primary tumor to metastasis via circulating tumor cells. In non-invasive types of cancer, 

genomics studies help to prognosis & diagnosis of cancer through the circulatory system as 

cell-free DNA fragments found in peripheral blood [23-29]. Circulating tumor cell analysis is 

helpful for the prediction of disease progression, survivability of patients, and personalized 

therapy. With the advancement of technology, single-cell whole-genome amplification 

(WGA) and whole exomes sequencing (WES) methods are helpful to detect genomic changes 

[23, 29] 

           

In small-cell lung cancer (SCLC), MYC, BCL2, and p53 mutations contribute to the 

development of the disease, while in non-small-cell lung cancer (NSCLC), EGFR, KRAS, 

and p16 mutations contribute to its development. [105]. Key molecular targets that exhibit 

molecular genetic variation include lung adenocarcinoma patients with RET proto-oncogene 

mutations account for approximately 01-02% of all cases [106]. There is a ROS1 fusion 

proto-oncogene gene in 2% of NSCLCs [107]. Significantly mutated genes found through 

standard, gene-specific, and category-based tests in percentage-wise descending order for 

lung adenocarcinoma in 188 genes analysis are –p53, ALK1, STK11, EGFR, LRP1B, NF1, 

ATM, APC, EPHA3, PTPRD, CDKN2A, ERBB4, KDR, FGER4, NTRK1, RB1, NTRK3, 

EPHA5, PDGFRA, GNAS, LTK, INHBA, PAK3, ZMYND10, NRAS, SLC38A3 [108]. In 

squamous cell carcinoma, mutated genes are- TP53, CDKN2A, NOTCH1/2, PIK3CA, 

FGFR3, BRAF, RAS, BRCA2, and EGFR [109, 110, 111]. Large cell carcinomas with 

commonly mutated genes are TP53 (83%), KRAS (22%), and MET (12%). Mutated genes 

found in large cell carcinoma with neuroendocrine features are- TP53 (88%), STK11 (16%), 

and PTEN (13%) [112]. The commonly deleted gene in small cell carcinoma is- RB1, TP53, 

CDKN2A, FHIT, RASSF1A, and PTEN, and amplified genes are- MYC, MYCL, MYCN, 

CCNE1, MET, FGER1, SOX2, SOX4, IRS2, NFIB [113]. 

 

1. EGFR Mutation:  According to a study, the prevalence of EGFR mutations in NSCLC 

was 32.3%- 35% [114,115]. The epidermal growth factor receptor (EGFR) is a 

transmembrane tyrosine kinase1 glycoprotein encoded with the EGFR gene at the cell 

surface. As per the instruction of the EGFR gene, the extracellular epidermal growth 

factor receptor domain binds to its ligand for autophosphorylation through intrinsic 
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tyrosine kinase to trigger signal transduction to control cellular proliferation [116, 117]. It 

blocks apoptosis, stimulates cell survival, proliferation, and migration through activating 

different pathways like MAPK (Mitogen-activated protein kinase), PI3K 

(Phosphatidylinositol 3-kinase), STAT3 (signal transducers and activators of 

transcription3), and STAT5 (signal transducers and activators of transcription5) [118]. 

Sustained activation, over-expression, and mutation of the tyrosine kinase domain of 

EGFR receptor lead to activation of the RAS-anti-apoptotic cascade in 43-89% 

aggressive types of EGFR mutated NSCLC [116, 119].Out of the 28 exons of EGFR, 

exon 19 deletion (19-Del) and exon 21(21-L858R) point mutation accounts for almost 

85% of EGFR mutation in non-small cell lung cancer [120]. 40%–60% of South-East 

Asian patients or 10%–20% of Caucasian patients suffer lung adenocarcinoma due to the 

mutation of EGFR [121-123].  

 

The treatment Profile for EGFR Mutation are 

 

 Chemotherapy: Chemotherapy alone and with combination therapy is a commonly 

used treatment regime in EGFR mutated NSCLC. The combination increases the 

overall survival of the patients with adverse effects. Examples are Bevacizumab 

paclitaxel/carboplatin combination increases the survival rate with decrease tumor 

growth from 25 to 95% but causes life-threatening bleeding [118, 124]. Ramucirumab 

Docetaxel combination increases the survival rate by 10.5% but causes neutropenia, 

leucopenia, fatigue, and hypertension [118, 125]. Albumin-bound paclitaxel has a 

higher response rate but has adverse effects like thrombocytopenia and anemia [118, 

126]. 

 

 Anti EGFR Pathway Blocking Therapy: Tyrosine kinase inhibitors (TKIs) are the 

anti-EGFR target drugs. 1st generation USFDA approved TKIs like Gefitinib and 

Erlotinib reversibly compete with ATP to bind to the intracellular kinase domain of 

EGFR to block phosphorylation through binding to the ATP-binding site to control 

the downstream signal of EGFR [127, 128]. 2nd generation Afatinib, Dacomitinib 

irreversibly binds to the kinase domain to block the phosphorylation. Third-generation 

TKIs Osimertinib inhibits EGFR resistance mutations by binding covalently to EGFR 

and targeting T790M (TK domain mutation) mutation [129]. 70% of EGFR-mutated 

tumors respond clinically to TKIs, whereas others don't respond due to EGFR exon 20 

duplications or PTEN or PIK3CA mutation [130]. The side effects of TKIs are 

stomatitis, diarrhea, skin rash, paronychia, bleeding, arrhythmia, pancreatitis, 

hepatotoxicity [131]. 

 

 Other Therapies: TKIs resistance leads to PIK3CA, KRAS, BRAF mutation, and 

MET amplification [132]. So, the combination of the targeted drugs with TKIs can 

tackle the problem. Like crizotinib or SGX532, MET inhibitor combination with TKIs 

can enhance the sensitivity [133]. KRAS inhibitors have efficacy in vitro to treat 

EGFR mutation [134]. Knockdown of miR-21 increased the sensitivity to Gefitinib in 

vitro and in vivo by inhibiting the PTEN/PI3K/AKT pathways [135]. A combination 

of-TKIs and JAK/STAT pathways inhibitors can decrease drug resistance in NSCLC 

[136]. 
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 Nanocarrier Based Targeted Therapies: EGFR-targeted antibodies or tyrosine 

kinase inhibitors or fusion drugs can target the extracellular EGFR domain to prevent 

ligand binding and interrupt signal cascades to cancer cells [137, 138, 139]. Recently 

researcher has found that Afatinib loaded gold nanoparticle enhances the loaded drug 

efficacy. 

 

Table1: Reported nanocarriers based targeted drug delivery system for EGFR mutation 

 

Sl 

No 

Nanocarrier Drugs Effects Targeting 

Ligand 

Target Ref 

1 Gold 

Nanoparticle 

Afatinib Drug efficacy, 

compatibility 

enhances 

- Passive 140 

2 Liposome Afatinib Improves tumor 

cells selectivity, 

internalization of 

the drug to the site 

Anti EGFR  

monoclonal 

antibody 

Active 141 

3 RGD  and PEG 

modified 

Liposome 

Apatinib Improves cellular 

uptake & 

therapeutic effects 

Cyclic 

RGD 

Active 142 

4 PEGylated gold 

nanoparticles 

Afatinib Cellular uptake & 

therapeutic effect 

enhanced 

PEG Active 143 

5 Quantum dots Desmeth

yl 

Erlotinib 

Cytotoxic 

enhancement 

- Passive 144 

6 Nanoparticle 

platform 

utilizing fat and 

supercritical 

fluid 

Erlotinib Improve solubility - Passive 145 

7 Iron oxide 

nanoparticle 

Erlotinib Improves 

therapeutic efficacy 

along with extrinsic 

& intrinsic 

apoptotic pathway 

- Passive 146 

8 Solid Lipid 

nanoparticle 

Erlotinib Shows improve 

therapeutic efficacy 

of the drug 

- Passive 147 

9 Cyclodextrin 

nanosponges 

Erlotinib Increases solubility, 

dissolution, cellular 

uptake 

and cytotoxicity. 

- Passive 148 

10 Dendrimers Chloroqu

ine, 

Erlotinib 

shRNA 

Drug efficacy 

increases in EGFR 

drug resistance 

cases  

Anti-EGFR 

aptamers 

Active 149 



Futuristic Trends in Medical Sciences 

e-ISBN: 978-93-6252-228-3 

IIP Series, Volume 3, Book 26, Part 1, Chapter 1 

LUNG CANCER: AFFECTED GENE/GENOME, CURRENT  

TREATMENT PROFILE, AND PROSPECTIVE OF TARGETED DRUG DELIVERY SYSTEM 

 

Copyright © 2023 Authors                                                                                                                          Page | 9 

survivin 

11 Liposome Osimerti

nib  

Drug efficacy 

enhances in EGFR 

resistant NSCLC  

- Passive 150 

               

2. KRAS Oncogene Mutation: Kirsten rat sarcoma viral oncogene homolog (KRAS) is a 

family member of the human rat sarcoma virus (RAS) gene, encodes with GTPase 

membrane-bound protein. It regulates different signaling pathways of cell processes 

through activating GDP–GTP exchange (guanine nucleotide exchange factors) [151, 152, 

153].  RAS links with upstream cell surface receptors- EGFR, FGFR, and ERBB2–4 to 

downstream proliferation. It also links with survival pathways such as RAF-MEK-ERK, 

PI3K-AKT-mTOR, and RALGDS-RA [154]. When RAS oncoproteins mutated, it 

prevents the increment of the catalytic rate of intrinsic GTPase by GTPase-activating 

proteins (GAP). It leads RAS to activate GTP- binding site to activate oncogenic and 

cellular signal transduction pathways [153, 155]. Commonly mutated genes in RAS 

mutant cancer cells are KRAS (86%), NRAS (11%), and HRAS (3%). KRAS oncogene 

mutations occur in almost 20–40% of lung adenocarcinomas depending upon different 

factors like smoker or non-smoker, race [153]. In NSCLC, Codons 12 (G12C, G12V, and 

G12D), 13, and 61 are the most mutated codon of the KRAS oncogene [156, 157]. 

KRAS-mutant NSCLC associate with genetic co-mutations of STK11 (32%), TP53 

(40%) CDKN2A/ B (19.8%) inactivation coupled with low thyroid transcription factor-1 

(TTF-1) expression [158, 159]. 

 

Drugs used for KRAS mutated NSCLC 

 

 Chemotherapy: Cytotoxic chemotherapy is the standard of care for patients with 

advanced KRAS -mutant NSCLC. It is also used after surgery and with combination 

therapy with different targeted drugs [160]. 

 

 Immunotherapy: There is a positive correlation between PD-L1 expression, tumor 

mutation burden, and T-cell infiltration in NSCLC with KRAS mutations. So, 

immunotherapy can use for the high T-cell infiltrate KRAS-mutant NSCLC. Different 

researchers have reported contra indicatory remarks on immunotherapy because this 

therapy can modulate the tumor microenvironment, co-mutation of other prime genes, 

and variance in PD-1 expression [161, 162]. 

 

 Pathway Blocking Therapies: The areas of KRAS therapy are to develop GTPase-

activating proteins for hydrolyzing GTP to GDP for terminating the signal to the 

inactive form to bind KRAS for integrating external signals from extracellular 

ligands. Further, targeted KRAS therapy can inhibit mutant KRAS to activate 

downstream signaling of downstream pathways (RAF-MEK- ERK and NF-kB) for 

cell proliferation. It also inhibits the mutant KRAS to activate MET or the PI3K-

AKT-mTOR and RHO-FAK pathways for mutant cell survival [160, 163- 165].  
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 KRAS Inhibition: The mutant cysteine locates the P2 pocket in the switch II 

region. It exists in the inactive GDP-binding conformation of KRAS. This GDP- 

binding confirmation can use to make irretrievable inhibitors of the KRAS G12C 

gene. Inhibitors of the KRAS allele that target the G12C can trap oncoproteins in an 

inactive state by inhibiting the reactivation of exchanged nucleotides, preventing 

tumor cell proliferation [166, 167]. Sotorasib (AMG510), a selective and 

irreversible KRAS G12C targeted agent, was recently approved by the FDA based 

on positive results from preliminary clinical trials [168]. 

 

 EGFR Therapy: Due to the position of EGFR in the signaling cascade, mutant 

KRAS persistently activates EGFR signaling [153]. It is also closely linked with 

RAF-MEK-ERK for survival through the negative feedback mechanism [169]. TKIs 

can use for the treatment of KRAS mutation [164]. 

 

 RAF Inhibition: Rapidly Accelerated Fibrosarcoma (RAF) is downstream of 

mutant KRAS. Many RAF inhibitors are multi tyrosine kinase inhibitors that lack 

specificity for RAF alone [170]. 

 

 MEK Inhibition: Mitogen-activated protein kinase (MEK) inhibitors-selumetinib, 

allosterically inhibit MEK protein through non-ATP-competitive binding [171]. 

 

 NF-kB Inhibition: Loss of p53 function and continuous active KRAS (G12D) 

collaboratively activate nuclear factor-kappa B transcription factor (NF-κB) in 

human lung cancer tissues and cell lines. Using NFkB inhibitors, the researcher has 

found the reduction of IκBαM cells. It results in suppression of anti-apoptosis and 

increment of chemo-sensitivity in lung cancer cells [172]. 

 

 MET Inhibitors: MET (c-MET) inhibitors are a class of molecules to inhibit the 

enzymatic activity of the MET tyrosine kinase resistance that occurs through MET-

gene amplification [173]. 

 

 FAK Inhibitors: Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase. 

Mutant KRAS associate with epigenetic silencing CDKN2A locus mutation 

deregulates FAK for downstream signaling pathways. There are no pharmacological 

drugs available to inhibit FAK, but the researcher has found that silencing of FAK 

causes significant loss of cell viability, apoptosis in mutant KRAS, p53 deficient 

cells [174]. 

 

 PI3K Pathway Inhibition: In KRAS mutated TKI resistance cell, 

phosphoinositide‐3 kinase (PI3K) gets activated through the compensatory feedback 

mechanism for cell survival, differentiation, motility, and proliferation [175]. PI3K 

inhibitors block these activities. 

 

 Nanocarrier Based Targeted Therapy: A few strategies to overcome the 

complication of KRAS mutation are passive targeting, expression reduction, 

interrupting membranal location, and signal transmission inhibition of KRAS 

mutation using chemoradiotherapeutic agents or a combination of the above. But due 
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to the lack of precision and satisfied clinical results of the mentioned treatment 

profiles due to heterogenicity & metastasis nature, the focus on targeted drug delivery 

regimes is increasing with newer nanocarrier-based approaches [176, 177].  

                 

  There are two types of targeted gene delivery systems- viral & non-viral 

based. For targeted drug delivery using nanocarrier, interest has shifted towards 

nucleic acid-based viral transfer using lentiviruses or adenoviruses to the cells of 

interest. So, the small interfering RNA (siRNA) based or conjugated nanocarrier is a 

choice to use RNA interference as a molecular therapeutic modality [178]. Recently 

researchers found that the siRNA-loaded BSA nanoparticles inhibit the growth of 

lung cancer cells by evading endosomal entrapment and mediating sequence-specific 

KRAS knockdown (Table 2) [179]. Another approach is macropinocytosis of 

nanocarrier-loaded active pharmaceutical ingredients. But due to macropinocytosis's 

universal cellular nature, the modification of nanocarrier is essential [180].  In a 

recent study researchers had found that an apolipoprotein E3-tagged liposomal 

nanocarrier for co-delivering gemcitabine and KRAS-siRNA induces cell apoptosis 

and lowers cell viability compared with single-drug therapy (Table 2). It also shows 

the siRNA-mediated silencing of KRAS mutations [181]. In another study, 

researchers found that in pancreatic KRAS mutant cancer, ultra pH-sensitive micelle 

loaded with triptolide shows better therapeutic efficacy through the simultaneous 

lysosomal pH buffering and rapid drug release capacity of the nanocarrier [182]. 

 

Table 2: Reported nanocarriers based targeted drug delivery system for KRAS 

mutation 

 

Sl 

no. 

Nanocarrier Drugs Effects Targeting 

Ligand 

Tar

get 

Ref 

1 BSA 

Nanoparticle 

siRNA Evades 

endosomal 

entrapment & 

mediates 

sequence specific 

KRAS 

knockdown to 

inhibit the 

NSCLC growth.  

- Pas

sive 

179 

2 Poly(lactide) 

surrounded by 

poly(ethylene 

glycol) 

nanoparticle 

Docetaxel Shows improved 

tolerability, 

manageable 

toxicity, tumor 

shrinkage in 

lesser dose of 

Docetaxel in 

clinical trial 

PSMA Acti

ve 

178 

3 Apolipoprotei

n E3 

Liposome 

Gemcitabine, 

siRNA 

Improves cellular 

uptake, 

cytotoxicity, 

Apolipoprote

in E3 

Acti

ve 

181 
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lower visibility, 

and Kras 

silencing 

4 ultra-pH 

sensitive 

micelles 

Triptolide Cellular uptake & 

therapeutic effect 

enhanced through 

lysosomal pH 

buffering and 

rapid drug release 

- Pas

sive 

182 

5 Quantum dots Desmethyl 

Erlotinib 

Cytotoxic 

enhancement 

- Pas

sive 

183 

 

 

3. LKB-1 Tumor Suppression Mutation:  Liver Kinase B1 (LKB1) is a Serine/ Threonine 

kinase 11(STK11) enzyme encoded with the STK11 gene for tumor suppression. LKB1 

synonyms are Serine/threonine kinase 11 (STK11) or renal carcinoma antigen NY-REN-

19 [184]. LKB1 takes part in DNA Damage Response (DDR) caused by different 

etiological factors for regulating 14 AMP Kinases (AMPK) to control the cellular 

functions like cellular growth, metabolism, autophagy, energy homeostasis, polarity, and 

suppress inflammation in cells. When energy stress engenders, LKB1 triggers catabolic 

processes & block anabolic processes. STRAD subunits synchronize the LKB1 

mitochondrial trigger catabolic processes. Again, the LKB1 balances MO25 without a 

phosphorylation mechanism [185, 186, 187]. Even hematopoietic stem cell division, 

depletion, and pancytopenia are crop up by LKB1 loss or mutation [188]. LKB1 

mutations decrease the phosphorylation process for AMPKs and affect cellular functions 

[189]. Approximately 5–30% of NSCLC cases occur due to LKB1 mutation [190]. 

 

 Chemotherapy: Chemotherapy remains the top treatment profile for LKB1 mutant 

lung cancer. According to a recent randomized trial, LKB1 mutations are unrelated to 

the efficacy of first- and second-line chemotherapy in non-small-cell lung cancer 

patients [191]. But chemotherapeutic agents that target mTOR, glutaminase, and PD-

L1 increase the overall survival in NSCLC patients. 

 

 Radiotherapy: This therapy can combine with other therapies for better therapeutic 

outcomes in LKB1 mutant lung cancer patients. But, single therapy using 

radioisotopes can cause LKB1 mutations by associating KEAP1/NRF2-dependent 

radiotherapy resistance targetable by glutaminase inhibition [192]. Compared to 

radiotherapy with/ without chemotherapy, recent clinical trials show the effects of 

glutaminase inhibitors, mTOR inhibitors, and anti-PD-L1 therapy in lung cancer 

patients have yielded promising results [193]. 

 

 Pathway Blocking Therapies:  

 

 Inhibition of mTOR: mTOR (the mammalian target of rapamycin) is a serine/ 

threonine kinase signaling pathway that belongs to the PI3K-related protein kinase 

(PIKKs) family with the C-terminus homology to the catalytic domain of P13K is 

responsible for the growth factors, nutrients, and energy requires for cell survival, 
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growth, proliferation, and motility. It has two distinct protein complexes- mTOR 

complex1 (mTORC1) and mTOR complex2 (mTORC2). mTORC1, sensitive to 

rapamycin, regulates mRNA translation through activation of S6K1 and 4EBP1 in 

response to diverse stimuli. Whereas, mTORC2 resistant to rapamycin, activates 

PKC-α, AKT, and regulates the actin cytoskeleton. Actin cytoskeleton controls the 

cell structural support, axonal growth, cell migration, organelle transport, and 

phagocytosis. Mutation of LKB1 leads to the deregulation of the PI3K pathway, AKT 

pathway, S6K1, 4EBP1, eIF4E and activates the hamartin (TSC1)/tuberin (TSC2) 

complex. S6 kinase (S6K) and eukaryotic translation initiation factor 4E (eIF4E)-

binding protein 1 (4E-BP1) are the downstream regulators of mTOR. Deregulation 

and activation of the above mention pathways lead to uncontrolled cell proliferation. 

Therefore, mTOR inhibitors are the therapeutic target to control the LKB1 mutation 

NSCLC. Rapamycin analogs-deforolimus, everolimus, and temsirolimus are few 

mTOR inhibitors used to treat multiple cancers in single-drug therapy or in 

combination with inhibitors of other pathways [194, 195, 196]. 

 

 LKB1 and Metabolism of Glucose and Lipid 

 

Inhibition of ACC Activity: De novo fatty acid (FA) synthesis, storage, and lipolysis 

help sustain rapid cancer growth & signaling. Reprogramming of lipid metabolism is 

one of the hallmarks of cancer cells. So, targeting altered lipid metabolic pathways is 

a promising anticancer strategy. In the LKB1 mutated cancer cells, excessive lipids 

and cholesterol are present as lipid droplets (LDs) due to the acetyl-coenzymeA 

carboxylase (ACC) catalyzation. Since LKB1 deficiency removes the inhibition of 

ACC, targeting ACC in LKB1-proficient cancer cells may possess beneficial clinical 

outcomes [197, 198]. 

 

HMG-CoA Reductase Inhibitors: HMG-CoA reductase inhibitors are the structural 

analog of HMG-CoA that competitively inhibits the enzyme HMG-CoA reductase to 

catalyze the conversion of HMG-CoA to mevalonate and cholesterol. This mechanism 

leads to lower the production of cholesterol and enhances the expression of LDL 

receptors by clearing & lowering LDL cholesterol from plasma. Mevalonate and 

cholesterol are precursors for farnesyl pyrophosphate (FPP) and geranylgeranyl 

pyrophosphate (GGPP). Tumor cell needs non-sterol isoprenoid for the prenylation of 

proteins for excessive growth and proliferation. An example is GGPP non-sterol 

isoprenoid molecules over express in lung adenocarcinoma. Statins inhibit iso-

prenylation of Rho, Ras, Rac1 GTP binding protein. It also reduces angiogenesis 

through down-regulating pro-angiogenic factors [199-201]. 

 

FASN Inhibition: Fatty acid synthase (FASN) involves the lipogenesis process of 

reductive de novo long-chain fatty acids from acetyl-CoA, malonyl-CoA, and 

NADPH. The FASN phenomenon is significantly up-regulated in cancerous cells, 

whereas the same is low in non-cancerous cells. As per the different studies, siRNA 

knockdown and pharmacological inhibition of FASN leads to apoptosis of cancerous 

cells [203, 204]. So, the targeted FASN inhibitor with the dietary modification can be 

an area for NSCLC. 
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 LKB1- AMPK Control Subsidiary Growth Regulation through Transcription 

Control: LKB1 is a metabolic regulator with tumor suppressor function. LKB1 

mutation fails to activate AMPKs and inhibits the induction of excess glycolysis 

produced by suppressing hexokinase-II (HK-II). AMPKs block cell growth through 

inhibition of lipid, glycogen, rRNA biosynthesis, blocking key signaling pathways, 

and G1 cell cycle arrest [205]. Inactive AMPK alpha leads to cancer cell proliferation 

by shifting the metabolic oxidative phosphorylation to aerobic glycolysis. Besides, the 

energy for cancer cells proliferation requires precursors for the biosynthesis of 

cellular components. Aerobic glycolysis diverts multiple biological macromolecules 

into other metabolic pathways for the cellular components. Targeted therapies that 

mediate the effect of LKB1 in aerobic oxidation could be beneficial for cancer 

treatment like mitochondrial metabolism inhibitors; activation of the LKB1 signals 

[206]. 

 

 SESTRINs Expression Promoting Agent: SESTRINs (SESN1, SESN2, and 

SESN3) are stress-inducible proteins for metabolic regulation. Oxidative and 

irradiation stress activate Sesn1 in p53 dependent manner. DNA damaging oxidative 

stress and over nutrition stress in the lung, liver, adipose, kidney, and pancreas 

activate Sesn2. Sestrins activate AMPKs and have antioxidant functions for 

suppressing ROS. Sestrins are p53 target genes for tumor suppression and act through 

mTOR inhibition. Again p53 is physically associates with LKB1 for tumor 

suppression. Reactivation of AMPKs & blocking of mTOR can control cancer cell 

growth [185, 207-209]. 

 

 PRKAB1 Gene Regulation: The heterotrimeric complexes of AMPKs have alpha, 

beta, and gamma subunits, encoded with the different genes in the vertebrate.   Protein 

Kinase AMP-Activated Catalytic Subunit Alpha 1 (PRKAA1) and Protein Kinase 

AMP-Activated Non-Catalytic Subunit Beta 1 (PRKAB1) gene frequently amplified 

in tumor cells and Protein Kinase AMP-Activated Catalytic Subunit Alpha 2 

(PRKAA2) gene in some cases [205]. Out of these, PRKAB1 is a p53 responsive gene 

that can inhibit mTOR. So, regulating the PRKAB1 gene may be a strategy to control 

the LKB1 mutation [210]. 

 

 FOXO3 Transcription Regulation Enhancement: AMPKs, the metabolic stress 

sensor activates by LKB1 to control the cell cycle, cell proliferation & sustain the 

energy homeostasis through balancing the ATP producing and ATP consuming 

pathways. This balancing occurs through the metabolic target enzyme's rapid 

phosphorylation and transcriptional regulation modulation. AMPKs phosphorylation 

of FOXO3, a glucocorticoid receptor target, activates the transcriptional activity to 

mimic the metabolic stress.  Thus, deprivation of energy conditions activates FOXO3 

for transcriptional and post-translational activity [185, 211]. Targeted drugs for 

FOXO transcription regulation and enhancement through activating AMPKs in LKB1 

mutant cancer or without can be a possible therapy. 

 

 SIKs and AMPK Dependent Transcriptional Control of Metabolism 

 

Histone Deacetylation Inhibition: Histone, the protein for structural support of 

chromosome, helps the DNA molecules through its octamer to fit into the cell 
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nucleus. Post-translational modification histone acetylation changes chromatin 

structure through epigenetic modification and regulates gene expression. The 

acetylation of ϵ-amino groups of conserved lysine residue influences histone 

transcription. Lysine acetylation control through two enzymes named histone 

acetyltransferases (HATs) and histone deacetylases (HDACs). Acetylation of the 

lysine group using cofactor acetyl CoA by HAT neutralizes the positive charge of 

lysine. It weakens the histone-DNA interaction, augments chromatin accessibility, and 

results in the recruitment of transcription factors in genes [212, 213]. Whereas the 

HDAC catalytically removes the acetyl group to promotes chromatin condensation to 

repress gene transcriptions. Out of all 18 HDACs, the restriction of repression activity 

of class IIa HDACs (HDAC4, 5, 7, and 9) can fulfill through monitoring sub cellular 

localization. Class IIa HDACs control the enzyme distribution in the cytoplasm and 

nucleus through nuclear localization signal (NLS) and nuclear export signal (NES). 

Class IIa HDAC's interaction with 14-3-3 proteins can mask the NLS sequence to 

prevent the interaction with importin-alpha. Even it can change the confirmation to 

favor nuclear exports. A specific extracellular signal like the calcium/calmodulin-

dependent protein kinase family (CaMK) promote the nuclear export of class IIa 

HDACs and stimulates the expression of MEF2 target genes by dissociating class II 

histone deacetylase (HDACs) from the DNA-binding domain[212]. LKB1 activates 

microtubule affinity-regulating kinases (MARK2 and -3), AMPKs, and SIK. These 

kinases regulate class IIa HDAC for nuclear export for resistance to therapy [214, 

215]. Again in NSCLC, chronic inflammation is a prominent factor where MEF2 

expression increases [216]. So, using class IIa HDAC inhibitor, the transcription can 

regulate. According to the reports, HDAC inhibitors increased chemokine expression, 

enhanced T cell infiltration, and T cell-dependent tumor regression in lung 

adenocarcinoma [217]. 

 

CREB Inhibition: c-AMP response element-binding protein is a phosphorylation-

dependent leucine zipper transcription factor of DNA binding proteins that actively 

regulate cellular responses like proliferation, survival, and differentiation
174

. LKB1 

activates the AMPKs and SIK through phosphorylation to obtain metabolic 

homeostasis during stress conditions. Activated SIKs phosphorylate CREB-regulated 

transcription co-activators (CRTC) block its binding with 14-3-3 for nuclear transport. 

SIK phosphorylation also takes part in CRTC1 ubiquitination and degradation. Again, 

CRTC (1, 2, 3) is the co-activator of CREB drove gene transcription through histone 

acetyltransferase. In LKB1 mutant or null cell, phosphorylation hampered the SIKs 

activation, leads to increased CRTC dephosphorylation activation for CREB 

transcription through the cAMP-responsive element (CRE)-containing promoters. The 

activation of the SIK-CRTC-CREB signaling axis may be a potential targeted therapy 

for aggressive LKB1-inactivated NSCLC [218-221]. 

 

PGC1 Regulation: Peroxisome proliferator-activated receptor gamma co-activator 1-

alpha (PGC-1α), a protein encodes with the PPARGC1A gene. PGC-1α is a 

transcriptional co-activator to regulate the genes expression involved in energy 

metabolism. Recently, researchers have found that a decreased PGC1α correlates with 

the epithelial-mesenchymal transition (EMT) and lung cancer distant metastasis [222]. 

PGC1α acts as a stress sensor transcriptional activator. In energy deprivation 

conditions, AMPK dependent phosphorylation and SIRT1 mediates deacetylation 
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activates PGC1α. Therefore promoting the LKB1-AMPK-PGC1α axis may be a 

potential target to control LKB1, LKB1-KRAS mutant NSCLC [223, 224]. 

 

SREBP1 Inhibition: Sterol regulatory element-binding proteins (SREBPs) are 

leucine zipper transcription factors for sterol regulation to uptake and biosynthesis of 

fatty acids, cholesterol that encodes with SREBF 1 and 2 genes. In the LKB1 mutant 

cell, cancer proliferation needs fatty acids and cholesterol [225, 226]. When LKB1 

cells functionalized normally, it releases AMPKs, and lipid biosynthesis pathways are 

in control [226, 227]. Again, SREBP inhibition increases TKI sensitivity in non-small 

cell lung cancer cells [228]. So, the inhibition of SREBP1 may be a potential target 

therapy for the NSCLC. 

 

AREBP Regulation: Heterodimer metabolic sensor serine/threonine-protein kinase 

complex AMPK controls the AMP/ATP ratio through LKB1. In LKB1 null/ mutated 

cell, un-control proliferation, metastasis occurs due to lack of AMPK & SIK 

inactivation. Nucleotide 5-aminoimidasole-4-carboxamide-1-b-D-ribofuranoside 

(AICAR) treatment is an artificial way to AMPK phosphorylation activation. AICAR 

transports into the cell through an adenosine transporter. AICAR phosphorylate 

AICAR ribonucleoside through adenosine kinase phosphorylation. It mimics the 

effect of AMP in the AMPK system. The activation of AMPK inhibits fatty acid, 

cholesterol, glycogen, protein synthesis. It represses the PEPCK gene expression 

through the transcription factor named AICAR response element-binding protein 

(AREBP). PERCK controls gluconeogenesis.  So, AREBP-AICAR-AMPK may be a 

potential target to control LKB1 mutant NSCLC [229-231]. 

 

RNA Polymerase-I Regulation:In stress and low energy state conditions, cells 

down-regulate energy-consuming processes like the transcription of rRNA. LKB1 

through AMPK and SIK tries to control the homeostasis of cells. Activation of AMPK 

triggers phosphorylation inactivation of TIF-IA at serine residue 635. TIF-IA is a 

transcription factor. It connects RNA polymerase I with the UBF/SL-1 complex for 

initiating the transcription of pre-ribosomal RNA. Inactivation of TIF-IA disrupts the 

transcription and inhibits rRNA synthesis through abrogating interaction between 

promoter-bound SL1 and TIF-IA. So, RNA polymerase I may be a targeted point for 

LKB1 null NSCLC [232, 233]. 

 

HNF4G Down-Regulation: Hepatocyte nuclear factor-4 gamma (HNF4G) is a 

nuclear receptor encodes with the HNF4G gene whose expression elevates in lung 

cancer tissues through the potential upstream mediator AKT signaling pathway [234]. 

Again in pancreatic ductal adenocarcinoma cell with SMAD4 deficiency, metformin 

act through AMPK mediated phosphorylation and suppress HNF4G [235]. So, there 

may be a relation between LKB1 deficiencies with HNF4G up-regulation and may be 

a target for LKB1 mutated NSCLC.  

 

GLUT4 Enhancer Factor (GEF) Regulation:In LKB1-deficient pancreatic β cells, 

the secretion of insulin increases as the conserved kinase can't control cell polarity 

and energy metabolism and enhance GLUT4 translocation [236, 237]. Rab GTPase-

activating proteins (Rab GAPs) AS160 and Tbc1d1 regulate the glucose uptake, 

glucose homeostasis through GLUT4 [236-238]. In response to insulin, AKT and 
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AMPK phosphorylation in Rab GAP-TBC1DI protein did not alter the intrinsic Rab 

GAP activity but disrupt interaction with insulin-regulated aminopeptidase [239]. So, 

targeted delivery to control the GLUT4 through Rab GAP may be a potential therapy 

for LKB1 mutated NSCLC. AMPK–TBC1D1 disruption increases lipogenic gene 

expression leads to obesity [240]. Obese patients have higher survival through unique 

cytokines or adipokines like omentin [241]. 

 

4. BRAF Mutation: V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) is a 

serine/threonine kinase protein encoded with the BRAF gene to regulate cell growth. 

Auto-phosphorylate of the kinase activation loop of BRAF enhance phosphorylation of 

the downstream effectors MEK and ERK to promote cell proliferation and survival 

through an allosteric mechanism. BRAF proto-oncogene mutations count from 01% to 

05% in NSCLC. 50% of BRAF mutations are of V600E point mutation on exon 15, and 

the remaining 50% are non-V600E BRAF mutations [242, 243, 244]. 

 

Therapies for BRAF mutation: 

 

 BRAF Inhibition: BRAF inhibitors selectively interfere mitogen-activated protein 

kinase pathway through the BRAF kinase, regulate proliferation and T-cell receptor 

signaling. Resistance to BRAF inhibition occurs through MAPK/ ERK reactivation or 

P13K/AKT activation [245].  

 

 MEK Inhibition: MEK is a downstream protein kinase that prevents the reactivation 

of the MAPK pathway in the presence of BRAF or RAS mutations. MEK inhibitors 

bind to a unique site near the ATP binding pocket of the protein kinase and induce 

conformational changes to restrict the activation loop movement for reducing the rate 

of Raf-mediated MEK phosphorylation to arrest the signaling pathway. Again, BRAF 

inhibitor's resistance occurs through the MAPK pathway, so the combination therapy 

of BRAF inhibitors with MAPK inhibitors is a solution [245, 246]. Targeted delivery 

with this combination may be a solution for the BRAF mutant NSCLC. 

 

5. PIK3CA mutation in NSCLC:  Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases 

involve in the serine-threonine kinase, AKT pathway to regulate cell proliferation, 

survival, and motility. Heterodimeric enzymes PI3Ks have the PIK3CA gene with a 

catalytic subunit p110 alpha protein, and in NSCLC, p110 mutation is common. Loss of 

the p85 alpha regulatory subunit of P13K increases the oncogenic activity of P13K-p110 

alpha [247]. The effects of PIK3CA mutation occur in exon 9 of the helical binding 

domain and 20 of the catalytic domain. PIK3CA mutation commonly co-occurs with 

KRAS, EGFR, BRAF, and ALK mutation[248]. Again, chromosomal copy number 

amplification activates oncogene and increased mRNA expression. PIK3CA locate at 

chromosome 3q26, which amplifies commonly in lung cancers. PIK3CA proto-oncogene 

mutation occurs in 02% to 07% of all NSCLCs [249]. The common strategy to control the 

PI3KCA ontogenesis is inhibition of PI3K/AKT/mTOR pathway. 
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Therapies for PIK3CA mutation 

 

 PI3K Inhibition: It is the direct approach to block PIK3CA mutation, but the 

effectivity of the P13 inhibitors is not satisfactory. Recently researcher has proposed 

two theories to treat the PIK3CA mutation. They are- by combining allosteric, 

orthosteric drugs and rescue mutations to guide drug discovery [250]. 

 

 AKT Inhibition:  Protein kinase B or AKT is a serine-threonine kinase over 

expressed in lung, breast, ovarian, gastric, and pancreatic carcinomas. It commonly 

activates in BRAFv600E and PI3KH1047 mutation cell lines. Mutation of PI3KCA 

up regulates the AKT to activate PI3K/AKT/mTOR pathway and oncogenesis 
212, 213

. 

AKT inhibitor inhibits phosphorylation and breaks DNA double-strand to delay tumor 

growth. AKT inhibition targeted therapy using AKT target proteins are FoxO1, 

Glycogen synthase kinase-3 (GSK-3), mTOR, and PTEN are helpful to control the 

PI3KCA mutation [251]. 

 

 mTOR Inhibition:  mTOR is another therapeutic target for PIK3CA mutation, and 

details are in the above mTOR section. 

 

6. ALK Mutation: Anaplastic Lymphoma Kinase (ALK) gene encodes with a 

transmembrane tyrosine kinase on chromosome2. It activates by extracellular ligand-

induced dimerization molecular alterations. The mutation of the ALK gene occurs 

through the fusion with the echinoderm microtubule-associated protein-like 4 (EML4) 

gene [252, 253]. EML4-ALK fusion oncoprotein is approximately available in 03-07% of 

NSCLC. TKI crizotinib is a MET, ROS1 inhibitor that inhibits ALK and c-Met 

phosphorylation in a concentration-dependent manner to control EML4-ALK fusion 

proteins expression along with ALK's signal transduction to arrest the cell cycle and 

apoptosis [254]. Resistance of crizotinib occurs due to the ALK kinase domain mutation, 

copy number gain (CNG) of the EML4-ALK fusion gene. Second-generation ALK 

inhibitors, ceritinib, and alectinib ATP competitive TKI and inhibits ALK, insulin-like 

growth factor 1 receptor (IGF-1R), insulin receptor (InsR), and ROS1on the surface of the 

cell against wild-type ALK and crizotinib resistance secondary mutations of ALK [253]. 

 

7. TP53 Mutation: The TP53 gene is a tumor suppressor gene located at the short arm of 

chromosome 17 (17p13) to activate the transcription of downstream genes (p21,  to 

maintain DNA repair, cell-cycle arrest, apoptosis, autophagy, metabolism, and aging. 

Inactivation of TP53 increases malignancy, drug resistance and decreases survivability 

and drug resistance. TP53 gene mutation occurs in almost 50% of NSCLC patients. TP53 

protein has four domains in the structure named as- N-terminal trans-activation domain, 

DNA-binding domain, oligomerization domain, and the C-terminus negative regulatory 

domain. Inactivation of TP53 increases malignancy and decreases survivability and drug 

resistance [255]. 
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IV. NOVEL NANOCARRIERS BASED TREATMENT APPROACH 

 

Nanocarriers, a colloidal preparation with a higher number of pores, can be used for 

the diagnosis and delivery of targeted drugs, nucleic acids, proteins, and diagnostic agents at 

the desired rate and time to the targeted site through passive, active targeting, pH, and 

temperature specificity to block pathways and reduce systemic drug toxicity [256–258]. As a 

result of NPs' small size, tailored surfaces, improved solubility, and multifunctionality, NPs 

provide superior stability, solubility, and bioavailability. It delivers the magnetic, thermal, 

electrical, and optical forms of active pharmaceutical ingredients used as targeted radiational, 

chemotherapeutic, gene therapeutic, immunotherapeutic, and combinational agents to 

treatment sites through the EPR effects. Depending upon the types, nature, and intention of 

the use of drugs, they are encapsulated or entrapped or dissolved, or absorbed in nanocarriers. 

Nanocarriers, a circulating cargo, can enhance the circulation lifetime, permeability, and 

retention of active pharmaceutical ingredients [259, 260]. Viral vector nanocarriers can 

deliver nucleic acid therapies [261]. In concise, a nanocarrier is a system that can control, 

manipulate, and fabricate micron-sized structures and devices. Optimization of the physical 

properties of NPs facilitates the delivery of drug at a specific rate and time to the desired 

sites. In addition to protecting the active medicament from premature degradation, 

nanocarriers control and improve drug distribution with intracellular accumulation, 

penetration, and shelf-life [262, 263]. Nanobiocarriers are the bioactive or targeting vector or 

ligand to deliver active pharmaceutical moiety to mimic and control the unnecessary cellular 

extravasations, growth, and cellular events. Additionally, nanobiocarriers enable the delivery 

of drugs with optimal bio-compatibility, biointeraction, safety, and efficacy [264]. 

 

 A nanocarrier charge can deliver DNA or mRNA to overexpress a gene, small 

interfering RNAs or microRNAs to knock down a gene, or nucleic acids to trigger pattern-

recognition receptors to stimulate the immune system [265]. A plasmid containing both a 

promoter and the gene of interest is used to treat DNA overexpression by bypassing the 

plasma membrane and nuclear envelope. After reaching the nucleus, it export and transcribes 

into mRNA and translates into the desired protein in the cytoplasm. Single-stranded mRNA 

also can use for the same purpose, but it is less stable and has a lesser chance of undesired 

insertion into the genome, like plasmid DNA, to cause mutagenesis [265-267]. But, RNAi 

can interrupt mRNA translation to decrease the target gene expression, and this problem can 

solve using short-length dsRNA like siRNA. Although the sequence of nucleic acids can have 

functional impacts on biological targets, many physical and chemical considerations are not 

heavily dependent on nucleic acid sequence encapsulated in nanocarrier for delivery. So, the 

chemical and physical properties of the nucleic acid should consider [265-267].  

 

 Co-delivery of multiple nucleic acids of the same type but with different sequences in 

a single delivery vehicle follows the same design principles to necessitate changes to 

nanocarrier design to deliver distinct cellular and subcellular locations. Again, the tumor 

heterogeneity and MDR cause multiple therapeutic agents to target different cellular 

pathways. But, the multitargeted nucleic acid cargo can cause intrinsic toxicity and virus 

immunogenicity to prevent repetitive administration [265, 266]. The challenges of nucleic 

acid cargo are- the physical and chemical properties' similarity and extracellular and 

intracellular trafficking routes overlaps. As nucleic acids possess a negative charge in their 

structure, generally positively charged polymers can use to prepare NPs. Cationic polymers 

like poly(l-lysine), polyethyleneimine, polyamidoamine, poly(beta-amino ester), and cationic 
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lipids are used [266]. Again, the size and physical properties of the nucleic acid impact its 

loading to nanocarriers. Further, surface modification of the nucleic acid NP improves its 

cellular uptake in the targeted site. Nanocarriers can classify as organic, inorganic, or hybrid 

based on the components used in their development. Commonly used nanocarriers for nucleic 

acid delivery are liposomes, solid lipid, polymeric, gold, mesoporous silica, and iron oxide 

NPs [268]. 

 

 Cancerous cell proliferation and migration profiles are different from those of normal 

cells. A therapeutic dosage form should enter the TME to control cancerous cell proliferation 

and migration. The penetration of conventional dosage forms to the TME is less due to its 

heterogeneity and the above-mentioned other factors. In addition, traditional drug delivery 

systems are less specific for cancer cells. Due to the lack of specificity and less penetration to 

the TME, the required concentration of the drug doesn't reach to eliminate the cancer cells. 

Non-eliminated cancer cells alter metabolic signaling pathways and drug metabolism, 

inactivate drugs, suppress apoptosis, alter epigenetic, change drug targets, enhance DNA 

repair, alter epithelial-mesenchymal transition, and enhance gene amplification. As a result, 

cancer cells cause multiple drug resistance and survive, rocket, and migrate [269-273]. 

  

As the nanocarriers have a diverse range (from 01-1000nanometer) and can tune 

according to the requirement of the (<200 nm) targeted site, the study and use of nano carrier-

based targeted drug delivery have increased. Again, the nanoparticulate nanocarriers can 

incorporate multiple targeting agents to enhance the bioavailability, drug delivery, 

absorption, targeting precision, and stimulus technique. Understanding and identifying cancer 

cells' physiochemical behavior can help optimize nanocarriers. In addition, the releasing 

pattern of drugs from nanocarriers determines the effectiveness of nanocarrier-based drug 

delivery systems [269, 274].  

 

V. STRATEGIES TO OVERCOME TUMOR MICROENVIRONMENT:  

 

The self-defense mechanism of the respiratory tract impacts drug delivery and 

absorption in the lung surface through mechanical, chemical, and immunological barriers. 

Behavioral barriers also added instruments to it. Targeted therapy is the formulation approach 

to overcome the lung surface barriers to the targeted site by bypasses the gastrointestinal tract 

and has a better pharmacokinetic profile [275]. The relation of the active drugs' 

physicochemical properties with the biological functions affects the development of targeted 

therapy & treatment profiles [276].  

 

The mononuclear phagocytes of the immune system reduce the reach of 

nanotherapeutics through opsonization and sequestration processes. It occurs in a protein 

corona around nanoparticles using the opsonization and sequestration processes. The 

formation of protein corona depends upon the size and surface chemistry of the nanoparticles. 

After protein corona formation, it absorbs the nanoparticles, internalizes them, fuses them to 

the lysosomes, and reduces their specificity [277–282].  

 

Cancer cells chisel their TME using different factors, like the release of chemokines 

and cytokines. These secretions reprogrammed the environment for further tumor growth and 

disease progression. Nanoparticles can passively and limitedly reach the TME using the EPR 

effect. The tumor heterogeneity acts as a barrier for drug delivery to the TME through 
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uncontrolled vascular events, resistance produced by the stroma, hypoxia, pH, and immune 

reshaping. For stable drug delivery to the targeted TME, there is a need for favorable vascular 

network events, regulation of stromal activities, or manipulation of hypoxia, pH, and 

immunity. In a heterogenic TME, the incremental demand for nutrients increases growth 

factors and forms leaky vessels. It increases the angiogenesis of tumor cells. It also enhances 

the interstitial fluid pressure through the leaky vessels and decreases blood flow to the site. 

So, the drug-loaded nanoparticles can't reach and accumulate in the targeted space [283–293]. 

Again, in lung cancer treatment, multiple drug resistances decrease the effectiveness of the 

treatment profile. A combination of medications for respiratory tract diseases changes the 

compliance rate of the drugs. The modulation of the TME using a single drug therapy with 

multiple targeting strategies can overcome these issues [284, 294-296]. A few strategies to 

optimize drug delivery to the TME are active targeting, TME modulation, and TME 

responsive targeted drug delivery [283, 293, 294]. 

 
Figure 1: TME modulation 

 

VI. REPORTED NANOCARRIER FOR THE TREATMENT OF GENE MUTANT 

LUNG CANCER OVERCOMING TME 

 

1. Solid Lipid Nanoparticle:  Solid lipid nanoparticles (SLN) are a surrogate of the 

colloidal drug delivery system, which can carry lipophilic, hydrophilic drugs, nucleic 

acids, and proteins to the targeted site. The size range of SLNs is 40–1000 nm [297]. It is 

a versatile, biocompatible, stable nanocarrier system with less toxicity. It is suitable for 

both active and passive targeting. Solid lipid nanoparticles are prepared by dispersing the 

melted solid lipid in water, followed by the addition of emulsifying agents through 

different homogenization techniques or micro-emulsification. Supercritical fluid, solvent 

emulsification/evaporation, double emulsion, and spray drying methods can be used to 

prepare SLNs [298]. Primary solid lipids used in the SLN preparation are fatty acids, 

mono-, di-, triglycerides, or waxes. These biodegradable lipids of SLN can offer sustained 

release of drugs deep into the lungs and are for the pulmonary drug delivery system. Solid 

lipid nanoparticles have a larger surface area and can load higher doses of active 

medicament. As per the requirement, in SLN, the drug can be incorporated into the 

matrix, shell, or core. SLN can be used in the preparation of oral dosage forms. Recently, 

studies have shown the higher transfection efficacy of cationic SLNs for the p53 gene 



Futuristic Trends in Medical Sciences 

e-ISBN: 978-93-6252-228-3 

IIP Series, Volume 3, Book 26, Part 1, Chapter 1 

LUNG CANCER: AFFECTED GENE/GENOME, CURRENT  

TREATMENT PROFILE, AND PROSPECTIVE OF TARGETED DRUG DELIVERY SYSTEM 

 

Copyright © 2023 Authors                                                                                                                          Page | 22 

targeting lung cancer [299]. A high melting point triglyceride in the SLN formulation is 

more efficient in the tumor cell environment [300]. Clinical updates indicate that folic 

acid-modified silymarin SLN enhances internalization through folate receptors in TME 

[301], as shown in Table 3. The main disadvantages of SLNs are their lower drug-loading 

efficacy and drug expulsion during storage. It can be rectified by mixing lipids with oil in 

a 70:30 to 99.9:0.01 ratio. SLNs can be optimized further by using appropriate ligands to 

overcome the TME, other than passive targeting [298, 302, 303]. 

 

In a study, researchers found that inhalable epirubicin-loaded SLN caused more 

cytotoxicity than epirubicin solution in the A549 cell line [304]. SLN loaded with 

docetaxel also prevented tumor growth and lung metastasis in 4T1 murine mammary 

carcinoma cells [305]. In a study, researchers found that the dual drug curcumin and 

paclitaxel-loaded SLN showed the highest tumor inhibitory action (78.42%) in the A549 

cell line compared to other cell lines rather than the drugs separately administered. As 

well as enhancing P-glycoprotein efflux, this formulation reverses the MDR pathway and 

down-regulates NF-kB [306]. Enhanced green fluorescence protein plasmids and 

doxorubicin-loaded transferrin-conjugated SLN show improved anticancer activity [307]. 

 

 
Figure 2: Solid Lipid Nanoparticle 

 

2. Liposomes: Liposomes are spherical vesicles with an aqueous core surrounded by natural 

phospholipids or synthetic amphiphiles and sterols in one or more bilayers with particle 

sizes ranging from 25 to 2500nm [308]. This lipid-based drug delivery carrier is suitable 

for hydrophilic and lipophilic drugs as it has aqueous and lipidic layers. It can deliver 

macromolecules like DNA, proteins, imaging, and active chemotherapeutic agents. It is a 

non-toxic, stable, high vascular density, and adjustable surface nanocarrier with a higher 

retention time in the targeted site. The half-life of this bilayer formulation is short in the 

systemic circulation. The preparation of liposomes generally begins with drying lipids 

from organic solvents, dispersing them in aqueous media, followed by purification and 

analysis. The composition of a bilayer determines the rigidity or fluidity and charge of the 

layer. Long-chain acyl-functional phospholipids form the rigid, impermeable bilayer 

structure of the liposome. Unsaturated phosphatidylcholine shapes a flexible, permeable 

liposome. The commonly used phospholipids in liposome preparation are 

phosphatidylethanolamine and phosphatidylcholine. Microfluidizers, membrane 

extrusion, sonication, and homogenization techniques can control liposome size and size 

distribution. This nanocarrier nanoparticle can use for active, passive, pH, magnetic, 

stimuli-responsive, and thermo-responsive targeting. Liposomes can enhance the loaded 

drug's efficacy at the targeted site, therapeutic index, and stability. It also reduces the 
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loaded drug's toxicity and exposure to sensitive tissue [309, 310]. Biofunctionalization 

liposomes enhance loaded drug efficacy in resisting lung cancer therapy through active 

targeting [311]. Again, in another clinical update, researchers found that irinotecan and 

veliparib-loaded nono-liposomal intravenous formulations show combinational synergy 

for PARP and topoisomerase-1 inhibition along with better efficacy [312]. The 

disadvantages of liposomes are lower solubility, a shorter half-life, leakage of 

encapsulated drugs, oxidation, hydrolysis, and a higher production cost. Limitations and 

benefits of liposome drug carriers depend on liposome interaction with cells and their fate 

in vivo after administration. The interactions of liposomes with the cell surfaces take 

place either through adsorption or endocytosis. A liposome can categorize according to its 

functional modification: conventional, PEGylated, ligand-targeted, and theranostic [309, 

310]. These differently modulated liposomes can overcome the bio-physiochemical 

difficulties of the active medicaments to reach the targeted sites. As well as liposome-

loaded drugs suppressing the TME, soluble mediators in liposomal drug delivery systems 

inhibit TME immunity [313]. 

 

 
 

Figure 3: Liposome. 

 

3. Polymeric Nanocarriers: Polymeric nanoparticle carriers are small (1-1000nm), 

adjustable, rapid absorbable versatile colloidal carrier systems to control the release of the 

entrapped active drug within the polymeric shell. The polymeric nanoparticles can 

classify into- Polymeric nanocapsule (Reservoir system) and Nanosphere (Matrix 

system). Preparation methods for polymeric nanoparticles include solvent evaporation 

and diffusion, nano-precipitation, and reverse salting. Generally, nanoprecipitation 

method is used to prepare polymeric nanocapsules. The stability of this nanocarrier 

depends upon the adsorption of the active medicament into the nanoparticle surface and 

surfactant presence. Microbial contamination is one of the challenges of this type of 

formulation. This problem can resolve by adding preservative spray drying or 

lyophilization. The drug delivery system is suitable for cancerous cell treatment using 

drug-nucleic acid combinations. These nanoparticles can induce anti-tumor immunity 

CD8+ T-cells by regulating the lymphatic system and activating dendritic cells in TME 

[315-317]. The advantages of polymeric nanoparticles include- multiple therapeutic 

targeting and independent control of drug release. The main disadvantages of polymeric 
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nanoparticles are the synchronization of pharmacokinetic & biodistribution of loaded 

compounds [315, 316]. Novoselova M.V. et al. (2020) have found that the internalization 

of polymeric multilayer capsules in lung cancer cells is 75% higher than in healthy lungs. 

Embedding gemcitabine and clodronate in polymeric multilayer capsules inhibited 

macrophage-induced tumor growth [318]. In another study, silibinin, a low-water-soluble 

drug encapsulated in polycaprolactone/Pluronic F68 nanoparticles, showed sustained 

release in the systemic circulation for up to 48 hours, inhibited tumor growth, and 

improved the loaded drug efficacy [319]. In a clinical update, the researchers found that 

polymeric nanoparticles loaded with Docetaxel can overcome drug resistance to 

refractory cancer [320]. Another clinical update, polymeric micelles loaded with 

anticancer drugs are capable of releasing drugs whose AUC, Cmax, and Volume of 

distribution are unstable [321]. As reported, polymeric nanoparticles entrapped with 

hypoxia-responsive photosensitizer and chemotherapeutic drugs produce reactive oxygen 

species that enhance efficacy and the photodynamic response of cancer treatments [322]. 

 

 
 

Figure 4:  Polymeric Nanoparticle. 

 

4. Gold Nanoparticle: Gold nanoparticles (GNPs) are 5 to 400nm in size and vary in shape; 

they are optoelectric, mildly antibacterial, and targeted drug delivery carriers. Their 

antibacterial activity depends on the intensification of ROS generation in the microbial 

cells. Other biomedical applications of GNPs are photodynamic immunotherapy for 

cancer treatment, diagnostic agents, etc. The photothermal activity of GNP is due to the 

excitement of electrons when irradiated with laser light. GNPs can synthesize using the 

bottom-up reduction method of chloroauric acid (HAuCl4). Commonly used reducing 

agents are sodium citrate, borohydride, polyalcohol, amines, etc. The reported absorption 

of GNP in oral administration is low. IV administration of GNP accumulates in the 

spleen, liver, and lung, and elimination is less. GNP increases glucose and catalytic 

enzymes (alanine aminotransferase and aspartate transaminase). It affects liver function 

[322-325]. In a study, researchers found that methotrexate conjugated GNP in a lower 

dose inhibits tumor growth compared to methotrexate (without loading or conjugated) in 

Lewis lung carcinoma [325]. In another study, researchers reported significant 

cytotoxicity and apoptosis in lung cancer stem cells when aluminum (III) phthalocyanine 

chloride tetra sulfonic acid and anti-CD133 antibody bioconjugate GNP were 

administered [326]. On the A549 cell line, researchers found that silibinin-conjugated 

gold nanoparticles released pH-responsively enhanced silibinin efficacy up to 4-5 times 

[327]. In a recent clinical update, researchers have found that T-cell, microRNA, or 

peptide-conjugated or entrapped gold nanoparticles enhance the EPR effect and its 

photothermal nature to inhibit cancer cell growth [328]. 
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Figure 5: Gold nanoparticle 

 

5. Mesoporous Silica Nanocarrier: Mesoporous silica nanoparticles are solid, tunable, and 

porous nanocarriers with high encapsulation capacity through endocytosis. These 

nanoparticles have uniform pore size ranges of 2-6 nm. There are three types of MSNs - 

ordered MSNs, hollow MSNs, and core/shell MSNs. A hollow MSN can load more drugs 

than the others. Surface functionalization can enhance nanoparticles' physicochemical 

properties. A few techniques for preparing MSNs are growth quench, confinement 

techniques, separation of confinement, and growth techniques. Functionalization can be 

done with co-condensation, multifunctionalization, and grafting methods. The surface 

modification allows this nanoparticle to target actively and passively [329-332]. Human 

cells are more likely to internalize 50 nm MSNs, although smaller particles exhibit longer 

circulation times. As particle size influences cytotoxicity, micrometric particles of 1 mm 

are less toxic than nanometric particles of 200 nm. Again, cationic nanoparticles are more 

immunogenic and cytotoxic than neutral or anionic ones. In melanoma treatment, FDA 

has approved multimodal silica nanoparticles [329]. Conjugating ligands folic acid, DNA 

aptamers, transferrin, and antibodies with MSN can enhance the efficacy of 

photodynamic targeted therapy for cancer. Researchers have found that MSN injection 

before anti-PD-1 resensitizes to overcome tumor resistance improves anti-PD-1 activity, 

and protects immunity [333, 334]. Researchers also found that siRNA co-delivered with 

chemotherapeutic drugs loaded in MSN synergistically enhanced their efficacy and 

survivin protein inhibition [334, 335]. In another study, folic acid-modified MSN loaded 

with multidrug-resistant protein-1 siRNA and myricetin reduces cell viability, suppress 

tumor, and up-regulates the expression levels of cleaved Caspase-3 and PARP in cancer 

cell line A549 and NCI-H1299 [336]. In a clinical update, researchers have found that an 

antitumor drug loaded in pH-responsive mesoporous silica-coated gold nanoparticles can 

cause a photothermal effect in addition to the loaded drug mechanism to produce 

anticancer activity specifically in the tumor cells [337]. 

 

6. Hybrid Nanocarrier: The advantages and disadvantages of a variety of drug 

nanocarriers are discussed above. Recently, adding a combinational approach can mimic 

the disadvantages of nanocarriers and increase their efficacy. So, the concept of hybrid 

nanocarriers has arrived. These hybrid systems combine the benefits of different 

structural components to synergize the outcome of the therapy. Erosion and degradation 

are the processes by which the hybrid nanoparticles release the entrapped active 

medicaments from the core. Multiple layers of lipids, polymers, and organic-inorganic 

compounds may protect the core materials, along with the solubility and permeability 

modifications of the entrapped active ingredients [338]. Recently, curcumin and survivin 

shRNA loaded in polymeric hybrid nanoparticles with PLGA conjugated triblock 
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polymers (W5R4K-PEG2K-PHIS) showed better penetration into the TME and 

synergistic tumor suppression action [339]. 

 

VII. CONCLUSION  

 

 Lung cancer has a lower survival rate due to the complexity of delivering the active 

drugs to the targeted sites. Biological barriers, behavioral nature, and tumor heterogeneity 

impact the delivery of drugs to the lung cancer ailment. There have been many attempts to 

overcome the barriers through different therapeutic approaches like chemotherapy, immunity 

modulation therapy, radiation therapy, chemotherapy, stereotactic body radiotherapy, etc. 

Recently, other than the above therapeutic options, interest in targeted drug delivery systems 

is increasing as adjuvant therapy in both early and late stages of disease progression. The 

reason is that most of the above-mentioned conventional therapies got resistant after a certain 

period and the therapeutics accumulation in the intracellular region is minimal to cause 

toxicity in the tumor microenvironment. In addition to that, conventional therapies are 

unlikely to enter the tumor microenvironment.  

 

 Targeting gene or genome using targeting therapy can improve the treatment profile 

in many ways. It blocks the genetic expression or decrease the mutation. Further, we have 

found that nanocarrier-based targeting drug delivery can overcome the TME barriers and 

enhance the targeting efficacy of the loaded drug. The selection of the nanocarrier for 

depends upon different factors- 1. Physiochemical nature of the loaded drug- solubility, 

permeability, molecular weight, and stability. 2. Nanocarrier specificity and size. 3. The 

biocompatibility and toxicity of the nanocarrier. Biodegradable nanocarriers are often 

preferred as they can be metabolized and eliminated from the body, reducing the risk of long-

term toxicity. 4. Drug-release kinetics. 5. Preclinical data. 6. Scalability for manufacturing. 7. 

Regulatory consideration. Therefore, selecting a nanocarrier for treating a particular targeted 

area based on individual requirements can be challenging. 

 

 Though there is no direct access method to evaluate the performance and comparison 

of nanocarriers, quantitative metrics can solve this issue. The quantitative metrics are- 1. 

Particle size distribution using dynamic light scattering (DLS), transmission electron 

microscopy (TEM), or scanning electron microscopy (SEM). 2. Encapsulation efficiency. 3. 

Drug loading capacity. 4. Release kinetics. 5. Stability. 6. Cellular uptake and intracellular 

localization using flow cytometry, confocal microscopy, or electron microscopy. 7. 

Cytotoxicity using MTT and lactate dehydrogenase assay. 

  

 Nanocarriers also have potential risks and downsides. Common risks and possible 

side effects include- immunogenicity, off-target effect, toxicity, premature drug release, drug 

resistance, and tumor heterogeneity. Nanocarriers may exhibit inherent toxicity if not 

adequately eliminated from the body. Rigorous toxicity evaluations and optimization of 

nanocarrier properties, such as size, surface charge, and composition, can help mitigate this 

risk. Nanocarriers also can experience drug leakage or premature release of the therapeutic 

payload before reaching the target site. It can result in suboptimal drug concentrations at the 

intended site and can reduce its efficacy. Strategies such as improved encapsulation 

techniques, surface modifications, or utilizing stimuli-responsive nanocarriers can help 

minimize premature drug release. Targeted therapy using nanocarriers can be affected by 

drug resistance mechanisms and the heterogeneity of lung cancer tumors. Combining 
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nanocarrier-based therapy with other treatment modalities or developing strategies to address 

drug resistance can help overcome this limitation. 

 

 In this study, we have found multiple nanocarriers with different possibilities. 

Depending upon the requirements and targeting strategy, nanocarriers can modify to optimize 

the required outcome. 

 

Future Prospective:  

  

 In light of advances in nanotechnology, various research studies are underway to find 

more convenient cancer treatments. NSCLC remains a substantial clinical challenge though 

chemotherapy and surgery are the few standards of care. Drug delivery to the targeted site 

remains challenging despite newer drugs for different histological subtypes and driver 

mutations. So, the emphasis on the nanocarrier based genome targeting drug delivery system 

as an add-on therapy to the current regime will lead to more effectiveness. Here, according to 

different studies, we found that biofunctionalized inorganic metal compounds with organic 

compound complex-loaded drugs may be a carrier system for the NSCLC targeted therapy. 

Especially, with active targeting through surface modifications of receptors overexpressed in 

lung cancer cells (folic acid, peptide, somatostatin). The biofunctionalization of the 

nanocarrier enhances the biosystem interaction, cellular uptake, immune system abscond, and 

vascular alteration to penetrate the tumor microenvironment. Again, inorganic metal 

compounds have the photothermal effect that scavenges the reactive oxygen species. Further, 

the loaded pathway-blocking agents can inhibit rapid cancer cell growth. 

 

 In this study, we have discussed the different possibilities of pathway blocking agents 

role in controlling the genomic expression and different possible nanocarrier systems and 

their reported efficacy. This study will help to develop new targeted therapeutics using a 

modified bioconjugate hybrid nanocarrier that can act through active targeting by bypassing 

TME and target the genome of cancerous cells. Further, this study will give an idea about 

different nanocarrier's efficacy in a concise form, along with their mechanism. It will help to 

compare nanocarriers in diverse conditions for developing personalized therapy. 
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