
Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 141

A STUDY ON BFS AND DFS ADAPTIVE

ALGORITHMS WITH APPLICATION IN COMPUTER

SCIENCE

Abstract

Many real life problems exhibit a

connectivity structure in nature. Before,

data solving techniques for including,

bioinformatics, communication network,

image data, wireless networks etc., are

more complicated because of high

computational complexity. Hence,

nowadays, there are lots of graph models

and these can be solved using graph theory

algorithms such as BFS, DFS, Dijkstra’s

algorithm and so on. These algorithms are

applied in data structures. This paper

explains BFS and DFS algorithms with

application.

Keywords: Graph, Directed Graph,

Connectivity, Trees, Subgraph, Spanning

subgraph, Spanning trees.

Author

Girija B

Research Scholar

Oscar College

Vellore, India.

girijaranjith2017@gmail.com

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 142

I. INTRODUCTION

Mathematics plays an immense role in many fields; especially Graph Theory occupies

an important role in the field of computer science. Graph theory is a mathematical model of

pair wise relations between objects. Graphs are the convenient to represent mathematical

objects. There is a wide range of application of graph theory in computer science.

Here, we will see, the algorithms such as BFS ANS DFS, with applications.

II. THE BREADTH FIRST TRAVERSAL ALGORITHM

 This algorithm is used to search a graph data structure with vertices. It starts at the

root of the graph and travels all the vertices at the current depth level. The BFS for a graph is

similar to BFS of a tree. The only difference is graphs contain cycles but trees are not. To

avoid repeated travel of same vertices, we divide into two categories:

 Visited

 Not visited.

First we assume that all the vertices are reachable with the starting vertex. BFS uses a

queue data structure for traversal. Starting from the first vertex, all the vertices in a particular

level are visited first and the vertices in the next level are visited. All the adjacent unvisited

vertices are pushed into the queue, and the vertices of current level are marked visited, and

popped from the queue.

 Let us understand the working algorithm of BFS with the following simple example:

Step-1: Initially the queue and visited arrays are empty.

Step-2: Push node 0 into queue and mark visited.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 143

Step-3: Remove node 0 from the front of the queue and visit the unvisited neighbors and

push them into queue.

Step-4: Remove node 1 from the front of the queueand visit the unvisited neighbors and push

them into queue.

Step-5: Remove node 2 from the queue and visit the unvisited neighbors and push them into

queue.

Step-6: Remove node 3 form the queue and visit the unvisited neighbors. As we can see that

every neighbor of node 3 visited, so move to the next node that is in front of the

queue.

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 144

Step-7: Remove node 4 from the front of the queue and visit the unvisited neighbors. As

we can see that neighbors of node 4 visited, so move to the next node that is in

front of the queue.

Now, queue become empty, so terminate the process of iteration.

III. ILLUSTRATION C PROGRAM FOR BFS ALGORITHM:

 #define MAX_VERTICES 50

 typedef struct Graph_t {

 // No. of vertices

 int V;

 bool adj[MAX_VERTICES][MAX_VERTICES];

} Graph;

 Graph* Graph_create(int V)

{

 Graph* g = malloc(sizeof(Graph));

 g->V = V;

 for (int i = 0; i < V; i++) {

 for (int j = 0; j < V; j++) {

 g->adj[i][j] = false;

 }

 }

 return g;

}

void Graph_destroy(Graph* g) { free(g); }

void Graph_addEdge(Graph* g, int v, int w)

{

 g->adj[v][w] = true;

}

void Graph_BFS(Graph* g, int s)

{

 bool visited[MAX_VERTICES];

 for (int i = 0; i < g->V; i++) {

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 145

 visited[i] = false;

 }

 int queue[MAX_VERTICES];

 int front = 0, rear = 0;

 visited[s] = true;

 queue[rear++] = s;

 while (front != rear) {

 s = queue[front++];

 printf("%d ", s);

 for (int adjacent = 0; adjacent < g->V;

 adjacent++) {

 if (g->adj[s][adjacent] && !visited[adjacent]) {

 visited[adjacent] = true;

 queue[rear++] = adjacent;

 }

 }

 }

}

int main()

{

 // Create a graph

 Graph* g = Graph_create(4);

 Graph_addEdge(g, 0, 1);

 Graph_addEdge(g, 0, 2);

 Graph_addEdge(g, 1, 2);

 Graph_addEdge(g, 2, 0);

 Graph_addEdge(g, 2, 3);

 Graph_addEdge(g, 3, 3);

 printf("Following is Breadth First Traversal "

 Graph_BFS(g, 2);

 "(starting from vertex 2) \n");

 Graph_destroy(g);

 return 0;

}

IV. THE DEPTH FIRST SEARCH ALGORITHM

 DFS of a graph is similar to DFS traversal of a tree. A graph can have more than one

DFS traversal. This algorithm for traversing or searching tree or graph data structures. The

algorithm starts with a root node ans explores as far as possible along each branch before

backtracking.

 Let us understand the working of DFS with the following illustration.

Step 1: Initially stack and visited arrays are empty

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 146

Step2 : Visit 0 and put its adjacent nodes which are not visited yet into the stack

Step 3 : Now,Nodes 1 at the top of the stack ,So bisit node 1 and pop it from the stack and

put all of its adjacent nodes which are not visited in the stack

Step 4 : Now,Node 2 at the top of the stack,So visit node 2 and pop it from the stack and put

all of its adjacent nodes which are not visited (eg : 3,4) in the stack

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 147

Step 5: Now, Node 4 at the top of the stack,So visit node 4 and pop it from the stack and put

all of its adjacent nodes which are not visited in the stack.

Step 6 : Now, Node 3 at the top of the stack,So visit node 3 pop it from the stack and put all

of its adjacent nodes which are not visited in the stack.

 Now stack becomes empty, which means we have visited all the nodes and our

DFS traversal ends.

Let us implement above process by C Program

void DFS(struct Graph* graph, int vertex) {

 struct node* adjList = graph->adjLists[vertex];

 struct node* temp = adjList;

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 148

 graph->visited[vertex] = 1;

 printf("Visited %d \n", vertex);

 while (temp != NULL) {

 int connectedVertex = temp->vertex;

 if (graph->visited[connectedVertex] == 0) {

 DFS(graph, connectedVertex);

 }

 temp = temp->next;

 }

}

 struct node* newNode = malloc(sizeof(struct node));

struct node* createNode(int v) {

// Create a node

 newNode->vertex = v;

 newNode->next = NULL;

 return newNode;

}

struct Graph* createGraph(int vertices) {

 struct Graph* graph = malloc(sizeof(struct Graph));

 graph->numVertices = vertices;

 graph->adjLists = malloc(vertices * sizeof(struct node*));

 graph->visited = malloc(vertices * sizeof(int));

 int i;

 for (i = 0; i < vertices; i++) {

 graph->adjLists[i] = NULL;

 graph->visited[i] = 0;

 }

 return graph;

}

void addEdge(struct Graph* graph, int src, int dest) {

 struct node* newNode = createNode(dest);

 newNode->next = graph->adjLists[src];

 graph->adjLists[src] = newNode;

 newNode = createNode(src);

 newNode->next = graph->adjLists[dest];

 graph->adjLists[dest] = newNode;

}

void printGraph(struct Graph* graph) {

 int v;

 for (v = 0; v < graph->numVertices; v++) {

 struct node* temp = graph->adjLists[v];

 printf("\n Adjacency list of vertex %d\n ", v);

 while (temp) {

 printf("%d -> ", temp->vertex);

 temp = temp->next;

 }

Futuristic Trends in Computing Technologies and Data Sciences

e-ISBN: 978-93-6252-441-6

IIP Series, Volume 3, Book 6, Part 6, Chapter 4

 A STUDY ON BFS AND DFS ADAPTIVE ALGORITHMS WITH

APPLICATION IN COMPUTER SCIENCE

 Copyright © 2024 Authors Page | 149

 printf("\n");

 }

}

int main() {

 struct Graph* graph = createGraph(4);

 addEdge(graph, 0, 1);

 addEdge(graph, 0, 2);

}

 addEdge(graph, 2, 3);

 printGraph(graph);

 DFS(graph, 2);

 return 0;

 addEdge(graph, 1, 2);

V. THE COMPARISON BETWEEN BFS AND DFS ALGORITHMS

 BFS is a vertex based technique and it uses queue data structure whereas DFS is an

edge based technique and uses stack data structure.

The comparison between output of BFS and DFS Algorithms: In both BFS and DFS

algorithms we get same output. But BFS builds the tree level by level whereas DFS by sub

tree by sub tree level. BFS is used to search nearby vertices for given source whereas DFS is

used to when the vertices are away from the given source. BFS requires more memory but

DFS doesn’t. The time complexity O(V+E) is same for both algorithms. But BFS nees more

space than DFS.

VI. CONCLUSION

 In this paper, we discuss about the algorithms of BFS and DFS with example and with

implementation. Both the algorithms are very useful and easy to understand. We can use

either BFS or DFS which suits for our program

REFERENCES

[1] https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/

[2] https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

[3] https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

Elumalai, “Graph theory applications in computer science and engineerin”, Malaya Journal of Matematik,

Vol. S, No : 4025-4027, 2000.

[4] Serafino Cicerone, Gabriele Di Stafano, “Graph algorithms and Applications” ISBN 978-3-0365-1542-7

(Hbk), ISBN 978-3-0365-1541-0 (PDF)

