

Forest Fire Detection using LoRa technology

 K. Varshitha,

Dept. of Physics & Electronics

Bhavan’s Vivekananda College,

Secunderabad, Telangana, India

varshithareddy464@gmail.com

M.Prasanna

Dept. of Physics & Electronics

Bhavan’s Vivekananda College,

Secunderabad, Telangana, India

prasanna.elec@bhavansvc.ac.in

ABSTRACT

Forest fires are common hazards in forests, particularly in remote or unmanaged areas. Despite the
investment and evolution in fire fighting techniques and equipment, it is common that forest fires destroy

thousands of hectares of forest territory and endanger people’s lives, homes and properties due to late

detection. Fire detection should be done quickly to avoid damage for large amounts of natural/human
resources.

In this article we propose a simple fire detection system using long range (LoRa) based technology. The

proposed LoRa based system consists of wireless communication system and different types of sensors,
and powered by a low-power battery, with an operating range of 3–12 km distance. This project aims in

detection of occurrence of fire in forests without any delay using LoRa communication system.

Keywords—Internet-of-Things (IoT), LoRa technology, Arduino, sensors

INTRODUCTION

When forest fires burn, they emit large volumes of carbon dioxide gas (CO2) and raise the

temperature levels; a network of Internet of Things (IoT) sensors like CO2 and temperature
sensors can be used for forest fire detection. IoT sensors can operate alongside satellite and optical

detection systems or form a standalone network of sensors near key strategic assets. IoT sensors can

be deployed in remote areas without the need for internet, cellular/mobile or mains power.

In this project, a temperature, moisture and IR sensors are interfaced to Arduino, to detect the raised

temperature and gases produced from the fire. These values are taken by the Microcontroller and are sent

through a LoRa transmitter to a distant LoRa receiver connected to a NodeMCU. The system is to detect

the fire as fast as possible and its exact localization and early notification to the fire units is vital.[4]
I. SYSTEM ANALYSIS

EXISTING SYSTEMS

 Fire alarm systems with buzzer

 Fire alert systems with no continuous monitoring system

 Highly expensive monitoring systems

 DISADVANTAGE

 Current systems are local hence the alert is not conveyed to authorities far away. Also local

system could be damaged in the fire.

 It requires man power

 Accuracy of output is less

PROPOSED SYSTEM

 Arduino UNO based fire monitoring system

 Lora based alerting system

 Sensor based monitoring

 LoRa can be used for monitoring and alerting

ADVANTAGES

 Both local and global fire alert is provided

mailto:varshithareddy464@gmail.com
mailto:prasanna.elec@bhavansvc.ac.in

 Very low cost implementation

 Also camera based detection can be provided as failsafe in case sensors malfunction

SYSTEM REQUIREMENTS

Arduino IDE

 Fig 1. BLOCKDIAGRAM

II. SYSTEM DESIGN AND SOFTWARE

HARDWARE REQUIREMENT

 Arduino Uno

 LoRa Module

 NodeMCU

 Moisture Sensor

 IR Sensor

 Fire Sensor

 Buzzer

 I2C LCD

 DHT 11

 HARDWARE DESCRIPTIONS

A. LoRa Module

LoRa is a spread spectrum modulation technique, it was developed by Cycleo (patent 9647718-B2), a company

of Grenoble, France, later acquired by Semtech. Semtech’s LoRa is a long range, low power wireless platform

that has become the defacto wireless platform of Internet of Things (IoT).

Fig 1: LoRa module

LoRa devices and networks such as the LoRa WAN enable smart IoT applications in many challenging areas

such as: energy management, natural resource reduction, pollution control, infrastructure efficiency, and disaster

prevention. Semtech’s LoRa devices have amassed several hundred known use cases for smart cities, homes and

buildings, communities, metering, supply chain and logistics, agriculture, and more. Semtech corporation is the

leader in LoRa wireless technology and as such have introduced a number of LoRa RF modules for the market.

In particular, the SX127x family of RF transceivers for the IoT/M2M markets. These RF modules operated

between 860-1000 MHz and 137- 960MHz. Semtech also offers evaluation and testing devices at 860MHz band.

865 MHz to 867 MHz LoRa frequency band with 865.0625 MHz, 865.4025 MHz, 865.985 MHz frequency

channels are used in INDIA.

LoRa wireless technology plays a key role in the IoT market in interconnecting devices to create smart

cities, industrial and commercial solutions, whilst reducing the limitations from other wireless technologies such

as power and other overheads.

 B. Arduino UNO

 Fig 2: Arduino Uno

 The Arduino Uno is an open-source microcontroller board based on the MicrochipATmega328P

microcontroller and developed by Arduino.cc. The board is equipped with sets of digital and analog input/output

(I/O) pins that may be interfaced to various expansion boards (shields) and other circuits. The board has 14

Digital pins, 6 Analog pins, and programmable with the Arduino IDE (Integrated Development Environment)

via a type B USB cable. It can be powered by the USB cable or by an external 9-volt battery, though it accepts

voltages between 7 and 20 volts. It is also similar to the Arduino Nano and Leonardo. The board can be

programmed for any application through a set of instructions to the microcontroller, using the Arduino

programming language (based on Wiring), and the Arduino Software (IDE), based on Processing.

C . DHT11:

 Fig 3:DHT 11 sensor

DHT11 is a low-cost digital sensor for sensing temperature and humidity. This sensor can be easily interfaced

with any micro-controller such as Arduino, Raspberry Pi etc… to measure humidity and temperature

instantaneously.

This sensor is used here to monitor the humidity variation of the environment where the fire is sensed. This

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Expansion_board
https://en.wikipedia.org/wiki/Arduino#Software
https://en.wikipedia.org/wiki/USB_cable
https://en.wikipedia.org/wiki/9-volt_battery
https://en.wikipedia.org/wiki/Arduino_Nano

is a digital sensor and measures the humidity value in percentage format. DHT11 humidity and temperature

sensor is available as a sensor and as a module. The difference between this sensor and module is the pull-up

resistor and a power-on LED. DHT11 is a relative humidity sensor. To measure the surrounding air this sensor

uses a thermistor and a capacitive humidity sensor.

D. NodeMCU

 Fig 4:NodeMCU

The NodeMCU (Node MicroController Unit) is an open-source software and hardware development

environment built around an inexpensive System-on-a-Chip (SoC) called the ESP8266. The ESP8266, designed

and manufactured by Espressif Systems, contains the crucial elements of a computer: CPU, RAM, networking

(WiFi), and even a modern operating system and SDK. That makes it an excellent choice for Internet of Things

(IoT) projects of all kinds.

E. IR sensor

An infrared sensor is an electronic device that emits in order to sense some aspects of the surroundings. An IR

sensor can measure the heat of an object as well as detects the motion

SOFTWARE

A. ARDUINO IDE

Download Arduino Integrated Design Environment (IDE) from : https://www.arduino.cc/en/Main/Software

Once the Arduino IDE is installed, opens into a blank sketch where we can start programming. First, we should

configure the board and port settings to allow us to upload code. Connect your Arduino board to the PC via the

USB cable, and next follow the below steps

 Board Setup

 COM Port Setup

 Uploading of sketch

https://www.elprocus.com/introduction-to-thermistor-types-with-its-workings-and-applications/
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software

Download and install Arduino IDE(https://www.arduino.cc/en/Main/Software)

1. Plug in your Arduino Board

2. Select the proper board in the IDE (Tools>Boards>Arduino Uno)

3. Select the proper COM port (Tools>Port>COMx (Arduino Uno))

4. Open the “Blink” sketch(File>Examples>Basics>01.Blink)

5. Press the Upload button to upload the program to the board

6. Confirm that your board is working as expected by observing LED

B. THINGSPEAK

Fig 5 :creating channel

Thing Speak is an Open-Source IoT application and API to store and retrieve data from Hardware devices

and Sensors and develop IoT applications. Also, the platform provides apps to analyze and visualize data. It uses

HTTP Protocol over the Internet or LAN for its communication. The MATLAB analytics is included to analyze and

visualize the data received from Hardware or Sensor Devices. We can create channels for each and every sensor

data. These channels can be set as private channels or share the data publically through Public channels.

How to create an Account

Step 1: Go to https://thingspeak.com/and create your ThingSpeak Account if you don’t have. Login to Your

Account.

Step 2: Create a Channel by clicking ’New Channel’.

Step 3: Enter the channel details.

Name: Any Name

Description: Optional

Field 1: Light Intensity LDR – This will be displayed on the analytics graph. If you need more than 1

Channels you can create for additional Sensor Data..

Step 4: Now you can see the channels. Click on the ‘API Keys’ tab. Here you will get the Channel ID and API

Keys. Note this down.

Fig6: API Keys

http://www.arduino.cc/en/Main/Software)

Step 5: Open Arduino IDE and Install the ThingSpeak Library. To do this go to Sketch>Include

Library>Manage Libraries. Search for ThingSpeak and install the library.

 Fig7 : library installing

Step 6: Click Save Channel at the bottom of the settings.

III. Source Code

A. Source code to Aurdino

#include <SoftwareSerial.h>

 #include"DHT.h"

#include<Wire.h>

#include <LiquidCrystal_I2C.h>

// Set the LCD address to 0x27 for a 16 chars and 2 line display LiquidCrystal_I2C lcd(0x27, 16, 2);

#define DHTPIN 6

#define DHTTYPE DHT11 int ir1 = 8;

int fir = 7; SoftwareSeriallora(2,3);

DHT dht (DHTPIN, DHTTYPE);

void setup()

{

Serial.begin(9600); pinMode(7, INPUT);

lora.begin(9600); dht.begin();

lcd.begin();

// Turn on the blacklight and print a message. lcd.backlight();

lcd.print("Hello, world!");

}

void loop()

{

float h = dht.readHumidity();

float t = dht.readTemperature(); float s = h + 40;

float r = t + 63;

float f = (t*1.8+32)-72; if (isnan(h) || isnan(t)) {

Serial.println(F("Failed to read from DHT sensor!")); return;

}

int moisture = analogRead(A0);

int ir = digitalRead(ir1);

int fire = digitalRead(fir);

Serial.print("fire");

Serial.println(fire);

lcd.clear();

lcd.print("fire");

lcd.print(fire);

delay(1000);

Serial.print("ir");

Serial.println(ir);

lcd.clear();

lcd.print("ir");

lcd.print(ir);

delay(1000);

Serial.print("moisture");

Serial.println(moisture);

lcd.clear();

lcd.print("moisture");

lcd.print(moisture);

delay(1000);

Serial.print(" Humidity: ");

Serial.print(h);

lcd.clear();

lcd.print(" Humidity: ");

lcd.print(h);

delay(1000);

Serial.print(" Temperature: ");

Serial.print(f);

lcd.clear();

lcd.print(" Temperature: ");

lcd.print(f);

delay(1000);

String data = String(fire) + ":" + String(ir) + ":" + String(moisture) + ":" + String(h) + ":" + String(f);

lora.println(data);

//Serial.println(data);

delay(1000);

B. SOURCE CODE FOR NODEMCU

#define SW_VERSION " ThinkSpeak.com" // SW version will appears at innitial LCD Display

#include <SoftwareSerial.h> #include <ESP8266WiFi.h>

// The TinyGPS++ object

SoftwareSeriallora(D2, D3); // The serial connection to the GPS device const char* ssid = "Social Network";

const char* password = "PanProEdHyd&";

const char* TS_SERVER ="api.thingspeak.com";

String TS_API_KEY ="KBLR8JC7LPRLU3SX";//

WiFiClient client1;

String fire,ir,moisture,h,f;

String getStringPartByNr(String data, char separator, int index)

{

// spliting a string and return the part nr index

// split by separator

int stringData= 0; //variable to count data part nr

String dataPart=""; //variable to hole the return text

for(int i = 0; i<data.length()-1;i++){

//Walk through the text one letter at a time if(data[i]==separator){

//Count the number of times separator character appears in the text stringData++;

}

else if(stringData==index) {

//get the text when separator is the rignt one dataPart.concat(data[i]);

}else if(stringData>index) {

//return text and stop if the next separator appears - to save CPU-time return dataPart;

break;

}

}

//return text if this is the last part return dataPart;

}

void sendDataTS(void)

{

 if (client1.connect(TS_SERVER, 80))

{

String postStr = TS_API_KEY; postStr +="&field1=";

postStr += String(f); postStr += "&field2="; postStr += String(ir); postStr +="&field3=";

postStr += String(moisture); postStr += "&field4="; postStr += String(fire); postStr += "&field5="; postStr +=

String(h); postStr +="\r\n\r\n";

client1.print("POST /update HTTP/1.1\n"); client1.print("Host: api.thingspeak.com\n");

client1.print("Connection: close\n");

client1.print("X-THINGSPEAKAPIKEY: " + TS_API_KEY + "\n");

client1.print("Content-Type: application/x-www-form-urlencoded\n");

client1.print("Content-Length: "); client1.print(postStr.length()); client1.print("\n\n"); client1.print(postStr);

delay(1000);

}

client1.stop();

}

void setup()

{

pinMode(D5,OUTPUT); Serial.begin(9600); lora.begin(9600); Serial.println(); Serial.print("Connecting to ");

Serial.println(ssid); WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{

delay(500); Serial.print(".");

}

Serial.println("");

Serial.println("WiFi connected"); Serial.println("Server started");

// Print the IP address Serial.println(WiFi.localIP()); Serial.print("Connected! IP address: ");

}

void loop()

{

if(lora.available()>0)

{

String rcv=lora.readString(); Serial.println(rcv); fire=(getStringPartByNr(rcv,':',0));

ir=(getStringPartByNr(rcv,':',1));

moisture=(getStringPartByNr(rcv,':',2));

h=(getStringPartByNr(rcv,':',3));

f=(getStringPartByNr(rcv,':',4));

}

Serial.print((" fire Value: ")); Serial.println(fire); Serial.print((" hum: ")); Serial.println(h); Serial.print(("

moisture: ")); Serial.println(moisture);

Serial.print(("object: ")); Serial.println(ir);

// Serial.println(("C ")); Serial.print(("temperature: ")); Serial.println(f);

float f1 =f.toInt();

int h = moisture.toInt(); int g =fire.toInt();

int t = ir.toInt();

 if(f1>30){

Serial.println(F(":::::::temperature Detected::::::::")); digitalWrite(D5,HIGH);

delay(1000);

}

elseif(g==0){

Serial.println(F(":::::::fire Detected::::::::")); digitalWrite(D5,HIGH);

delay(1000);

}

else{

digitalWrite(D5,LOW); delay(1000);

}

sendDataTS();

delay(1000);

IV. Results

 Fig 8

V. CONCLUSION & FUTURE SCOPE

This study described as fire monitoring system uses a wireless sensor network to inform the user remotely. This

system was successfully created and implemented. The technology has been tested in a simulated fire disaster

environment and has proven to be quite responsive.

Efficiency can be improved by using more accurate sensors and GPS receivers and to predict the disaster .

This system can be used in schools, colleges, offices and industries for any fire, gas leakage.

Fig 9 Fig 10

VI . REFERENCES

[1] K Ram Prasanna, J.M. Mathana, T. Anne Ramya et al., LoRa network based high performance forest fire detection system,

Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.05.656

[2] FOREST FIRE DETECTION USING Lora K.Mahesh Babu, R. Priyakanth, G. Roshini, V. Saisri, BH. Keerhi priya, N. Srujana, M.

Taruni Dept. of ECE 2020 JETIR May 2020, Volume 7, Issue 5

 [3]Aksamovic, M. Hebibovic, and D. Boskovic, "Forest fire early detection system design utilising the WSN simulator," in 2017

XXVI International Conference on Information, Communication and Automation Technologies (ICAT) , 2017, pp. 1-5.

[4]Y. Liu, Y. Liu, H. Xu, and K. L. Teo, "Forest fire monitoring, detection and decision making systems by wireless sensor network," in

2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 5482-5486.

[4]D. Pant, S. Verma, and P. Dhuliya, "A study on disaster detection and management using WSN in Himalayan region of

Uttarakhand," in 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall) ,

2017, pp.1-6.

[5]https://circuitdigest.com/microcontroller-projects/iot-based-forest-fire-detection-using-arduino-and-gsm-module

[6]https://www.make-it.ca/nodemcu-details-specifications/

[7] www.jetir.org

https://doi.org/10.1016/j.matpr.2021.05.656
https://circuitdigest.com/microcontroller-projects/iot-based-forest-fire-detection-using-arduino-and-gsm-module
https://www.make-it.ca/nodemcu-details-specifications/

	INTRODUCTION
	EXISTING SYSTEMS
	DISADVANTAGE
	PROPOSED SYSTEM
	ADVANTAGES
	SYSTEM REQUIREMENTS
	Fig 1. BLOCKDIAGRAM

	II. SYSTEM DESIGN AND SOFTWARE
	HARDWARE DESCRIPTIONS
	A. LoRa Module
	B. Arduino UNO
	E. IR sensor
	 Board Setup

	B. THINGSPEAK
	How to create an Account
	III. Source Code
	A. Source code to Aurdino
	#include <SoftwareSerial.h>
	#include"DHT.h"

	V. CONCLUSION & FUTURE SCOPE
	Fig 9 Fig 10
	VI . REFERENCES

