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ABSTRACT  

 
In this chapter non-equilibrium thermodynamic has been briefly 

outlined.Kedem-Katchalsky(K-K) model is used to correlate thermodynamic 

force and Spieglar’s friction coefficient (i.e.Fik and fik) for the membrane system. 

The various type of interactions such as solute-membrane(fsm), solute– 

water(fsw), and water-membrane(fwm) are discussed. Johnson model for the solute 

and solvent transport, rejection in the light of Irreversible. Thermodynamics is 

also summarized. Solute rejection under different conditions has been discussed. 

Thermodynamic Theory of membrane potential has also been given with 

considerable.   
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Introduction : 

 
Membranes are generally used to separate two solutions of unequal 

concentration. Their function is to retard the attainment of equilibrium. At 

equilibrium composition, pressure, electrical potential and temperature, are 

uniform throughout the system. A static and time invariant state of a system 

where no spontaneous process takes place and all macroscopic quantities remain 

unchanged is called “equilibrium states”. 

In many situations of interest, the membrane system cannot be envisaged to be 

in a state of equilibrium because of the existence of gradients of composition 

electrical potential, pressure, etc. For the description of such non-equilibrium 

situations, non-equilibrium thermodynamics has been used with advantage [1-

5]. All spontaneous processes are accompanied by increase in entropy. We 

therefore, first discuss production of entropy in irreversible processes. According 

to the second law of the thermodynamics entropy is defined as 

dS = 
dQrev 

T 
(2.01) 

 

However,  if  an irreversible process occurs  in  the system under consideration, 

 
dS > dQ . dS, the entropy gain is determined by the heat which is absorbed in 

T 

 

the  reversible  change , dQrev. In  an  irreversible  process dS is  always greater 

 
than dQ ; dQ being the actual heat absorbed. Thus the  actual change in  entropy 

T 

 

in an irreversible process may be expressed as 

 

dS = 
dQ 

+ 
dQu (2.02) 

T T 
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e 

dQ′is positive quantity and is termed uncompensated heat that would have been 

absorbed, had the change taken place reversibly. In the actual change of state, 

the  entropy increase  dS  is  completed  by the  creation  entropy dQu. Equation 
T 

 

(2.02) can thus be written as 

 
dS = deS + diS (2.03) 

 
whered S = dQ corresponds to “exchange” contribution to the entropy change 

T 

 

and diS is an “internal” contribution, produced by occurrence of irreversible 

process. 

 Thermodynamic Fluxes and Forces: 

 
The local production of entropy σ is related to the rate of increase of 

entropy, diS/dt with in the system by the relation. 

 

 

 

σ = 1 
V 

. 
diS 

dt 
(2.04) 

 

For unit volume 

 
σ = 

diS 

dt 

 

The entropy  production  σ,  is  both  a  thermodynamic  quantity  and  a  kinetic 

quantity [6]. 

Entropy is a single valued function of all parameters of the system. In 

steady state of the system wherein the macroscopic properties, temperature, 

pressure and composition, have time independent values at every point of the 
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system  despite  the  occurrence  of  a  dissipative  process,  therefore, diS 
dt 

will 

 

vanish, i.e. 

 

σ = 0 

 
It has been shown for a larger variety on non equilibrium phenomena [7-9] 

 

that , σ may be expressed as a sum of products of flows and their conjugate 

forces. 

n 

σ = Σ JiXi(i = 1,2,3 … . . n) 
i=1 

 
(2.05) 

 

Xi is force conjugate with the flow Ji. The choice [10] of flows and forces, 

however, is to a certain extent arbitrary. When one set of variable is chosen, the 

set of conjugate variables is determined by the following requirements: 

a) The product of any flow and its conjugate force must have the dimension 

of entropy production. 

b) For a given system, the sum of the products must remain the same for 

any transformations of forces and flows. 

 Phenomenological Equations: 

 
Several relationships between fluxes and forces are known e.g. ohm’s law 

for electric current, Fick's law for diffusion, Fourier's law for heat flow and 

Poiseuille's and Darcy's law for fluid flow. In each case the flux, Ji , is 

proportional to corresponding force. 

 
Ji ∝ Xi 
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or Ji = LiXi (2.06) 

 
where, Li is the proportionality coefficient. In non equilibrium thermodynamics 

one usually deals with process involving a number of flows and forces 

simultaneously [11-16]. 

Onsager [17] assumed that any flow is linearly dependent not only on its 

conjugate force but in principle on all other forces operative in the system The 

situation can be expressed, if it is assumed that n forces are operative in any 

system, but following set of equations. 

J1  =  L11X1 + L12X2+ ........... L1nXn 

 
J2 = L21X1 + L22X2+. . … … L2nXn (2.07) 

 
........................................................... 

 
.......................................................... 

 
Jn =  Ln1X1 + Ln2X2+ ............ LnnXn 

 
The above set of equation represent that each flow, Ji , (i = 1,2,3….) is dependent 

on its conjugate force, Xi , through straight coefficient, Lii , which is always 

positive, and to force Xj  (j  =1,2…)  through  the  cross  coefficients, LiJ (i ≠ J) 

Which may be positive , negative or zero. The coefficients LiJ are not necessarily 

constant but independent of the forces Xj . 

Eckart [10] called these equations as phenomenological equations. In general. 
 

n 

JI  =  Σ LikXk(i = 1,2,3 ............ n) 
k=1 

 
(2.08) 
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Coefficients LiK denote the phenomenological coefficients. The 

phenomenological rate equation (2.08) describes the interaction, i.e., energy 

transfer between various processes. 

Onsager’s Reciprocal Relationship: 

 
In 1931, Onsager on statistical mechanical consideration showed that if 

conjugate fluxes and forces obeying: 

n 

Ji = Σ LikXk 
k=1 

 
(2.09) 

are defined so that the expression for the entropy production is of the form 
 

 

σ = Σ XiJi 
i 

(2.10) 

 
 

The matrix of the coefficients is symmetric, i.e,. 
 

LiJ  =  LJi(i ≠ J) (2.11) 

 
when external magnetic field acts on the system, the Onsager relation becomes. 

 
LiJ (B) = LJi(−B) (2.12) 

 
B is magnetic induction. Similarly in a rotating system the relationship takes the 

form         LiJ (ω) =  LJi(−ω) (2.13) 

-ω denotes the angular velocity of rotation. Onsager’s reciprocal relations reduce 

the number of coefficients needed for the description of any process. It also 

allows correlation between different cross effects. 
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The Onsager’s reciprocal relations are valid [18-25] as long as the expression for 

the entropy production is of the form given by equation (2.07). A good account 

of earlier efforts at testing the applicability of Onsager’s reciprocal relation 

[3,26] is available in the review of Miller [27]. 

In classical thermodynamics, time invariant state of the system, the so called 

equilibrium state is endowed with minimum free energy production of the system 

attains a minimum value. The positive definite nature of the entropy production 

also requires that the straight coefficients, 

Lii > 0 

 
The magnitude of the cross phenomenological coefficient is determined by these, 

straight coefficients. For example, for a process involving two fluxes and two 

forces it is shown that 

L11 L22 > L12 L21 

 
The L coefficients can be translated into frictional coefficients f which is 

performed by balancing the thermodynamic forces Xi by the algebraic sum of 

the frictional forces Fik . According to Kedem and Katchalsky [28], the 

thermodynamic force Xi acting on the solute (Xs) existing with water in the 

membrane is counter balanced by the sum of the frictional forces between solute 

and water, and between solute and membrane, i.e., 

Xs = −Fsw − Fsm (2.14) 

 
Similarly, the thermodynamic force on water is given by 
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Xw = −Fws − Fwm (2.15) 

 
where w and m indicate water and membrane, respectively. 

 
The friction force Fik which slows down the motion of an object (i) 

moving or gliding on another object (k) is proportional to the relative velocity of 

i with respect to k, i.e., 

Fik =  −fik(ui − uk) (2.16) 

 
The values of the proportionality constant fik are determined by the difference in 

the values of ui and uk (the velocities of i and k), unlike L values, are 

independent of the frame of reference to which velocities are related and are also 

concentration independent and thus it brings out the  specific interaction  of i 

with k. Hence, 

Fsw = −fsw(us − uw); Fsm = −fsw(us − um) 

 
If the membrane is chosen as the frame of reference, then um= 0 andFsm = 

−fsmus 

 
The friction coefficients may be related easily to either the L coefficients of the 

linear rate law is expressed as 

n 

Ji = Σ Lik. Xk 
k=1 

 
or to R coefficients (macroscopic) if the resistance formulation is employed, 

i.e. 
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sw 

n 

Xi = Σ Rik. Jk 
k=1 

 

 

The Onsager relation holds for either formula 

 
Lik = Lki and Rik = Rki 

 
Application of Macroscopic Rik Coefficients : 

 
The macroscopic Rik coefficients formulation is used in the explanation 

of anomalous osmosis. It is an electrochemical phenomenon which depends  on 

the electrokinetic charge of the membrane and the dynamic membrane potential 

which results from the diffusion of electrolyte across the membrane. In 

anomalous osmosis, reflection coefficient a becomes negative and ∆P = 0, that 

is, 

 

(
 Jw )

 

Xw ∆P 

< 0 (2.17) 

 

For the two components (solvent w and solute s) as 

 
Xw = RwwJw + Rws. Js (2.18) 

 
Xs = RwsJw + Rss. Js (2.19) 

 
Using the Gibbs – Duhem – Margules equation, we get 

 

(
 Jw ) = 

[Rss+(€wRws/€s)] 
 

(2.20) 

Xw (Rss.Rww–R2 ) 

 

For ( Jw ) < 0 , (Rss. Rww−R2  ) > 0 and  Rss +  (Cw. Rws/Cs) ˂ 0 
Xw 

sw 
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In terms of frictional coefficient and the microscopic friction 

coefficients rik, the condition for anomalous osmosis is obtained as 

fsm+rws€̄ w  − 
€w  ∙ r < 0 (2.21) 

€̄ s €s 
ws 

 

Spiegler Formalism:[29] 

 
When system comprises three components (w = water, s = solute, m = 

membrane) the formal hydrodynamic description of the frictional forces is as 

follows 

 
Fsm  = −fsm(V̄S  − V̄m) (2.22) 

 
Fsw = −fsw ( V̄s  − V̄w) (2.23) 

 
Fwm  = −fwm ( V̄w  − V̄m) (2.24) 

 

 

 

where Fik denotes frictional force, fsw is the fraction coefficient characterizing 

the friction between a mole of solute and an infinite amount of water, fsm  is  the 

friction coefficient characterizing the solute-membrane interaction, whereas 

fwm determines the friction between water and the membrane matrix. The   

membrane   is   considered   as   the   reference      system,  V̄m        is   zero. 

Assuming thus with Spiegler that forces acting on every  molecule  are additive, 

the following relationships for the force balances result from 
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V 

€ 
i= 

Xi − Σ Fik = 0 
k 

Xs  =   Fsm + Fsw = V̄s(fsm + fsw) − V̄w. fsw (2.25) 

Xw  =  Fwm + Fws = V̄w(fwm + fws) − V̄s. fws (2.26) 

Where Xi denotes generalized thermodynamic force. The friction coefficient 

 

fws  differs  from fsw sincefwscharacterizes the friction between one mole of 

water  and  the  amount  of  solute  in  unit  volume   of   the membrane.The 

thermodynamic driving force Xi = 
6̄̄̄µ̄i

 

6x 
where  

6̄̄̄µ̄i
 

6x 
is the gradient of the 

 

chemical potential within the membrane complying with the frictional 

formalism, Kedem and Katchalsky derived formula for the permeation/ 

reflection coefficients (ω,a) which is valid for dilute solutions. 

ω = ( €2 ) [  1 ] (2.27) 
€sd f2w+ f2m 

 

σ =1 − ⍵d 
Vw€w 

[f1w + f2w + fwm. Vs ] (2.28) 
w 

 

The general solution for ω and σ valid for any concentration range may be 

found elsewhere [29]. 

 
m = ( €2 ) [  1 ] (2.29) 

€sd f21. Am+ f2w(1+ B2)+ f2m+ f1w (A2+B2)+ f1m A2 

 

 

σ  = 1 − ⍵d 
Vm€w 

[f1w(1 + B1) + f2w(1 + B2) + fwm ∙ Bw] (2.30) 

 

 
 

where Ai= 
€i 

1 

; B 
 Vs€i  

Vw€w 
i=1,2,w,m 
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d L 

1 = counterion ; 2 = coion ; w = water ; m = membrane. 

 
Evaluation of the friction coefficients fsw, fsm, and fwm were calculated from the 

following equations-[30] 

 
fsw= 

[1–o–
msv̄̄̄s̄]$ 

LP 

msd 

 
(2.31) 

 

 
 

 
fsm 

[o+
msv̄̄̄s̄]

 
LP 

1–(o+
msv̄̄̄s̄) 

LP 

 
fsw 

 
(2.32) 

 

 
 

 $   v̄̄ ¯̄  1 (1–o)(o+
msv̄̄̄s̄)€s 

fwm=  w w [ − 
P 

LP ] (2.33) 
ms 

 

 

 

 Test of Possibility of Anomalous Osmosis under Spiegler Formalism: 

 
Membrane anomalous osmosis behavior can be tested employing the friction 

coefficients and membrane semipermeability parameters. The satisfactory in 

equality relation is 

fsm ˂  (
€̄̄ S̄̄ 

. C
 

€S 
−  C̄ w) . rws (2.34) 

 

The cause of anomalous osmosis can be understood as when a membrane 

maintained at its isoelectric point gave only the normal flow but when it is put 

into a charged state by changing the pH, it gives a total flow which have the 

abnormal component. The difference between the two flows is known as 

anomalous osmosis. 

w 

= 

w 
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Johnson Model for the solute and solvent transport rejection and 

coupling through the membrane in the light of Irreversible Thermodynamics: 

The water and salt fluxes through the membrane are given by 

 

Jw=−Lww 
dµw 

− Lws 
dµs

 (2.35) 

dx dx 

 

Js = −Lsw 
dµw 

− Lss 
dµs

 

 
(2.36) 

dx dx 

 

and Lws= Lsw (2.37) 

 
 

According to Johnson et. al. 
 
 

Lww 
= 

€̄ wD̄w 
X10–3

 

RT 

 
(2.38) 

 
 

Lss 
= €

¯
sD̄s 

X10–3 (2.39) 
vRT 

 

and Lsw = Lws = 
€̄ w €̄ sD̄sw X10–6 

RT 

 

 

where C̄w  and      C̄s    are  local  concentrations  of  water  and  salt  in  membrane. 

D̄sw denotes  the  proportionality  constants  having  the  properties  of  diffusion 

coefficient and is the number of ions per mole of salt. For the case 

 

dμs /dx → 0 

(
 Js )

 

Jw dµs/dx = 0 

 
= 

 Lws 

Lww 

 
= β  €

¯
s

 

€̄ w 

 

 
(2.40) 
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s dx 

s 

where β = (D̄sw × 10–3/D̄w). C̄w  and can have values between 0 and 1. It 

indicates the ratio of salt velocity to water velocity in the membrane. After 

rearranging above equations one gets 

 

J   = β  €
¯

s  
J 

 
 −  

   D̄s   ∙  
€̄ s 

 

 

d(μ /RT) (2.41) 

s €̄ w   
w 

1000v dx s 

 

It is known that  d(μs /RT) = νdlnC̄s,one gets 

JS = βm̄ ∙ Jw − D̄∗ dm̄
 

 

 
(2.42) 

 

where  D̄∗  = (ρ   . φ /1000) ∙ D̄  , ρ is the density of the membrane, and 

s m w s m 
 

φm is the weight  fraction  of  water  in  the  membrane. m̄  denotes  molality  of water 

in the membrane. Above equation is integrated under steady state 

condition for twoextreme cases when β=1(complete coupling of salt and water) 

and β = 0 (independent transport of salt and water through the membrane). 

For the case when, β=1, above equation integration becomes: 

 
Jw (x − d) = ln ( me–m̄ ) = ln {1–(m̄ /me)} (2.43) 
D̄∗ me–m̄ e 1–K 

 

where K is the distribution coefficient and is given by 

 

K= 
m̄ e  =

m̄ F (2.44) 

me mF 

where me and m̄ e   denote  effluent  molality  in  the  bulk  and  at  the  membrane 

interface;    mf    and  m̄ f  denote  molality  of  the  feed  and  at  the  membrane 

interface respectively. 

 

Equation(2.43) on rearrangement gives the equation for the concentration 
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profile in the membrane. That is 
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s 

K  

 D̄ 

ea [(x/d)–1](1 − k) =1-( m̄ ) (2.45) 
me 

 

orm̄ /me = 1 − (1 − k)ea [(x/d)–1] (2.46) 
 

 

where  α = Jw (d/D̄∗)   and  is  dimensionless  For  x  =  0, m̄  = m̄ 

rejection S is given by 

 

 
S= 1 − K 

(m̄ F/ me) 

In term α, and k salt rejection can be rearranged as 

 

f , the salt 

 

 

 
(2.47) 

 

 

1 − 1 = (  e
A   

) (  K 
  

) (2.48) 

S eA–1 1–K 

when ea >> 1, Eq(2.48) becomes 

 

1 − Sœ ≈ K (2.49) 

 
For the other extreme case,β=0 (no coupling of salt and water flows) 

 

1 − 1 = 
S 

 

 
K = ( s) ∙ 1 
a d Jw 

(2.50) 

 

For intermediate value of β,the corresponding equations are 

 

1 − 1 = (  e
þA

 
 ) ( 

þk ) (2.51) 

S eþA–1 1–þk 

 

and 1 − Sœ ≈ βK (2.52) 

 
when eþa >> 1 

Regarding the salt rejection, the following conclusions arise from this 

∗ 
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treatment. 
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aF ƒ 

(i) When there is no coupling (β= 0), salt rejection to unity for large a 
 

(ii) For both (β= 0) and (β=1), rejection at a given a is higher the lower the value 

of k. 

(iii) The rejection is higher the larger the value of a, the thicker the rejecting layer 

of the membrane, and the lower the diffusion coefficient of the salt in the 

membrane. 

Thermodynamic Theory of Membrane Potential :[31] 

 
The TMS theory of membrane potential depends on internal structure and 

properties of the membrane. The thermodynamic theories do not need this 

information. Staverman [32] derived the relation 

−FdE = ∑ ti/zidμi (2.53) 

 
using the principles of irreversible thermodynamics. In a similar way, scatchard 

 

[33] discarding considerations of membrane properties or structure, expressed 

membrane potential 

RT aFF
  t dlna 

E = − i 
F i 

∑
i
i i (2.54) 

 

The solutions of activity auand auuextend up to each interface. Equation(2.54) 
i i 

 

may be applied to all components moving across the membrane, those for a 1:1 

electrolyte are counterion, coion, water and fixed charges of the membrane. 

Regarding the polymer network to which the fixed charges are attached 

as the reference framework to which the movements of all other species are 
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± i 

aII 

a 

F I + 

referred, the summation in equation (2.54) refers only to three species, i.e., 

counter ion (+), coion (-), and water (w). Thus equation (2.54) becomes 

E = − RT ƒ
II
(t dlna + − t–dlna– + twdlnaw) (2.55) 

 

If anion – reversible electrodes are used in the membrane cell to 

 

measure the cell emf, E, then the electrode potential Eref between two such 

electrodes is given by equation. 

E = E0+̄  
RT  

. Ina 
Z±F 

 

i.e., Eref = 

 

 
RT ∙ In — 
F — 

 

(2.56) 

 

substitution of equation (2.56) together with the use of relations (t̅+ + t̅– = 1) 

 
and dlnaw = −2 X 10–3mM1dlna±into (2.55) gives [34], 

 

E = − 
2RT 

ƒ
II
(t

 
 

 

− 10–3mM t ) dIna (2.57) 

F I + 1  w ± 

 

where, M1 is the molecular weight of the solvent and m is the molality of the 

solution. Equation (2.57) has been derived by Lorimer et al.[35] using the 

principles of irreversible thermodynamics. An experimental test of equation 

(2.57) carried out by Lakshminarayanaiah [30, 36, 37] has shown that it 

satisfactorily describes the electrical potentials arising across membranes when 

they separate solution of the same 1:1 electrolyte but of different concentration. 

 Modellistic Approach : T.M.S. Theory of Membrane Potentials : 

 

In general an electrical potential difference existing across a membrane 

separating two electrolyte solutions is called membrane potential. This 

I 
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(2.58) 

potential difference arises as a consequence of electroneutrality requirement. 

Initially an extremely small net charge transfer may occur, but this charge 

transfer results in an electric potential difference and enforces their compensation 

[38-40]. The permeability of ion species migrating across a membrane depends 

upon the properties of the ion and the membrane. If the membrane has no fixed 

charges, the membrane potential is equivalent to diffusion potential [41-42]. On 

the other hand if the membrane carries some fixed charges, donnan potential in 

addition to the diffusion potential may constitute the membrane potential [43-

45] as shown. 

 

 

 

(,) (,,) 
 

Reference Reference 
 

Electrode Solution Membrane Solution Electrode 

 

 

 

  

 
 

Electrode Potential Donnan Potential Donnan Potential Electrode Potential 

(2.58) 
 

 

Diffusion Potential 
 

The membrane potential of cell (2.58) is the algebraic sum of two Donnan 

potentials and a diffusion potential. The two membrane surfaces are assumed to 

be in a state of equilibrium. The condition for equilibrium between two phases 

such as the aqueous and the membrane phases is that the electrochemical 
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– 

a+ 

± 

potentials of any mobile species i in the two phases are equal. Accordingly, for 

a univalent species i, 

μ0 + RTlnai + PVi + FE =  μ0 + RTlnā i + P̄ Vi + FĒ (2.59) 
1 1 

 

where the terms with over bars refers to the membrane phase. Thus when the 

membrane is in a 1 : 1electrolyte solution  of  activity a±, equation (2.59) can be 

written as 

F(E − Ē) = RT In ā+ + V+(P̄ − P) (2.60) 

 
−F(Ē − E) = RT ln ā— + V  (P̄  − P) (2.61) 

a— 

 

Addition of equations (2.60) and (2.61) gives the relation 

 

ā+ā—  = exp 
πV (2.62) 

a+a— RT 

 

Where  π = P − P̄ ,  the  difference  between  the  hydrostatic  pressure  in  the 

outside solution and the swelling pressure in the membrane and V = V+ + V_, 

the molal volume of the electrolyte. It has been shown that the term exp (GV) is 
RT 

 

approximately unity [46, 47] and so equation (2.62) becomes 

 
m̄ +γ̄+m̄ –γ̄– = a2  = a2 (2.63) 

 

If  the  concentration  of  ionogenic  groups  in  the  membrane  is X̄ ,  then  for  a 

negatively charged membrane, the electroneutrality condition gives 

m̄ + = m̄ – + X̄ (2.64) 
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± 

± 

X 

a′ 

a ̄  a 

a′′ 

a ̄  

ln — 
— 

′ 

′′ 

Substituting equations (2.64) into equation (2.63) and solving the quadratic 

gives 

 
X̄ X̄2 a2 

m̄ + = 
2 

+ J 
4  

+ 
ȳ2 (2.65) 

 

 
X̄ X̄2 a2 

m̄ – = 
2 

+ J 
4  

+ 
ȳ2 (2.66) 

 
Teorell [41,48] and Meyer and Sievers [42] assumed γ̄+ and γ̄– to be unity and 

so equation (2.65) and (2.66) becomes 

 
 

¯ 

m̄ + = 
2 

+ JX̄
2  

+ a2 

4 
(2.67) 

 

 
 

X̄ 

m̄ + = − 
2 

+ JX̄
2  

+ a2 

4 
(2.68) 

 

The Donnan ratio r given by equation (2.63) becomes 

 

r = 
m̄ +  = 

 a— = . . … … … =  m̄ + =   a (2.69) 

a+ m̄ — a m̄ — 

 

when the ionic membrane is bounded by a 1 : 1 electrolyte of activities a’ and 

a”, the two Donnan potential, E'Don and E''Don at the two interfaces (') and ('') are 

given according to equations (2.59) and (2.60) by (the PV terms are ignored) 

E′Don = Eu − Ē u  = 

 

 
RT ln ± = 
F + 

RT 
ln — 

F a′
— 

 

(2.70) 

 

E′′Don = Euu − Ē uu  = 
RT 

ln + = 
RT F

 + F 

a 
" 

ā" 
(2.71) 

 

The net Donnan potential therefore is given by 

 

′ 
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a′ 

a ̄  a" 

a ̄  " 

E′Don − E′′Don = 

 

 
RT ln + − 
F + 

RT 
ln + 

F + 
(2.72) ′ 
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ln — 
— 

+ 

+ — 

± 

± 

= 
RT 

F 

 

 
ln — − RT 

ā′
— F 

a 
" 

ā" 

(2.73) 

 

The  diffusion  potential ψ = Ē" − Ē′ with  in  the  membrane  is  assumed  to  be 

that existing in a constrained liquid junction. Teorell [41,47] used the expression 

ψ = 
ū +–ū— RT 

In
 ū+m̄ ′  +ū— m̄ ′ 

 
(2.74) 

ū+–ū—   F ū+m̄ "  +ū— m̄ " 

 

Substituting for m̄ + and m̄ – from equations (2.67) and (2.68 ). Equation (2.74) 

becomes on rearrangement 

 
 

ψ = Ū RT 
ln 

F 

ŪX̄u+JX̄F2+4a′2 

ŪX̄+JX̄FF2+4a′′2
 

(2.75) 

 

where  U = (ū+ − ū–)/(ū+ + ū–) .   Assuming   that  X̄ is   independent   of   the 

external electrolyte solution, the total membrane potential is given by the sum of 

equation (2.72) or (2.73) and equation (2.75). Thus for a highly idealized 

membrane  system γ̄+ = γ̄– = 1 the  total  membrane  potential  when  agar  KCl 

salt bridges are used in the measurement is given by 

E = E′Don − E"Don + ψ 
 

so 

 

E = 
RT 

[In  
a" (4a′2+X̄2)1/2+X̄ 

+ Ū In  
(4a′2+x̄2)1/2+ŪX̄

] (2.76)
 

   

F a′ (4a′′
2

+X̄2)1/2X̄ (4a′′   +x̄2)1/2ŪX̄ 

 

An equation exactly similar to equation (2.76) has been derived by Kobatake 

and coworkers [38]. However, their equation has a parameter ϕX̄(0 < ϕ < 1, 

a 

— 

′ 
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the  thermodynamically  effective  charge  density)  in  place  of   x̄ and  mobility 

values corresponding to the bulk aqueous phase in place of Ū, i.e, 

Ū = (ū+ − ū–)/(ū+ + ū–) 

 
Three special cases of equation (2.76) are of interest. 

 
(i) when  a<< ̄X/2, equation (2.76) reduces to the Nernst equation 

 

E = 
RT 

ln 
a" (2.77) 

F au 

 

(ii) when  a ˃˃X̄/2, equation (2.76) reduces to 
 

EL = (1 − 2t+) RT ln a" (2.78) 

F au 

 

which gives the value for a diffusion potential between two solutions of activities 

a' and a''.The mobility values would correspond to those prevailing in the 

aqueous solution although diffusion would be occurring across the 

membrane. When a ≫ X̄ 
,
 

2 
the sorption of the electrolyte by the membrane is so 

high   that   the   ionogenic   group  (i. e. , X̄) in   the   membrane   are   unable   to 

distinguish between counter ions and coions. 

(ii) when a = X̄, the ionogenic groups are able to distinguish between counter 
2 

 

ions and coions to some extent so that the mobility values correspond to the 

membrane phase. Thus equation (2.76) reduces to 

E = 
RT ū+–ū— ln 

au 

F  ū++ū— a" 

 

or E = RT (t̅+ − t̅–) ln au (2.79) 

F a" 
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+ + 

where t̅+ and t̅– are the transport numbers of counterion and coion for a 

negatively charged membrane in the membrane phase equation (2.79) may be 

rearranged to give 

E 
 

Emax 

= 2t̅ − 1 or̄ t = [ E 
2Emax 

+ 0.5] (2.80) 

 

where Emax = RT ln au ·Equation (2.80) has often been used to calculate the 
F a" 

 

transport numbers in the membrane phase from measurements of membrane 

potential [49-51]. 
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