Effective Critical and Membrane Collision with the help of 3-Dimension with the several Interosseous Variation.

Dr Jyothi A.P
Assistant Professor, Dept of CSE,
Faculty of Engineering and Technology,
Ramaiah University of Applied Sciences
Bengalaru, Karnataka, india
jyothiarcotprashant@gmail.com

ABSTRACT

Day to day our life style is changes so our body membrane is effected by several other environment factor and unhealthy life style. We are definitely unclear how our body interosseous membrane effected day by day. The main purpose of this research is to identify What are the factor are heavily responsible to creating the problem in foream deficit. We are using 3d several simulation in kinematic which is actively detect in several deformities which should be in 5 degrees in 4 directions. To analysis the external critical bone collision we mustbe effectively analysis some other factor like how our body bone collision occur. This type of bone collision generally increase in several factor example external variation of the whole body IOM which is generally consider in 6 parts which is generally detect 32 external type of foream deformities. This 6 parts also increase supination in IOM with nearly unchanged bone collision. This type ofadvance kinematics analysis gives us for better understanding whichis generally consider in various several types of ligament and bone relatedresearch.

Keywords-Artificial intelligence(AI); Bonecollision; simulation; foreamdeficit.

I. INTRODUCTION

Patients with effected by several bone related disorder one of the bone related disorder is mal united fractures which is generally define that how our body generally detect forearm present a loss of pronation and/or supination which may be generally create with several bosy parts extreme pain. One of the well-established effective and critical surgical solution to treat these patients is a advance 3D analysis which is generally effectively based on the several opposite side of the body generally this trend is followed by patient-specific corrective osteotomy which is the advance and effective bone related treatment of choice in our institution . However, when the opposite side generally presents already a several deformity or an unclear preexistent lack of motion, the corrective osteotomy cannot be based on this side. Furthermore, among the few other effective reported generally describe how critical patient cohorts, some patients may present only a effective partial gain of the ROM 3 4 5 6. Our clinical experience of research in operating room also critically showed occasionally a tension of the soft tissues after the osteotomy, which required intra operatively a partial release of the IOM. In these complex cases, a clear understanding of the ligament isometry during the preoperative planning is therefore mandatory. The purpose of the research main idea is detect critically analysis bone related disease which is generally give us idea of linear lengthening of the IOM .

II. LITRATURE

A. Simulation of pronation/supination

How a straight line pass through cylinder ulnar torchlea it will be generally decide humero-ulnar joint. This is generally critically projected radio-ulnar joint and effectively used visual reference for the pronation and supination angle we should critically analyse how rotation of manual adjustment works which is generally performed one single investor and it should maintain a stable distance in several articulation surface of ulnar head through whole ROM maintain.

Suitable suphericity of the radial head. This type of supination generally describe 90° several critical parallelism which is generally describe palmar ridge of the distal radious.

B. Simulation of bone deformities

We should critically analyse humreo –ulnar joint which is distally transposed on the radious and ulna which is generally showing percentage of 66.6% of the total bone length which is critically describe several coordinate axis this will effectively define a several critical rotation axis for the another critical deformities.

How radioulnar motion works the distal part of several bone narrow which is generally describe several overlapping of the 3d surface which is critically analysis native and deformed radious couldbe reached and until several overlapping. this critical reposition was performed each critical deformity allowed external various other models to fit on the same several other rotational axis.

For more clinical research which is generally describe several critical combination of deformities which is critically observe atleast on the same level. In only two planes and oriented observation of same direction.

C. Insertion of interosseus membrane

several critical insertations of iom were localized on the original forearm before external several other simulation .this type of external membrane generally simulated distal oblique ,proximal and distal end of the central band which is critically observe several other oblique accessory cord ,proximal oblique cord .The insertations along the several critical axis of the radious and ulna were based on other effective radious of ulnar length .This type of critical insertions effectively use in visually based on the bony protuberance along with several other factors which is critically observe radial rest of ulna.

This type of critical research generally observe how interosseous membrane measured several other things this is generally analyses even foream positions of all bone deformities.

II. Research analysis

Author Name	Effective method	Criticism	
Johnell O, Kanis	Osteoporosis as judged by hip	Hip fracture in	
JA.	fracture	different region is	
		not critically	
		observe	
Lakstein D,	Visualized in demographic	Fracture are not	
Hendel D,	fracture in hip	properly	

Haimovich Y, classified by
F-1 Jb via 7
Feldbrin Z. extracapsular.
Kammerlander C, Critically analyse fragility Retrospective
Gosch M, fracture cohort study in
Kammerlander- unclear.
Knauer U,
Dyer SM, Crotty This review quantify the Different
M, Fairhall N. impact of hip fracture. interventational
approaches still
not clear.
Takahashi A, Critically analyse osteoporotic Hypothesized not
Naruse H, Kitade hip fracture clearly describe
I, functional
recovery after hip
fracture.
Adeyemi A, Intertrochanteric hip fracture Prior ability of
Delhougne G. properly describe. the information of
the literature is
limites.
Anglen JO, Critically analyse anecdotal Plate fixation is
Weinstein JN, observation still unclear
Gilat R, Lubovsky Critically Visualize proximal 31-A
O, Atoun E, Debi femoral shortening interochanteric
R, Cohen O, fractures still
unclear.
Ciufo DJ, Ketz JP. Crtically analyse essential for Not properly
controlling sliding and observe OTA
decreasing postoperative fracture
implement related classification in
complications univariate
analysis.
Zlowodzki M, Effect of shortening in femoral Isolated
Brink O, Switzer neck critically analysis intracapsular
J, fracture not
properly explain
Gausden EB, Sin Critically analuze determine Cephalomedullar

	fracture collapse.	properly explain.		
Johnston RC,	Properly explain how	How trochanter		
Brand RA,	mechanical hip is substantially	reduces hip joint		
Crowninshield	altered by a variety of	forces it is		
RD.	disorders.	unclear.		
Neumann DA.	Critically visualize role of the	Unclear reduction		
	hip abductor muscles.	of myogenic hip		
	_	joint forces		
Bailey R, Selfe J,	Critically analyse evolution of	Unclear		
Richards J.	the trendelenburg test	biomechanics of		
		the trendelenburg		
		test		
Nherera L,	Critically visualize relative	This research		
Trueman P,	effects of internal fixation of	there is a large		
Horner A, Watson	strageties.	gap in blood loss		
T, Johnstone AJ.		and fluoroscopy		
		usage.		
Koval KJ.	Critically explain lag screw	This research		
	sliding and resultant limb	fracture can settle		
	deformity.	only until the		
		proximal		
		fragment abuts		
77 7 60 1		against the nail.		
Hesse B, Gächter	Properly explain trochanteric	Unclear		
A.	fractures with gamma nails.	trochanter fracter.		
Rosen M, Kasik	Properly explain laterial hip	Surgical		
C, Swords M.	pain from proximal locking	operation pre-		
	device insertation.	operative weight		
		bearing status is		
** 1*** ** 1		unclear.		
Koval KJ, Friend	Internal Fixation of the femoral	Rivision rate		
KD, Aharonoff	neck from loss of fixation is	hemiarthroplasty		
GB, Zuckerman	properly explain.	is unclear.		
JD.				

Heikkinen T,	The aim of this study was to	Due to high
Jalovaara P.	see if a short four months	mortality and
	follow-up period would be	age-related
	acceptable in hip fracture	deterioration of
	surveys.	functioning, no
		steady state i.e.
		"final result" is
		ever reached after
		hip fracture in the
		elderly.

II. CONCLUSION

External membrane generally simulated distal oblique, proximal and distal end of the central band which is critically observe several otheroblique accessory cord, proximal oblique cord. The insertations alongthe several critical axis of the radious and ulna were based on other effective radious of ulnar length.

III. RESULTS

Critically observe how bone fracture patirnt survive and there is significant amount of considerably short of elderly controls of measurements which has been associate with increased fall risk .theimportant factor is lag screw prominence may be another important factor in critical minimizing of another secondary fall risk and maintaining independence after several itf.

REFERENCE

- 1. Johnell O, Kanis JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int.2004;15(11):897-902.
- 2. Lakstein D, Hendel D, Haimovich Y, Feldbrin Z. Changes in thepattern of fractures of the hip in patients 60 years of age and older between 2001 and 2010: a radiological review. Bone Joint J.2013;95-b(9):1250-1254.
- 3. Cooper C, Campion G, Melton LJ IIIrd. Hip fractures in the elderly:world-wide projection. Osteoporos Int. 1992;2(6):285-289.
- 4. Kammerlander C, Gosch M, Kammerlander-Knauer U, Luger TJ,Blauth M, Roth T. Long-term functional outcome in geriatric hip fracture patients. Arch Orthop Trauma Surg. 2011;131(10): 1435-1444.
- 5. Dyer SM, Crotty M, Fairhall N, et al. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr.2016;16(1):158.
- 6. Takahashi A, Naruse H, Kitade I, et al. Functional outcomes aftertreatment of hip fracture. PLoS One. 2020;15(7):e0236652.

- 7. Adeyemi A, Delhougne G. Incidence and economic burden ofintertrochanteric fracture: a Medicare claims database analysis.
- 8. Gilat R, Lubovsky O, Atoun E, Debi R, Cohen O, Weil YA. Proxfemoral shortening after cephalomedullary nail insertion for inter-trochanteric fractures. J Orthop Trauma. 2017;31(6):311-315.
- 9. Ciufo DJ, Ketz JP. Proximal femoral shortening and varus collapseafter fixation of "stable" pertrochanteric femur fractures. JOrthopTrauma. 2021;35(2):87-91.
- 10. Zlowodzki M, Brink O, Switzer J, et al. The effect of shortening andvarus collapse of the femoral neck on function after fixation of intracapsular fracture of the hip. J Bone Joint Surg Br. 2008;90-B(11):1487-1494.
- 11. Gausden EB, Sin D, Levack AE, et al. Gait analysis afterintertrochanteric hip fracture: does shortening result in gait impairment. J Orthop Trauma. 2018;32(11):554-558.
- 12. Johnston RC, Brand RA, Crowninshield RD. Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships. J Bone Joint Surg Am. 1979;61(5):639-652.
- 13. Neumann DA. Biomechanical analysis of selected principles of hipjoint protection. Arthritis Care Res. 1989;2(4):146-155.
- 14. Bailey R, Selfe J, Richards J. The role of the Trendelenburg Testin the examination of gait. Phys Ther Rev. 2009;14(3):190-197.
- 15. Nherera L, Trueman P, Horner A, Watson T, Johnstone AJ. Comparisonof a twin interlocking derotation and compression screwcephalomedullary nail (InterTAN) with a single screw derotation cephalomedullarynail(proximal femoral nail antirotation): a systematic review and meta-analysis for intertrochanteric fractures. J Orthop Surg Res. 2018;13(1):46.
- 16. Koval KJ. Intramedullary nailing of proximal femur fractures. AmJ Orthop. 2007;36(4 Suppl):S4-S7.
- 17. Hesse B, Gächter A. Complications following the treatment oftrochanteric fractures with the gamma nail. Arch Orthop Trauma Surg. 2004;124(10):692-698.
- 18. Rosen M, Kasik C, Swords M. Management of lateral thigh pain following cephalomedullary nail: a technical note. Spartan Med Res J.2020;5(1):12931.
- 19. Koval KJ, Friend KD, Aharonoff GB, Zuckerman JD. Weight bearingafter hip fracture: a prospective series of 596 geriatric hipfracturepatients. J Orthop Trauma. 1996;10(8):526-530.
- 20. Anglen JO, Weinstein JN, American Board of Orthopaedic SurgeryResearch Committee. Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am. 2008;90(4):700-707.