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ABSTRACT 

The problem involving single-layer flow of an inviscid and incompressible fluid over an undulated 

bottom is studied using linear theory. The problem is formulated mathematically in term of a mixed boundary 

value problem. Perturbation analysis in conjunction with Fourier transform technique is applied to solve the 

governing boundary value problem, and the free-surface profile which is unknown at the outset is determined. 

Also, the behaviour of the free-surface profile is studied. In addition, the role of Fourier transform technique is 

highlighted in an elaborate way. Finally, the effect of undulated bottom profile is also explained. 
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I.  INTRODUCTION  
 

  Problems involving free-surface fluid flow over an obstacle are studied by many 

researchers to model various situations arising in oceanography and atmospheric science. The solutions of such 

flow problems are expected to provide a qualitative insight into the mechanism of wave generation. In the recent 

past, varieties of challenges have been faced by the researchers to model the free-surface flow over different 

kinds of obstacles situated at the bottom. Hence, flow over an undulated bottom has been a topic of interest in 

the mathematical and physical sciences.  

Based on the extensive literature survey, it is found that the problems involving free-surface fluid flow 

over obstacles are studied by many applied mathematicians and physicists. The attention to the free-surface flow 

over an irregular bottom has been increasing rapidly over the last three decades. Substantial progress has been 

made in this direction by many researchers. For instance, Forbes and Schwartz [1] considered the flow over a 

semicircular obstruction and calculated the wave resistance offered by the semicircle using a numerical 

approach. Vanden-Broeck [2] solved the problem of Forbes and Schwartz [1] numerically, and discussed the 

existence of supercritical solutions which depend on the Froude number. Later on, Forbes [3] presented a 

numerical solution for critical free-surface flow over a semicircular obstruction attached to the bottom of a 

running stream. Yong [4] explained the generation of nonlinear capillary-gravity waves in a fluid system having 

a concave bottom including the effect of surface tension. Dias and Vanden-Broeck [5] studied the problem 

involving free-surface flow past a submerged triangular obstacle at the bottom of a channel and solved the 

problem numerically using series truncation. Shen et al. [6] obtained the numerical solution for the steady 

surface waves on an incompressible and inviscid fluid flow over a semicircular as well as a semielliptical 

obstacle situated at the bottom. Dias and Vanden-Broeck [7] solved the steady free-surface flow problem 

numerically, and demonstrated that there exist supercritical flows with waves downstream only. Panda et al. [8] 

made an effort to solve the nonlinear flow over an arbitrary bottom topography using a new approach which is 

different and simpler than the methods available in literature. Higgins et al. [9] presented an analytical series 

method to obtain the solution of the problem involving flow of a fluid. They have calculated the analytical series 

solutions for supercritical, transcritical and subcritical flow. The above studies were focused on the solution of 

the problem involving the steady flow. For the problems involving unsteady fluid flow, Grimshaw and Smyth 

[10] presented a theoretical study of a stratified fluid which is flowing over bottom topography. They solved the 

problem by using weak nonlinear theory and pointed out that the flow can be described by a forced Korteweg-de 

Vries equation. Stokes et al. [11] used numerical technique to analyze the unsteady flow with a submerged point 

sink beneath the free surface. Milewski and Vanden-Broeck [12] considered the time dependent free-surface 

flow over a submerged moving obstacle, and solved the problem using weak nonlinear theory. It is noticed that, 



 

  

the solutions of the flow problems are determined in most cases for specific bottom obstacle such as semi-circle 

[1, 2], semi-ellipse [13], a step [14], triangle [15], etc. Therefore, the flow over arbitrary bottom topography 

remained unsolved because the determination of its solution is somewhat difficult. In such cases, the governing 

boundary value problems become mixed and coupled, and therefore their explicit solutions are not possible 

always. The work presented here is concerned with the behaviour of the free-surface profile by solving a mixed 

boundary value problem with the help of most appropriate mathematical techniques.  

In the present study, two-dimensional potential flow of an inviscid and incompressible fluid is 

considered. The problem involving single-layer flow in a channel having small obstruction is studied using 

linear theory. The physical problem is formulated mathematically in terms of mixed boundary value problem. 

Using perturbation analysis along with Fourier transform technique, the boundary value problem is solved to 

determine the analytical expression of the free-surface profile which is unknown at the outset. In addition, the 

role of the Fourier transform technique is highlighted. Also, the behaviour of the unknown free-surface profile is 

analysed. 

 

 

II. DESCRIPTION AND FORMULATION OF THE PROBLEM 
 

  Two-dimensional potential flow of an inviscid and incompressible fluid is considered here. 
The fluid is flowing from the left to the right over an irregular bottom y = B(x) having a small undulation. A 
sketch of the flow domain is shown in Figure 1. The x-axis is chosen along the undisturbed bottom and the y-
axis is measured vertically upward. The effect of the surface tension is ignored. Far upstream, the flow is 
uniform with a constant velocity c. The upstream depth of the fluid is denoted by H and the density of fluid is 
denoted by ρ. Let 𝜙(x,y) be the velocity potential so that, the velocity of the fluid �̅� can be written as �̅� =
(𝜙𝑥 , 𝜙𝑦), where 𝜙𝑥 and 𝜙𝑦 are, respectively, the partial derivatives of 𝜙 with respect to x and y. The free-

surface, which is unknown at the outset, is given by 𝑦 = 𝜂(𝑥). It is further assumed that the flow is stationary 
with respect to the bottom profile, so that the partial derivatives with respect to time can be taken to be equal to 
zero. The problem is made dimensionless using H as the length scale and c as the velocity scale. Therefore, the 
work proceeds purely with dimensionless variables.  

 

 

 

Figure 1: Defination sketch of the flow domain. 
 

In the fluid region, the equation of continuity yields the Laplace equation 
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    As no fluid particle leaves the surface, the kinematic condition on the free surface can be written as 
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where / n  is the normal derivative at a point (x,y) on the surface.  

    Using Bernoulli's equation, the other condition on the free surface is derived as  
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where /F c gH= is the Froude number and g is acceleration due to gravity. In this work, the flow of the type 

subcritical is only considered. Therefore, the value of the Froude number is F<1.  

The condition of no penetration at the bottom gives rise  
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In addition, the conditions at the upstream are 

,    ( ) 1   as   .q i x x→ → →−  (5) 

The aim of the present work is to determine the unknown functions 𝜙(x,y) and 𝜂(𝑥). These unknowns can be 
determined once the boundary value problem (1)-(5) is solved. In the following section, the above BVP is 
solved using perturbation analysis along with Fourier transform technique. 

 

 

III. SOLUTION OF THE PROBLEM 
 

  It is assumed that the bottom profile is given by ( ) ( )B x f x= where  is the maximum height 

of the bottom and is a dimensionless quantity. When the height  is small, then an approximate solution of the 

boundary value problem (1)-(5) may be derived using perturbation expansion in powers of , retaining only the 

first-order terms. Therefore, the asymptotic expansions of the velocity potential and the free-surface profile can 
be expressed respectively as 
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where 
1( , )x y and 

1( )x are the first-order corrections of the velocity potential and the free-surface profile, 

respectively. The unknown parameters such as velocity potential ( , )x y and free-surface profile ( )x can be 

determined once 
1( , )x y and 

1( )x  are evaluated. Hence, in the following part
1( , )x y and 

1( )x  will be 

determined. Using relations (6) and (7) in (1)-(4); and then comparing the first order terms of  on both the 

sides of all equations, the following mixed boundary value problem is obtained: 
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where '( )   f x and 
1( )  x are, respectively, the first order derivatives of f(x) and 

1( )x with respect to x.  

In order to solve the mixed boundary value problem (8)-(11), the first-order potential 
1( , )x y and the bottom 

profile f(x) are assumed such that the Fourier transforms of 
1( , )x y and f(x) exist, which are defined as 
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with inverse 
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and 
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where M(k) determines the bottom profile. For the free-surface profile, let us define 
1( )x as 

1
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Applying Fourier transform along with its inverse; and using the relations (14) and (15), the solution of the 
BVP (8)-(11) is obtained as 
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where 
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with 

2

1( ) cosh sinh .E k F k k k= −  (18) 

It should be noted that the relation 

1( ) 0E k =  (19) 

is called as dispersion relation. It can be shown (demonstrated later in Section IV) that the relation (19) has one 
positive real root and one negative real root, the magnitude of roots being same. It is worth-mentioning here that 
the root of the dispersion relation signifies the wave number of the downstream waves. It is observed from 

relations (15) and (17) that 
1( )x depends on the bottom profile. Hence, the free-surface profile ( )x can be 

determined once the bottom profile is known. In the present study, the following bottom profile is considered to 
demonstrate the results: 
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where L is the half length of the obstacle. 

Using relations (14), (17) and (20), a(k) is obtained as 
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Now, using the value of a(k) into the relation (15), the first-order free-surface profile is determined as 
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It can be noticed that the integrals in relation (22) contain simple pole on the real axis at the zero of E1(k). 
Hence, these integrals have to be understood as a Cauchy principal value with an indentation below the 
singularity. The free-surface profile which is given below is thus obtained by using the residue theorem: 
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where k0 is the real and positive root of the relation (19).  

 The relation (23) illustrates that the profile
1( )x is oscillatory in nature, representing a wave with constant 

amplitude. In addition, it is also noticed that the linearized free-surface possesses a wave train downstream 
preceded by a wave-free region at the upstream of the obstacle. 

 

IV. COMPUTATIONAL RESULTS AND DISCUSSION 
 

  In this section, some of the numerical results which are important for the present study are 
discussed. For instance, a detail discussion on the real roots (i.e., the wave number) of the dispersion relation 



 

  

(19) is provided in a tabular form. Also, the effects of several system parameters on the free-surface profile 

( )x are presented.  

The roots of the relation (19) are calculated using Newton's method for different values of the Froude 
number (F) and are shown in Table 1. From Table 1, it is clear that the dispersion relation (19) has two non-zero 
real roots. Out of these two real roots, one is positive and another one is negative having same magnitude. This 
affirms the theoretical observation reported in Section III. In addition, it can also be observed from Table 1 that 
the magnitude of the wave number decreases, i.e., the wave length increases as the Froude number F increases. 

 

Table 1: Roots of the dispersion relation (19) for D=0.7 and γ =1 

 

Parameter 

value 
F = 0.2 F = 0.3 F = 0.4 F = 0.5 F = 0.6 

Real roots 
 24.99999,  

-24.99999 

  11.11111,  

-11.11111 

6.24995, 

-6.24995 

  3.99730, 

-3.99730 

 2.75541, 

-2.75541 
 

In Figure 2, the free-surface profile ( )x  is depicted for two different values of Froude number, F=0.5 and 

0.6 with  = 0.1 and L=1. In this figure, it is noticed that the profile is oscillatory in nature, representing the 

wave with a constant amplitude. The oscillatory nature is mainly due to the interaction of the fluid with 
undulated bottom. In addition, the amplitude of the downstream wave increases as the Froude number increases 
(refer to Figure 2). It is well known that the wave number decreases (i.e., wavelength increases) as the speed of 

the fluid increases. From the relation / ,F c gH= we know that the fluid speed increases as the Froude number 

increase. Hence, the wavelength of the downstream wave increases as the Froude number increases. This 
phenomenon is also observed in Figure 2.  

 

 

 

Figure 2: Free-surface profile ( )x  for  = 0.1, L=1. 

 

Figure 3 illustrates the effect of the height of the undulated on the free-surface profile. In this figure, the 

free-surface profile ( )x is shown for three different values of the bottom height  = 0.01, 0.05 and 0.1 with F = 

0.6 and L=1. From the physical phenomenon, it is obvious that the amplitude of the downstream wave increases 
as the height of the bottom increases. This phenomenon is also observed in Figure 3. In this figure, we have kept 
the Froude number same (i.e., F = 0.6) for each free-surface profile (or downstream wave). And we have noticed 
that the wavelengths of the downstream waves are same (refer Figure 3). This is completely consistent with the 
phenomenon that the wavelength depends on the Froude number.        

 



 

  

 

 

Figure 3: Free-surface profile ( )x for F=0.6, L=1. 
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