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Abstract

Numerical study of heat transfer characteristics due to steady laminar free con-

vection within an enclosure with curved upper wall has been investigated. The

bottom wall is considered to be uniformly heated, while the two side walls are lin-

early heated and the upper curved wall is adiabatic. The test has been performed

for wide range of governing parameters like Prandtl number (Pr = 0.7 and 1000),

Rayleigh number (103 ≤ Ra ≤ 105) and various concavity and convexity of the

upper wall in order to examine the heat transfer and change in motion of fluid flow

within the enclosure. Numerical simulations are presented in terms of streamlines

(ψ), isotherms (θ), entropy generation due to heat transfer (Sθ), entropy generation

due to fluid friction (Sψ), heatlines (Π), average Nusselt number (Nu) and average

Bejan number (Beavg). The present study shows that the change in curvature of

the upper wall affects the thermal behaviour of the fluid inside the enclosure. It is

observed that the heat transfer rate in highly convex domain is more as compared

to concave domains.

Keywords: free convection flow; Complex enclosure; Entropy generation; Heatline;

Nusselt number.
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Nomenclature

T , T0 : temperature of the fluid and bulk temperature, K

p : pressure, Pa

L : length of the enclosure, m

Beavg : average Bejan number

k : thermal conductivity,Wm−1K−1

n : normal vector to the plane

Nu, Nu : local and average Nusselt number

Sθ : dimensionless entropy generation due to heat transfer

Sψ : dimensionless entropy generation due to fluid friction

Stotal : dimensionless total entropy generation

Greek symbols

ϕ : irreversibility distribution ratio

µ : dynamic viscosity, kg m−1s−1

Π : dimensionless heat function

ξ : horizontal coordinate in square

η : vertical coordinate in square

Subscripts

l : left wall

r : right wall

b : bottom wall

max : maximum

avg : average

1 Introduction

Free convection or natural convection in an enclosure or closed cavities has been studied

predominantly due to its substantial attention in nature and energy related applications

such as solar collector, cooling of electronic components, geothermal energy system, de-

signing of building, food processing etc.
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Several investigation on natural convection had been conducted on enclosures with

regular geometries (square, rectangular, triangular, trapezoidal etc.) as the thermal char-

acteristics are less complex than the irregular enclosures. Davis [1] studied the natural

convection in a square-shaped cavity with differentially heated side walls. Basak et al. [3]

investigated the free convection inside a square cavity with uniformly and non uniformly

heated bottom wall. He observed that the heat transfer is greater in case of non uniform

heating as compared to uniform heating case. Kimura and Bejan [4] provided a heatline

visualization method for heat transfer in a square cavity. Saha and Khan [5] performed

a review study on the free convection heat transfer in an attic-shaped space. Natural

convection in enclosure having triangular shapes has been studied by Kent et al. [6,7].

Several studies have also been performed for rectangular enclosure. Aydin et al. [8] nu-

merically analyzed the natural convection in rectangular enclosure heated from one side

and cooled from the ceiling and investigated the effect of Rayleigh number and aspect

ratio on heat transfer. Ilis et al. [9] presented the effect of aspect ratio on entropy genera-

tion in rectangular cavities having same area. It is found that the total entropy generation

due to fluid friction and total entropy generation increase with increasing aspect ratio.

Free convection experiments have also been conducted in trapezoidal enclosures by re-

searchers. Moukalled and Darwish [10] investigated the effects of the height and position

of the baffle mounted on the upper inclined surface of a trapezoidal enclosure. It was

found that the overall heat transfer rate is highly effected by the presence of the baffle.

Ramakrishna et al. [11] have studied entropy generation and heatlines for free convection

in a trapezoidal cavity where left wall is hot and right wall is maintained at constant

cold temperature while the horizontal walls are adiabatic. Basak et al. [12] numerically

investigated the entropy generation minimization during free convection in trapezoidal en-

closures with various inclination angles for uniformly heated bottom wall, adiabatic top

wall with linearly heated side walls (case1) or linearly heated left wall and cold right wall

(case2). Anandalakshmi and Basak [13] carried out the entropy distribution and thermal

mixing in the steady laminar natural convective flow through the rhombic enclosures with

various inclination angles.

Studies dealing with convection problems inside complicated geometries are limited

because of complexity of flow inside enclosure which significantly affects the thermal be-

havior of the fluid inside it. Application of such curved and wavy enclosures is often used
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in solar energy system, electric machinery, microelectronic industries etc. Morsi and Das

[14] numerically found the heat transfer characteristics and flow patterns for complex en-

closure. Natural convection in a horizontally wavy enclosure was analyzed by Abdelkader

et al. [15]. Varol and oztop [16] conducted expriment to find the effects of aspect ratio on

the free convection heat transfer in a tilted solar collector having absorber on the wavy

bottom surface. They observed that the aspect ratio is an effective parameter which can

be used to control the heat transfer inside the collector. Das and Mahmud [17] numeri-

cally investigated thermal behaviour of fluid inside an enclosure consisting of horizontal

wavy wall and vertical straight wall. They obtained that when the amplitude-wavelength

ratio changes from zero to other values at lower Grashoff number, heat transfer rate rises.

Mahmud and Islam [18] carried out laminar free convection and entropy generation inside

an inclined wavy enclosure. They indicated that, lower the surface waviness, higher is the

heat transfer for a particular angular position. Dalal and Das [19,20] have considered a

case of free convection in a cavity with a right wavy vertical wall. They obtained that

the presence of undulation in the right wall effects the flow field, thermal field and heat

transport. In a differentially heated inclined square chamber with various undulations,

Adjlout et al. [21] investigated the impact of a hot wavy wall caused by laminar natural

convection.. The study of natural convection inside a wavy cavity filled with fluid satu-

rated porous medium has been numerically examined by Misirlioglu et al. [22]. Biswal and

Basak [23,24] made a work on free convection within differentially heated enclosures with

curved (concave/convex) side walls via entropy generation analysis and Bejan’s heatline.

Due to various related applications of complex enclosures, the study of natural convection

in cavities with curved wall may be important to achieve higher heat transfer rate.

Based on the above wide literature survey, it is found that study of heat transfer

characteristics in complex geometries is essential in order to obtain the optimal design of

the container for various industrial applications. The main interest of this investigation

is to study the effect of change in amplitude in the distribution of heat and fluid flow

due to free convection inside an enclosure having a top adiabatic curved wall, linearly

heated side walls and uniformly heated bottom wall. In the present chapter, the effects

of Rayleigh number, Prandtl number and amplitude of the upper wall are investigated

simultaneously to understand the importance of these parameters on the characteristics

of free convection.. Results will be presented in terms of isotherms (θ), streamlines (ψ),
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Fig. 1: Diagram of the physical domain (a,c) and computational domain (b) with bound-

ary conditions.

entropy generation due to heat transfer (Sθ), entropy generation due to fluid friction

(Sψ) and heatlines (Π). In addition, the influence of Ra and h on the average Bejan

number and average Nusselt number is also shown. To solve the non-linear coupled

partial differential equations in the current work, the Bi-Conjugate Gradient Stabilized

technique (BiCGStab) is used.

2 Physical model

The geometry of the problem considered here is a modified square enclosure of length

L with convex or concave upper wall whose amplitude is H. The dimensionless function

F(X) which represents the shape of the curved wall of the enclosure is given by

F (X) = 1 + hsin(πX)

where h (=H/L) is the amplitude of the upper wall. When h is positive, upper wall is

concave but when h is negative, upper wall is convex. Fig. 1 shows the physical domain of

differentially heated enclosure with concave (a) and convex (c) top wall and computational

domain (b).

The left and right walls are linearly heated, the bottom wall is uniformly heated and

the top curved wall is kept adiabatic. It is assumed that the fluid is incompressible and
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Newtonian and the flow is steady and laminar. The boundary conditions for velocity are

considered as no slip at the solid boundaries.

3 Mathematical formulations

3.1 Governing equations

The governing equations in non-dimensional form for the present problem can be written

as:

UX + VY = 0 (1)

UUX + V UY = −PX + Pr(UXX + UY Y ) (2)

UVX + V VY = −PY + Pr(VXX + VY Y ) +RaPrθ (3)

UθX + V θY = θXX + θY Y (4)

where X and Y are dimensionless coordinates along horizontal and vertical directions

respectively, U and V are dimensionless velocity components in X and Y directions re-

spectively, P is the dimensionless pressure, θ is the dimensionless temperature, Ra and

Pr are the Rayleigh number and Prandtl number respectively.

The dimensionless parameters in the above equations are defined as follows

(X, Y ) =
x, y

L
, U =

uL

α
, V =

vL

α
, P =

pL2

ρα2
,

θ =
T − Tc
Th − Tc

, P r =
ν

α
, Ra =

gβ(Th − Tc)L
3

να

where x and y are distances along the horizontal and vertical directions respectively, u

and v are the velocity components in the x and y directions respectively, α, β, ν, ρ, g, Th, Tc

are thermal diffusivity, coefficient of volumetric expansion, kinematic viscosity, density of

the fluid, gravitational acceleration, temperature of the bottom wall and temperature of

top-left / top-right corner, respectively. Stream function (ψ) and vorticity (ω) are defined

as

U = ψY , V = −ψX , ω = VX − UY . (5)

The anticlockwise circulation is denoted by positive sign and clockwise circulation is

represented by negative sign.
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3.2 Boundary conditions

The corresponding dimensionless boundary conditions for the present problem are speci-

fied as follows: All walls, U = 0, V = 0, ψ = 0

At bottom wall, θ = 1

At left and right vertical walls, θ = 1− Y

At top curved wall, ∂θ
∂Y

= 0

3.3 Nusselt number

The Nusselt number, Nu is the measure of convective heat transfer coefficient at the hot

surface. Higher the value of Nu, higher is the heat transfer rate from the surface.

The local Nusselt number is computed as

Nu = −∂θ

∂n
,

where n denotes the direction of normal to the plane.

The local Nusselt number along the left wall (Nul), right wall (Nur) and bottom wall

(Nub) are defined as follows,

Nul = θX , Nur = −θX , Nub = θY

The average Nusselt number is obtained by integrating the local Nusselt number along

the respective wall. The average Nusselt number along left wall, right wall and bottom

wall are given by

Nul =

∫ 1

0

NuldX, Nur =

∫ 1

0

NurdX, Nub =

∫ 1

0

NubdY. (6)

To evaluate eq. (6), a Simpson’s 1
3
rd rule of integration is implemented.

3.4 Entropy generation

The dimensionless local entropy production due to heat transfer (Sθ) and due to fluid

friction (Sψ) for a two-dimensional heat and fluid flow in the cartesian coordinate can be

expressed as follows:
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Sθ = (θX)
2 + (θY )

2 ,

Sψ = ϕ
[
2
(
(UX)

2 + (VY )
2)+ (UY + VX)

2]
where ϕ is the irreversibility ratio, defined as

ϕ =
µT0
k

( α

L∆T

)2
µ and k being dynamic viscosity and thermal conductivity of the fluid respectively. Here,

we have considered ϕ as 10−4.

The local entropy generation Sl is the sum of Sθ and Sψ:

Sl = Sθ + Sψ (7)

The total entropy generation due to heat transfer to (Stθ) and due to fluid friction Stψ

are obtained by integrating the local entropy generation by the system volume

Stθ =

∫
V

SθdV

Stψ =

∫
V

SψdV

Stotal = Stθ + Stψ

The average Bejan number indicates the strength of the entropy generation due to heat

transfer irreversibility and is defined as the ratio of heat transfer irreversibility to total

entropy generation

Beavg =
Stθ

Stθ + Stψ
=

Stθ
Stotal

If Beavg > 1
2
, the heat transfer irreversibility is dominating, while if Beavg < 1

2
, the

irreversibility due to fluid friction dominates the process and if Beavg = 1
2
, the entropy

generation due to viscous effects and heat transfer are equal.

3.5 Heat function

Similar to streamlines, the heatline can be used to show the direction and intensity of

heat flow. The heat function Pi produced from conductive heat fluxes (−θX ,−θY ) and
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convective heat fluxes (Uθ, V θ) is used to depict the heatflow within the enclosure. The

dimensionless form of heat function for a two dimensional convective problem can be

obtained from

ΠY = Uθ − θX

−ΠX = V θ − θY

which are derived from eqs. (1) and (4).

The above eqs. lead to the following differential equation for heat function

ΠXX +ΠY Y = (Uθ)Y − (V θ)X (8)

where Π is dimensionless heat function. We consider that Π is a continuous function with

continuous second order partial derivatives. It should be noted that the positive sign of

Π denotes counterclockwise circulation and negative sign denotes clockwise heat flow.

The boundary conditions for Π are specified as follows:

At bottom wall, n.∇Π = 0,

At left wall, n.∇Π = 1,

At right wall, n.∇Π = −1,

At top curved wall, Π = 0

The following Dirichlet’s conditions are used:

At bottom left corner Π = Nul,

At bottom right corner Π = −Nur
where Nul and Nur are average Nusselt number at left and right wall respectively.

4 Numerical Procedure

Eliminating the pressure term from eq.(2) and (3) and rewriting the equation of conser-

vation of mass, momentum in terms of stream function (ψ) and vorticity (ω), we get

ψXX + ψY Y = −ω, (9)

Pr
(
ωXX + ωY Y ∂Y

2
)
− (UωX + V ωY ) +RaPrθX = 0, (10)
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where

U = ψY , V = −ψX .

The irregular physical domain (X,Y ) is transformed and converted into a regular (square)

computational domain using coordinate transformation

ξ = X η = Y/(1 + hsinπX)

The above transformation transforms the curved upper boundary Y = F (X) into the

straight line η = 1.

The equations can be evaluated in ξ − η domain using the following relationship(
ξX ξY

ηX ηY

)
=

1

J

(
Yη −Xη

−Yξ Xξ

)

where,

J =
∂(X, Y )

∂(ξ, η)
=

∣∣∣∣∣Xξ Xη

Yξ Yη

∣∣∣∣∣ .
It is difficult to solve the problem analytically due to the existence of non-linear terms in

the governing Eqs. (1-4). Using the aforesaid transformation, the equations are changed

into a bi-harmonic equation in the stream function-velocity formulation.The transformed

equations are discretized using a finite difference scheme. An outer-inner iteration proce-

dure, biconjugate gradient stabilized method (BiCGStab) is used to solve the discretized

stream function ψ equation. The tri diagonal system

(ψξ)i+1,j + 4 (ψξ)i,j + (ψξ)i−1,j =
3

d
(ψi+1,j − ψi−1,j), (11)

(ψη)i,j+1 + 4 (ψη)i,j + (ψη)i,j−1 =
3

d
(ψi,j+1 − ψi,j−1). (12)

where d is the step length on a uniform rectangular mesh, is solved by using Thomas

algorithm to get ψξ and ψη. The computed ψξ and ψη values are then used to derive

velocity values, u∗ and v∗. More details of the used numerical scheme are presented in

[25]. The numerical method was implemented in FORTRAN-95 software. The cycle of

numerical iteration continues until the convergence criterion (0.5× 10−6) is satisfied. The

graphical presentation of this study has been performed by using GNUPLOT.
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Fig. 2: Isotherms (θ), streamlines (ψ), heat transfer irreversibility (Sθ), fluid friction

irreversibility (Sψ) and heatlines (Π) for Pr = 0.7 and Ra = 103.
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5 Results and discussion

In this section, numerical studies of flow and heat transfer in a complex enclosure are

discussed. Computations are performed for various Rayleigh number (Ra = 103 − 105),

Prandtl number (Pr = 0.7 and 1000) with various amplitude (h) of top wall. Five different

shapes of top wall are considered in order to emphasize the curvature effect on fluid flow

and heat flow distribution. The original unit square enclosure is modified into a complex

enclosure by changing the curvature of the top wall. Figs. 3-6 represent the isotherms

(θ),streamlines (ψ), heat transfer irreversibility (Sθ), fluid friction irreversibility (Sψ) and

heatlines (Π) for different values Pr,Ra and h.

5.1 Streamlines and isotherms

It is clear from Fig. 2 that at low Ra = 103 the buoyancy effect is weak and heat transfer

is primarily due to conduction. Isotherm lines are smooth, uniform and parallel near the

uniformly heated bottom wall and follow the geometry of wavy surface. For square enclo-

sures (h = 0), isotherms with θ ≥ 0.4 are smooth curves which span the entire enclosure

and with θ ≤ 0.3, the isotherms occur symmetrically near the top corners of the linearly

heated side walls. As the concavity increases, the qualitative trends of isotherms remains

almost similar to square enclosure while as convexity increases the isotherms are found

to be compressed at the corner regions due to less availability of area signifying higher

heat transfer rate. The fluid near the bottom wall is hotter and have lower density. As

a result, the fluid moves upward from the middle portion of the bottom wall towards the

crest of the cavity and falls along the side walls forming two symmetric counter-rotating

circulations having the same strength with respect to the centerline of the cavity. As Ra

is low, the circulation is weak due to less prominent convection (see Fig. 2). It is found

that |ψ|max = 0.063 for square enclosure. As the concavity of the top wall increases, slight

increase in the magnitude of |ψ|max is observed which in contrast significantly decreases

as the convexity increases.

As Ra increases to 104, the isothermal lines swirl due to the influence of convection cur-

rent for all h (Fig. 3). Also the buoyancy effect increases which results in expansion of

vortices and becomes dense. The intensity of fluid flow increases to |ψ|max = 1.69 for

h = 0 as compared to the case of Ra = 103. Further |ψ|max increases or decreases on
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increasing the concavity and convexity respectively (Fig. 3).

Beyond Ra = 104, the effect of viscous force becomes weak and thermal force plays a

dominant role. Significant distortion of the isotherms occur within the enclosures because

of high convection. Largely compressed isotherms are observed near the side walls and

middle portion of the square enclosure. Thermal boundary layers are observed near the

vicinity of the bottom wall. On increasing concavity isotherms are found to be highly

dispersed whereas highly compressed isotherms are observed as the convexity increases

enhancing higher heat transfer rate. In other words, the heat transfer is dominated by

convection rather than conduction under high Ra. Multiple circulations are observed in

square enclosure with greater magnitude |ψ|max = 6.6 at Ra = 105. Due to enhanced

buoyant force, the intense primary circulations fill the upper portion of the enclosure and

the lower portion is filled by secondary circulations. As h increases the intensity of pri-

mary as well as secondary circulation increases. In the reverse scenario the multicellular

flow patterns turns into a bicellular flow pattern with the increase of convexity. (Fig. 4).

Because of high momentum diffusivity at Pr = 1000 and Ra = 105, the isotherms get

further compressed along the lower and side wall in square enclosure (Fig. 5). On increas-

ing concavity of the top wall, the isotherms starts getting deformed because of enhanced

convection. As the buoyancy force starts dominating the viscous force at high Ra and

hence the isotherms are unable to maintain the smoothness and dispersed throughout the

enclosure. Significantly stronger intensity of fluid circulations can be seen from Fig. 5

which shows |ψ|max = 11.1 for square enclosure. The increase in magnitude of |ψ|max
illustrates that convection strength increases with high Pr. The primary fluid circulation

vortices grow bigger in size and occupy almost the entire part of the enclosure. However,

the secondary vortices are found near the corners of the bottom wall. It is also observed

that the fluid takes the shape of the cavity for higher Pr that signifies thermal mixing.

Reasonable changes are observed on increasing concavity of top wall. The two symmet-

ric primary vortices in square enclosure splits into multiple vortex, one large dominated

vortex diagonally elongated and secondary vortices appear above and below the diagonal

vortex (Fig. 5). The two inner vortices are merged with each other in an elongated vor-

tex. On increasing the convexity of the top wall, the secondary circulations are squeezed

and begin to disappear and symmetric eddies are observed with decrease in magnitude of

|ψ|max because of high convection effect.
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Fig. 3: Isotherms (θ), streamlines (ψ), heat transfer irreversibility (Sθ), fluid friction

irreversibility (Sψ) and heatlines (Π) for Pr = 0.7 and Ra = 104.
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5.2 Entropy generation

Entropy generation is due to two factors, heat transfer irreversibility (Sθ) and fluid friction

irreversibility (Sψ). At Pr = 0.7 and low Ra = 103, it is observed that the value of entropy

generation due to fluid friction is negligible with respect to entropy generation due to heat

transfer. Fig. 2 shows that due to high thermal gradient between the top wall and side

wall, the maximum value of Sθ (Sθ,max = 17.42) occurs at the top corners for square

enclosure. The values of Sθ are very low at the central zone of the enclosure due to

low temperature gradient. As h increases from zero to positive values the isotherms get

dispersed resulting in less thermal gradient and the value of Sθ,max decreases, whereas

when h decreases from zero, largely compressed isotherms are observed near the side

and top wall which results in increasing temperature gradient and consequently Sθ,max

increases (see Table 3). Table 4 shows the maximum values of Sψ for various values of

Pr,Ra and h. It is clear from this table that as the fluid circulation cells are weak at low

Ra, thus Sψ is insignificant relative to Sθ with Sψ,max = 0.008 for square enclosure. From

Fig. 3 it is observed that the effect of Sψ is significant at the corners of the curved wall

of the enclosure because of velocity gradient between the cavity wall and adjacent flow

circulation cell, while Sψ is almost negligible at the core. Thus at low Ra, Sθ dominates

Sψ for all cases.

As Ra increases to 104, isotherms are found to be highly compressed due to enhanced

convection, resulting in large Sθ,max = 25.29 compared to the case of Ra = 103 for square

enclosure (Fig. 3). As concavity increases more circular loops are observed due to which

the heat transfer and Sθ,max decreases. Further it is observed that as convexity increases

the circular loops dissolve indicating higher Sθ,max at the corner regions of the curved

wall. Also high Sψ,max = 3.87 for h = 0 is noticed because of increase in fluid flow and

large velocity gradient. From Table 4, it can be seen that the convex cases exhibit lesser

Sψ,max as compared to concave cases.

Sθ is significant for Ra = 105 due to high convection effect. Large compression of isotherms

results in large Sθ,max = 43.92 for square enclosure (see Fig. 4). The contours of Sθ at

the core region are similar for all the cases (Sθ = 0.1) due to less temperature gradient

in this region. Because of high intensity of fluid circulation at Ra = 105, the velocity

gradient are larger compared to temperature gradient resulting in larger Sψ,max for all h,
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see Table 4. An increase in concavity improves buoyancy and consequently the fluid flow

effect which results in high Sψ. Overall, it is observed that due to the presence of high

convective effect at high Ra, the velocity gradient increases. Thus Sψ dominates over Sθ

throughout the cavity for all cases.

Maximum entropy generation due to heat transfer is observed for Pr = 1000 and Ra = 105

because of high temperature gradient. The isotherms are found to be strongly compressed

as compared to Pr = 0.7 (Fig. 6). It is obtained that Sθ,max = 80.21 for square enclosure.

Strong convection induces greater buoyancy effect for high Pr . Similar to lower Pr, the

value of Sθ,max for concave cases are less as compared to the convex cases due to highly

compressed isotherms at the corner regions of the curved walls. Also the value of Sψ,max

are larger for concave cases than those of convex cases (Table 4). The presence of intense

streamline cells at h = 0.2 results in high velocity gradients causing higher value of Sψ,max.

Sψ is almost similar at the interior region for all the cases. Comparatively larger values

of Sψ,max are observed than those of Sθ,max throughout the enclosure.

Table 1: Values of Sθ,max at Pr = 0.7 and 1000 for Ra = 103 − 105 with various amplitude of

upper wall (h).

Pr = 0.7 Pr = 1000

h Ra = 103 Ra = 104 Ra = 105 Ra = 103 Ra = 104 Ra = 105

−0.4 64.58 69.63 101.65 64.58 69.54 109.03

−0.2 33.27 40.36 66.35 33.27 31.52 85.75

0 17.42 25.29 43.92 17.42 25.71 80.21

0.2 12.00 19.06 39.72 12.00 22.12 74.52

0.4 11.23 16.69 34.05 11.23 17.87 49.14

5.3 Heatlines

Heatlines are used to depict the direction of heat movement. In Fig. 2, end-to-end heat-

lines joining the bottom wall and surrounding side walls are seen at low Ra.. In this

figure heatlines are smooth and symmetrical with respect to middle line for square en-

closure depicting high conductive heat transfer. At the top of the side walls, there are

intense heatlines. It is found that |Π|max = 0.46 for h = 0 (Fig. 2). As the concavity
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Fig. 4: Isotherms (θ), streamlines (ψ), entropy generation due to heat transfer (Sθ),

entropy generation due to fluid friction (Sψ) and heatlines (Π) for Pr = 0.7 and Ra = 105.

17



Table 2: Values of Sθ,max at Pr = 0.7 and 1000 for Ra = 103 − 105 with various amplitude of

upper wall (h).

Pr = 0.7 Pr = 1000

h Ra = 103 Ra = 104 Ra = 105 Ra = 103 Ra = 104 Ra = 105

−0.4 0.0076 1.39 237.55 0.0069 1.29 202.20

−0.2 0.0074 2.45 251.19 0.0073 2.83 291.84

0 0.0088 3.87 191.24 0.0071 3.54 359.82

0.2 0.0069 4.79 210.55 0.0072 4.19 375.30

0.4 0.0035 4.99 202 0.0077 5.74 296.18

grows, asymmetric heatlines are seen that are dense in the top portion of the right wall

as compared to the left wall, and as a result, the value of |Pi|max declines. However,

as convexity increases, dense heatlines may be seen at the higher portion of the left wall

relative to the right wall, which causes the value of |Π|maxto rise.

Interesting features are observed for Ra = 104 in Fig. 3. The straight heatlines are trans-

formed to two symmetric eddies in the whole region of the enclosure due to convection

dominant heat transfer. Intense vertical heatlines are observed at the core and near the

side walls (Fig. 3). Similar to low Ra dense heatlines are formed in the right wall as h

increases and in left wall as h decreases.

As Ra = 105, similar to streamline, symmetric primary heatline circulations are observed

in the top portion and secondary circulations span near the lower half. Due to enhanced

thermal mixing, higher intensity of closed loop heatlines are observed at the core. With

the increase of Ra magnitude of heatfunction increases which implies that the amount of

heat transfer rate is higher. The intensity of primary circulations are higher as compared

to lower secondary circulations. As h decreases from 0 to -0.4, the secondary circulations

begin to vanish and large symmetric primary circulations are found to span and take the

shape of the enclosure. As a result heatlines are closely compact depicting higher heat

transfer gradient. However as h increase from 0 to 0.4, intensity of primary circulation

decreases and secondary circulation increases (Fig. 4).

For high Pr = 1000, Ra = 105, due to enhanced thermal mixing, two symmetric pri-

mary eddies are observed in square enclosure of high intensity and compressed secondary

circulations of lower intensity near the bottom wall are formed. Magnitude of |Π|max is
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larger compared to low Pr = 0.7. As the concavity increases, the secondary eddies start

to grow and at h = 0.4 large diagonally elongated eddies are formed having secondary

eddies above and below the elongated eddies. While the secondary eddies begin to vanish

as h decreases. (see Fig. 5)

5.4 Nusselt number and Bejan’s number

Fig. 6 shows the effect of various curvature of the upper wall on average Nusselt number

(Nu) and average Bejan’s number (Beavg) for different Rayleigh number (103 − 105) at

Pr = 0.7 and 1000.

Heat transfer is mainly due to conduction at low Ra = 103. As the convective mode of

heat transfer becomes dominant with the increase of Ra, there is an increase in Nu for all

values of h causing a high heat transfer effect within the enclosure. It is clear from Fig. 7

((a) and (c)), the rate of heat transfer increases as h decreases when Ra and Pr are kept

fixed. The Nu even becomes negative for h = 0.4 depicting that the heat generated in

the bottom wall cannot be transferred to the top wall. This shows that Nu is larger in

highly convex case (h = −0.4) as compared to other cases. Similar trend is observed at

high Pr = 1000. Because of large momentum diffusivity at high Pr, Nu is significantly

larger than that of Pr = 0.7 for all h.

At low Ra = 103, Beavg ∼= 1 for all values of h, because entropy generation due to heat

transfer irreversibility is high compared to irreversibility effect caused by the fluid friction.

As Ra increases, convection heat transfer becomes dominant, the effect of viscosity flow

on entropy generation becomes stronger that leads to decrease in Beavg. As h increases

from 0 to 0.4, Sθ,max is larger than Sψ,max at Ra = 103. Whereas, as h decreases from 0

to -0.4 compressed isotherms are observed that results in increase in Sθ,max at Ra = 105

and consequently Beavg increases (Fig. 6 ((b) and (d))). As Pr increases from 0.7 to

1000, Beavg decreases due to high momentum diffusivity and rapid increase in magnitude

of Sψ,max for all cases. Qualitative distribution of Nu and Beavg are similar for Pr = 0.7

and 1000.

Overall it is observed that Beavg >
1
2
for low Ra which shows that heat transfer irre-

versibility is dominant in the enclosure while for high Ra, Beavg <
1
2
depicting that heat

transfer irreversibility due to fluid friction becomes dominant.
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6 Conclusion

Study of free convection in a complex enclosure has been investigated numerically. The

unit square enclosure is modified into a complex enclosure by changing the amplitude of

the top curved wall. The thermal flow characteristics are obtained for various Rayleigh

number (103−105) and Pr = 0.7 and 1000. The main conclusions drawn from the present

study are as follows:

1. At low Ra heat transfer is due to conduction hence smooth isotherms are observed.

The isotherms gets more compressed with the increase of Ra and Pr due to enhanced

convection. Heat transfer rate is found to be more in convex cases as compared to

concave cases.

2. The magnitude of |ψ|max is less at low Ra. The intensity and magnitude of stream-

lines increases with the increase of Ra and Pr. Multiple vortices are observed at

Ra = 105. |ψ|max increases with the increase of h and decreases with the decrease

of h.

3. Sθ,max increases with increase of Ra and Pr due to enhanced convection. Compar-

ative studies show that Sθ,max is highest in convex cases and least in concave cases

or all Ra and Pr.

4. Sψ,max is found to be very less at low Ra, which increases with the increase of Ra

and Pr. As the fluid flow effect improves with increasing h, Sψ,max is found to be

more in concave cases compared to convex cases.

5. Heatline contours are almost similar to streamlines. The intensity of heatline in-

creases with the increase of Ra and Pr because of increase of convection. Dense

heatlines are observed with the increase of h resulting in high magnitude of heatfunc-

tion whereas heatlines are found to be segregated as h decreases and the magnitude

of heatfunction decreases.

6. Nu increase with the increase of Ra and Pr. As the heat transfer rate is found

to be higher in convex cases as compared to concave cases, Nu increases when h

decreases from 0 to -0.4 and decreases when h increases from 0 to 0.4.

22



7. At low Ra, Beavg > 1
2
which signifies that entropy generation in the enclosure

is mainly due to heat transfer irreversibility. With the increase of Ra, buoyancy

force becomes dominant which results in increase in entropy generation due to fluid

friction irreversibility, consequently Beavg <
1
2
.
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