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Abstract—The study of Magnetic Levitation systems(Maglev)
has gained significant attention due to their minimal friction and
energy-efficient attributes, which are deemed crucial factors. This
paper introduces a novel magnetic levitation system implemented
through the Simulink environment. The dynamics of Maglev
exhibit nonlinearity and high instability, which renders the task
of devising a suitable control algorithm even more challenging.
The primary objective of this study is to regulate the position of
a ferromagnetic ball within the airspace of the nonlinear system.
In this investigation, the proposed controller is formulated based
on the linear predictive model, derived by approximating the
plant’s behavior around a known operational point. The efficacy
of the proposed control approach is validated through simulation
levitation model. The performance of the proposed controller is
compared with a existing PID control technique [1] and found
better results.

I. INTRODUCTION

Magnetic levitation systems hold practical significance
across diverse engineering applications. Examples include
their utilization in high-speed maglev passenger trains, bear-
ings designed for frictionless movement, elevating wind tunnel
models, isolating vibrations in delicate machinery, suspending
molten metal within induction furnaces, and raising metal
slabs during manufacturing processes. Depending on the origin
of levitation forces, maglev systems can be categorized as
either attractive or repulsive setups. Typically, these types
of systems exhibit instability when operated in open-loop
configurations and are characterized by complex nonlinear
differential equations, which introduce added challenges in
controlling them. As a result, a crucial attempt involves the
development of high-performance predictive controllers aimed
at effectively managing the position of the levitated object.

Recently, numerous studies have emerged in the literature
concerning the control of magnetic levitation systems. These
conventional practice involved linearizing the magnetic lev-
itation system at the equilibrium point using Taylor-series
expansion. Subsequently, controllers like the proportional-
integral-derivative (PID) [2] and linear-quadratic regulator
(LQR) [3] were designed. However, this linearization approxi-
mation method led to reduced robustness in magnetic levitation
control systems as certain nonlinear terms were overlooked.
The feedback linearization technique has found application in
devising control strategies for magnetic levitation systems [4],

[5]. This approach aimed to improve upon the drawbacks of
the approximation linearization method. The subsequent adop-
tion of the backstepping technique in controller design [6], [7]
marked a further step in this direction. In recent years, more
advanced control techniques have been proposed to manage
levitation in Maglev system. These include adaptive control,
robust control, sliding mode control (SMC), or combinations
thereof. Authors in [8] introduced an adaptive robust controller
for the Maglev transportation system, enhancing robustness
against uncertainties, external disturbances. Similarly, [9] put
forth a robust controller with a disturbance observer based on
an improved suspension force model for Maglev system. [10]
employed an adaptive SMC law along with a magnetic flux
observer for the magnetic levitation systems, addressing model
uncertainty and external disturbances. However, the challenge
of chattering remained a significant hurdle in SMC application.
Subsequent efforts explored intelligent control methods to
tackle the intricate nonlinearity of magnetic levitation systems.
[11] introduced a novel fuzzy controller for the levitation
system based on the Takagi Sugeno fuzzy model, coupled
with a H∞ robust control law for enhanced robustness against
parameter perturbations and external disturbances. Building
on this, an improved approach using a parallel-distributed
compensation scheme was presented [11], albeit with the
challenge of establishing stable fuzzy logic rules. In [12],
a fuzzy neural network (NN) was employed to emulate an
adaptive observer, forming a control framework for hybrid
permanent magnet and electromagnet Maglev transportation
systems. This approach exhibited excellent performance due
to the model-free nature of NN. However, the methods
mentioned earlier have certain limitations when it comes to
addressing constraints in the context of magnetic levitation
systems. These constraints pertain to real-time requirements
that ensure reliability [13], [14]. In the case of Maglev trains,
it’s essential to consider state constraints such as the air
gap, vertical velocity, and acceleration to meet the reliability
criteria for aspects like ride comfort, energy efficiency, and
system implementation [15]. Model predictive control (MPC)
is a widely adopted approach in industrial process control
that excels in handling both control and state constraints
explicitly and optimally [14]. Model Predictive Control (MPC)
encompasses solving an optimal control problem with a finite

.



horizon that shifts as time progresses [16]. This involves
solving the control sequence for the current situation online
during each sampling moment, with only the initial control
element of the sequence being employed [17]. Additionally,
the present state variables of the process are utilized as the
starting point for the optimization problem. MPC methods do
have a computational cost, which results from the ongoing
need for online optimisation, which is one of its limitations.
This is a significant barrier for fast-response systems and turns
into a major problem for MPC applications. In recent times,
researchers have effectively employed MPC across various
domains. These include its application in robotics [18], energy-
efficient control of twin rotor MIMO system [19], electrical
vehicles [20] and power system etc. The MPC approach has
also been extended to encompass magnetic levitation ball
systems. Authors in [21] proposed a robust MPC for a second-
order magnetic levitation ball system, accounting for input
and output constraints. In this work, the model uncertainties
are also managed using the linear matrix inequalities (LMI)
technique. This approach involved a linear approximation
model via Taylor-series expansion. Authors in [22] designed a
MPC controller for a magnetic levitation ball system grounded
in a pre-identified state-dependent model, autoregressive with
eXogenous variables (ARX), achieved through a collection
of radial basis function neural networks (RBF NNs). Fur-
ther, in [23], [24] the authors have introduced an explicit
model predictive controller (EMPC) for the magnetic levitation
system, strategically shifting the optimization process offline
to enhance real-time efficiency. They accounted for both
input and output constraints for a piece-wise affine (PWA)
linear system. Moreover, authors in [25] have introduced a
nonlinear MPC (NMPC) approach to the magnetic levitation
system. This approach aimed to achieve high control perfor-
mance by accurately predicting the nonlinear system behavior.
Nevertheless, the design complexity associated with NMPC
posed computational challenges greater than those of linear
MPC schemes, thus restricting the consideration of control
constraints to maintain real-time feasibility. The primary aim
of this study is to create a linear model predictive control
(MPC) approach adapted for a magnetic levitation system with
input-output constraints. In this research, prediction models are
derived using the physical parameters of the Maglev system as
detailed in TABLE I. The suggested control strategy has been
assessed through simulations conducted on magnetic levitation
systems using three distinct input signals. The simulation
outcomes illustrate the tracking capabilities of the proposed
control algorithm is better as compared to the existing control
technique [1].

II. SYSTEM MODELING

Fig.1 depicts a schematic representation of a Maglev system.
The various mechanical parts and its motions can be predicted
from this schematic diagram. Magnetic levitation’s laboratory
setup was created by Feedback Instruments Ltd. and operates
in the MATLAB/Simulink environment. The magnetic force
balances the gravitational force exerted on the ferromagnetic
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Fig. 1: Schematic diagram of the Maglev system

ball during the operation of the Maglev system. By altering
the input current, the magnetic force of the Maglev may be
changed. As a result, in the Maglev model, the magnetic force
is equal to the square of the electromagnetic coil current. With
the aid of the controller, the system receives input from the
coil current to regulate the location of the iron ball, which is
then balanced in the air space according to the requirement.

TABLE I: Maglev system parameters

Parameter Value Unit
β 5.64× 10−4 V m2

γ 0.31 V/A
α 2.48 V
i0 1 A
d0 20 mm
C 2.4× 10−6 Kgm5/s2

R 2 Ohm
L 15× 10−3 H

m = M
4

0.02985 Kg

A. STATE SPACE MODEL

The construction of the magnetic levitation system and its
parts will be described in this section. The system consists
of four electromagnets that act as actuators to apply magnetic
forces for accurate position control. Four Hall effect sensors
that detect the position of the levitating plate are also included,
along with a rigid square plate with four permanent magnets on
each corner. The electromagnets are 2 ohm internal-resistance
solenoid coils with a 15 mH rating. Linear radiometric Hall
Effect sensors with a 50 V/T are used in Hall effects ex-
periments. The neodymium N52 disc magnets have a 12.70
mm diameter and a 6.35 mm thickness, and they are used
as permanent magnets. The electromagnetic levitation system
model is shown in Fig. 2, where R denotes the coil’s resis-
tance, L denotes its inductance, v denotes the voltage across
the electromagnet, i denotes the current flowing through it,
m denotes the mass of the levitating system, g denotes the
acceleration caused by gravity, d denotes the vertical position
of the ball measured from the bottom, f denotes the force
on the levitating system generated by the electromagnet and



e denotes the voltage across the Hall effect sensor. The force
generated by the electromagnet is formulated as:

Fmag = C
i(t)

d3
(1)

where d is the vertical position and C is a turn constant. From
(1) we got

Md̈ = mg − C
i(t)

d3
(2)

where m is the mass of the levitating magnet and g is the grav-
ity of acceleration. The power supply and electromagnetic coil
can be related electrically by using the following expression:

v(t) = R.i(t) + L
di

dt
(3)

where R and L are resistance and inductance of the electro-
magnet respectively. Now consider the following perturbations
with respect to the change of them

i(t) = i0 +∆i(t) (4)
d(t) = d0 +∆d(t) (5)
v(t) = v0 +∆v(t) (6)

where the voltage needed to suspend the levitating plate at
do is called vo. Under this perturbation, it is possible to
linearize the dynamics (2) and (3) around an operational point
(i0; d0; v0) as

m∆̈d =

(
3Ci0
d40

)
∆d−

(
C

d30

)
∆i (7)

∆̇i =

(
R

L

)
∆i−

(
1

L

)
∆v (8)

where ∆i,∆v,∆d represents the linearization of the system
around its equilibrium point. The transfer function from ∆v
to ∆d is obtained by removing ∆i in equation (8) and using
Laplace transforms as

∆D(s)

∆V (s)
=

− gR

v0

(Ls+R)(s2 − 3Ci0
md4

0
)

(9)

where ∆V (s) and ∆D(s) denote the Laplace transforms of
∆v(t) and ∆d(t), respectively. The output voltage of the Hall
sensor is as follows.

e(t) = α+
β

d2
+ γi(t) (10)

where α, β, γ are constant sensor parameters. A linearization
of (10) around e(t) = e0 +∆e results in

e(t) =
2β

d3
∆d+ γ∆i (11)

where ∆e is the sensor voltage. We find the following relation-
ship between the electromagnet voltage ∆V (s) and a sensor
voltage perturbation ∆E(s) by applying Laplace transform to
(11) and utilising I(s) = ∆V (s)/(Ls + R) from (3) and the
representation in (9) as follows:

∆E(s)

∆V (s)
=

γ(s2 − 3Ci0
md4

0
) + ( 2βRC

md6
0
)

(Ls+R)(s2 − 3Ci0
md4

0
)

(12)

Once the second derivative of (7) and the first derivative of (8)
have been applied, equation (12) can also be represented in
state space form. As a result, the linearized model of Equation
(12) can be represented in state space as follows:ẋ1

ẋ2

ẋ3

 =

 0 1 0
3C
m

i0
d4
0

0 −C
m

1
d3
0

0 0 −R
L

x1

x2

x3

+

00
1
L

u (13)

The measured output system (y) can be obtained after simpli-
fied Equation (11),where (∆e = y,∆d = x1, and∆i = x3)

y =
[
−2 β

d3 0 γ
] x1

x2

x3

 (14)

Suppose that x = [x1x2x3] = [dḋi] is the state of the system,
where d is the controlled output, y = e is the measured
output and u = v is the control input. By substituting system
parameters in TABLE I into (12) we get

G(s)H(s) =
20.66s2 + 61803

s3 + 132.5s2 − 1471s− 194900
(15)

The numerical values of the state space equations are given
belowẋ1

ẋ2

ẋ3

 =

 0 1 0
1471 0 −9.81
0 0 −133

x1

x2

x3

+

 0
0

66.66

u (16)

y =
[
−144 0 0.31

] x1

x2

x3

 (17)

III. CONTROL DESIGN

A. PID control design

This section aims to illustrate the fundamental structure of
a PID controller in the context of closed-loop control for the
magnetic levitation system, with the objective of maintaining
the ball’s position at the desired level. In order to explain the
PID controller for a levitation system, it’s necessary to possess
an appropriate mathematical model of the magnetic levitation
system. It can be accomplished through the linearization of
all of the elements of the magnetic levitation system. The
transfer functions of the aforementioned components, coupled
with the PID controller, are presented in Fig.2. Essentially, the
controlled magnetic levitation system operates based on error
detection. The difference between the reference position and
actual position is known as positional error e(t). Subsequently,
the PID controller intervenes to regulate this error, enhancing
the dynamic response and mitigating steady-state error. The
general form of this PID controller is expressed as follows
[18]:

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
+ Td

∂e(t)

∂t
(18)

where u(t) denote the control signal Kp the proportional gain,
Ti integral time Td derivative time, and e(t) the difference
between the reference point and actual plant.
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Fig. 2: Magnetic levitation system with the PID controller

Fig. 3: Block diagram for model predictive controller

B. Model predictive control design

This article describes how to create a linear MPC to increase
the precision of a Maglev system’s control design. Fig.3
depicts the fundamental block diagram of the MPC. Following
is a representation of the discrete-time linear state-space model
of the Maglev system:

x(k + 1) = Apx(k) + Bpup(k),

y(k) = Cpx(k) +Dpup(k), (19)

where x (k) is a representation of the state vector at instant
kth. Similar to this, at the kth instant, y (k) and up (k)
represent the system output and control input, respectively. A
model predictive controller has a built-in model that predict the
future behavior of the plant over a given prediction horizon, or
Np. The optimal control problem is online solved in MPC to
identify the control input. The predicted output depends on the
assumed input trajectory up (k + j |k ) for j = 0, 1, ..., Np−1.
The fundamental concept is to choose that input which gives
the best-predicted behavior [?].Fig.4 shows the basic concept
of linear MPC, where Np is the prediction horizon and Nc

is the control horizon. At each sample instant k, the MPC
predict the future outputs at a predetermined horizon, Np.
The predicted output y (k + j |k ), for j = 0, 1, ..., Np − 1,
not only depend on the previous outputs and control inputs
of the system but also it depends on the future control
signal up (k + j |k ) for j = 0, 1, ..., Np − 1. To solve the
optimization problem of MPC, the interrelation between the
inner model output and input of the system needs to be
determined. If the input-output relationship is linear during
the predefined interval, then the optimization problem can be

FuturePast

time

PN

CN

r

y

u

k 1k  2k 
Ck N Pk N

Fig. 4: Basic MPC concept

solved by a linear-quadratic problem. The model state variable
within the prediction horizon interval can be determined as:

x̂ (k + 2 |k ) = Ap (k + 1 |k ) x̂ (k + 1 |k )
+Bp (k + 1 |k ) ûp (k + 1 |k ) .

(20)

(20) can be represented as:

x̂ (k + 2 |k ) = Ap (k + 1 |k )Ap (k |k )x (k)
+Ap (k + 1 |k )Bp (k |k ) ûp (k |k )
+Bp (k + 1 |k ) ûp (k + 1 |k ) ,

...
x̂ (k +Np |k ) = Ap (k +Np − 1 |k ) x̂ (k +Np − 1 |k )

+Bp (k +Np − 1 |k ) ûp (k +Np − 1 |k ) .
(21)

The control inputs are changed during the control horizon
interval and after that it will remain constant.

ûp (k + j |k ) = ûp (k +Nc − 1 |k ) , (22)

Nc ≤ j ≤ Np − 1.
The relation between inputs and the change of inputs are as
follows.

ûp (k + j |k ) = up (k − 1) +

Nc−1∑
j=0

∆ûpï (k + j |k ) (23)

j = 0, 1, ..., Nc − 1.



Substituting (23) into (22) the state variable model can be
represented as:

X (k) = ZAp (k)x (k) + ZBp (k)up (k − 1)

+ZUp
(k)∆Up (k) , (24)

where X (k) =


x̂ (k + 1 |k )
x̂ (k + 2 |k )

...
x̂ (k +Np |k )

;ZBp
(k) =


Z1,1 (k)
Z2,1 (k)

...
ZNp,1 (k)

;

ZAp
(k) =


Ap (k |k )

Ap (k + 1 |k |k )Ap (k |k )
...

Np∏
j=1

Ap (k +Np − j |k )

 ,

SUp (k) =


Z1,1 (k) 0 · · · 0
Z2,1 (k) Z2,2 (k) · · · 0

...
...

. . .
...

ZNp,1 (k) ZNp,1 (k) · · · ZNp,Np
(k)

; and

∆Up (k) =


∆ûp (k |k )

∆ûp (k + 1 |k )
...

∆ûp (k +Nc − 1 |k )

.

Each elements of ZAp
(k) and ZBp

(k) are given as:
Z1,1 (k) = Bp (k |k ) ,
Z2,1 (k) = Ap (k + 1 |k )Bp (k |k ) + Bp (k + 1 |k ) ,
Z2,2 (k) = Bp (k + 1 |k ) ,

ZNp,1 (k) =
Np−2∑
l=0

(
Nc−1−l∏

j=1

Ac (k +Np − j |k )

)
Bp (k + l |k ) + Bp (k +Np − 1 |k ) ,

ZNp,Nc
(k) =

Np−2∑
l=Nc−1

(
Np−1−l∏

j=1

Ap (k +Np − j |k )

)
Bp (k + l |k ) + Bp (k +Np − 1 |k ).
The predicted output of the system can be defined as:

Y (k) = ZCp
X (k) , (25)

where

Y (k) =


ŷ (k + 1 |k )
ŷ (k + 2 |k )

...
ŷ (k +Np |k )

;

ZCp
(k) =


Cp (k + 1 |k ) · · · 0

0 · · ·
...

...
. . .

...
0 · · · Cp (k +Np |k )

 .

Furthermore, by substituting (24) into (25), the output equation
rearranged as follows.

Y (k) = ZCp (k)ZAp (k)x (k) + ZCp (k)ZBp (k)up (k − 1)

+ZCp (k)ZUp (k)∆up (k) . (26)

C. Objective function and constrains:

By minimising the objective/cost function specified along
the prediction horizon Np, it is possible to determine the ideal
input to the magnetic levitation system. The objective function
is described as the total future error between the desired input
and predicted output along the prediction horizon Np and the
total future error between the predicted control inputs along
the control horizon Nc. Therefore, the cost function can be
defined as follows

J (k) =

Np∑
j=1

e(k + j)
T
δ (j) e (k + j) (27)

+

Nc∑
j=1

[∆ûp (k + j − 1)]
T
λ (j) [∆ûp (k + j − 1)],

where e (k + j) = [r (k + j)− ŷ (k + j |k )]. The constrains
on the control inputs, outputs and the input increments are
represented as:

ymin ≤ ŷ (k + j |k ) ≤ ymax, j = 1, 2, ..., Np,,

upmin ≤ ûp (k + j − 1 |k ) ≤ upmax, j = 1, 2, ..., Nc,,

∆upmin ≤ ∆ûp (k + j − 1 |k ) ≤ ∆upmax, j = 1, 2, ..., Nc,,

where r is the future inputs of the system, δ(j) is the positive
definite error weighting matrix, λ (j) is the positive semi-
definite control weighting matrix. Further the cost function
can be written as:

J (k) = E(k)
T
QE (k) + ∆Up

T (k)R∆Up (k) , (28)

where

E (k) = [Zr (k)− Y (k)]; Zr (k) =


r (k + 1)
r (k + 2)

...
r (k +Np)

;

Q =


δ(1) 0 · · · 0
0 δ(1) · · · 0
...

...
. . .

...
0 0 · · · δ(Np)

 ;

R =


λ(1) 0 · · · 0
0 λ(1) · · · 0
...

...
. . .

...
0 0 · · · λ(Nc)

 .

The linear quadratic function can be obtained by substituting
the equation (26) into (28) as follows.

J (k) =
1

2
∆Up

T (k)H (k)∆Up (k)

+∆Up
T (k)G (k) + c(k), (29)



TABLE II: Controller parameters

Controller Parameter Value

MPC

Np 20
Nc 10

δ (j)

[
1 0
0 5

]
λ (j) 0.002I2×2

Ts 0.01s
umin −2.5v
umax 2.5v

PID Kp 10
Ki 4
Kd 0.2

where

H (k) = 2
(
ZT

Up
(k)ZT

Cp
(k)QZCp

(k)ZUp
(k) +R

)
,

G (k) = −2ZT
Up

(k)ZT
Cp

(k)QE (k) ,

c (k) = ET (k)QE (k) ,

E (k) = Zr (k)−ZCp
(k)ZAp

(k)x (k)

−ZCp
(k)ZBp

(k)up (k − 1) .

To ensure the stability of the control method at each sampling
period, the optimisation problem for the proposed adaptive
MPC and extra input and output constraints are implemented.

IV. SIMULATION RESULTS AND DISCUSSION:

In this study, the linearized representation of the magnetic
levitation system has been developed using the MATLAB
Simulink platform, with parameters set to their nominal values
as outlined in TABLE I. The initial state variable value for the
system has been established as zero. The controller parameters
for both the proposed MPC algorithm and the PID controller
can be found in TABLE II. The performance of the controller
are evaluated in simulation by applying two different reference
signals.

1) Case1: In this case, a desired step input signal with
amplitude 0.3mm is applied to the Maglev model. In Fig.5,
a simulated comparison between the proposed MPC and the
existing PID controller [1] for step signal tracking is shown.
The control inputs produced by the proposed and existing
PID controller are also displayed in Fig.6. These data show
that, in comparison to other control algorithms already in use,
the proposed MPC exhibits better regulation response, rapid
convergence, and very minimal steady-state error [1].

2) Case2: In Fig.7, the Maglev response for a square wave
reference with an amplitude of 0.3mm and the period of 50s
is shown. In this instance, the square wave is used to verify
the controller’s performance in the event of abrupt changes
in the direction of the input signal. As shown in Fig.8, the
resulting performance of the MPC is improved compared to
the existing PID controller [1].

Table III tabulates the comparative tracking results of the
proposed MPC with the existing controllers developed in
[1]. As can be observed from Table III, the proposed MPC
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Fig. 5: Step response for magnetic levitation system in simu-
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Fig. 6: Control input for step signal in simulation

gives 44.70%, 62.25% and 65.92% lower RMSE, ISE and
IAE values as compared to PID [1] control algorithm for
case 1. While for case2, it gives 4.04%, 7.88% and 51.02%
lower RMSE, ISE and IAE values as compared to PID [1]
respectively. Furthermore, Table III shows that the suggested
MPC is more energy-efficient than the controllers developed
in [1]. The proposed MPC provides 11.2% lower ∥u∥2 value
for case 1 and 35.76%, lower ∥u∥2 value for case 2 of PID
[1] controller, respectively.

TABLE III: Performance analysis for both the Case 1 and Case
2

Control
Action

Performance Specification
Mp RMSE ISE IAE TV ∥u∥2

Case 1

MPC 12.49 0.094 62.07 209.8 3.49 201.9
PID [1] 44.4 0.170 168.9 855.1 4.7 227.4

Case 2

MPC 24.66 0.095 906.7 2.4e03 30.8 323.8
PID [1] 69.7 0.09 984.3 4.9e03 402.5 504.05

V. CONCLUSION

The article introduces a linear model predictive control
(MPC) algorithm designed for an electromagnetic ball suspen-
sion system that is characterized by substantial nonlinearity.
To ensure a balanced evaluation, an existing PID control
algorithm having the same parameter as [1] has also been
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simulation
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Fig. 8: Control input for square signal in simulation

implemented. The effectiveness of the proposed control algo-
rithm has been successfully demonstrated through validation
within a simulation environment, using three distinct reference
signals. The resulting output confirms that the proposed con-
troller significantly enhances efficiency in achieving desired
trajectory tracking, when compared with the performance of
the existing control algorithm [1].
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